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A critical examination of the theory of resonance radiation has
been carried through, employing the mathematical technique of
Laplace and Stieltjes transforms. Particular attention has been
devoted to the question of the temporal behavior of the excited
state. With no restrictions on the interaction between atom and
radiation field other than that it be real, and that processes of
sufhciently high frequency contribute only negIigible effects, one
can prove that the probability amplitude of the excited state
cannot decay according to the general law

Z„,, C„„t je-&",

where the )„and P„are complex constants lying in the right half-
plane and the C„„arearbitrary complex coeKcients. The deviation
from the law just cited can be termed a straggling phenomenon
since exact analysis shows that the probability amplitude, for
sufficiently long times, is greater than that defined according to
the radioactive decay law.

Rigorous analysis of the source of this apparently anomalous
behavior reveals the following explanation. Although the prob-
ability amplitude of the excited state is, strictly speaking, a
functional of the interaction between the transition current in the

atom and the photon states of the electromagnetic field, the
essential features are determined principally by those states
lying near the resonance frequency. Three elementary observations
are immediately apparent. First, a particularly tractable ana-
lytical approximation for the interaction can be made such that
the value of the actual interaction is reproduced at the resonance
frequency and such that the behavior for high and low frequency
photon states is at least qualitatively correct. Exact solutions in
closed form can be obtained for this interaction. Second, in terms
of the preceding representation it is possible to show that, asso-
ciated with the transition between two atomic states, one is
presented with a concomitant picture Of a damped oscillation of
charge describable in purely classical terms. Third, this classical
motion can be interpreted as forming a source function for a con-
tinuous stochastic process in terms of which one finally derives the
representation of the probability amplitude of the excited state.
The straggling phenomenon previously cited is therefore. that
associated with all diffusion processes. The consideration of the
exact interaction leads to more involved diffusion phenomena but
does not in any case permit a radioactive decay law.

INTRODUCTION where + is the Schrodinger probability amplitude for
the system of atom plus photons; Q, U the designation
of atom states; X», E2, ~ ~ the occupation numbers of
the photon states; and, where co~@I' denotes the matrix
element of the interaction between the electromagnetic
6eld and the atomic electric current associated with the
transition between the two states Q and U. The symbol

p serves to label the direction of emission of the photon,
its polarization, and, finally, its energy.

Weisskopf and Wigner have applied Eq. (1) to the
case of resonance radiation, assuming that in the nota-
tion of the preceding section the physical system could
be described completely in the Hilbert space having
for basis vectors

A CLASSIC investigation on the theory of na'tural
line breadth' is that of %eisskopf and signer.

Their analysis is concerned with the reaction of the
emitted radiation on the atomic electrons.

The quantum-mechanical description of the behavior
of an atom in the presence of the ambient electromag-
netic 6eld, according to Dirac, is contained in the fol-
lowing equation of motion 2

l't Bf——= (Eq+2orjl Qo voNo)f(Q; Nt, Ne, )
L Bt

+Q tottrro[(No+1)'P(U; ¹,N2, . N,+1, )

+No&P(U; NI,¹,No —1, )],
' V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930);

(1930).' W. Heitler, Quantum Theory of Radhation (Clarendon
Oxford, 1936), first edition, Chap. III.

e(A, O), e(8, 1,), (2)
(1)

where A denotes the excited atomic state and 0 the
absence of any photons in the 6eld. 8 then denotes the
ground state of the atom, and 1, a photon in the state
labeled by p.
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PRELIMINARY ANALYSIS

The objective corifronting us is the specialization of
Eq. (1) to the problem at hand. We shall begin by
working with the theory reduced to its simplest basis;
that is, we shall at first make no specific assumption
abou't the form of the matrix elements co@U&, avoiding
in this way reference to a particular atomic model. The
excited state, further, is assumed to be "oriented at
random, "The probability of emission is then isotropic
with respect to direction and polarization. We shall
also assume that the "hohlraum" is large enough to
go from the sums employed in Eq. (1) to integrals by
using the Jeans formula where

( sz

s+al —»" I,).'a(s) =1

(10)
b(v, s) = —W*(v)a(s)/Lsi+2zr(v —vn") j,

r" f(v)
g(s) =—' —dv

2zr L p 3+v

Equations (6) are now to be solved subject to the
following boundary conditions:

a(0) =1, b(v, 0) =0.

Taking the Laplace transforms', of Eqs. (6), with s as
the transform parameter, and solving them, we obtain

f(v) =
I W(v) I'S(v) (12)

where V designates the volume of configuration space The bar above a or y denotes the transform in a
and t' the velocity of light. We shall introduce the
notation that

cpa B~=IzW(—v). (4) INTRODUCTION OF ELECTROSTATIC ANALOG

BG—z—= W(v)b(v, t)S(v)dv,
8$ ~p

Bb—z—= 2zr(v —vg") b+ W*a,
R

(6)

The replacement of p as a label by v accords with the
picture of isotropic emission. The dropping of A, 8 is
permissible because no other states participate in the
emission. Finally, we adopt the following symbols for
the various probability amplitudes

+(A, 0)—=a(t), e(B, 1,)—=b(v, 1) . (5)

Selecting our energy scale so that E&=0, we find that
Eqs. (1) become

Clearly, if one is to ascertain the properties of a(s)
and hence a(t), it is necessary to determine first the
properties of the function g. The latter represents the
Stieltjes transform4 of f(v), and one could simply draw
upon the available store of representation theorems to
establish the functional properties of g. However, the
content of these theorems can be obtained directly by
noting that g can be taken as representing a conformal
representation. of potential' and field lines of a double
layer of electric charge placed along the imaginary axis
in the s plane from 2zrivi—i" to +z~. This is made
clearer by. writing

g(&/2 +.,")
4, (»)

E2~ ) 2~& s... s—zg

where S(v) represents

S(v) —=Szrv'V/cs.

where
ri =2zr(v —v~").

One can readily verify that

aa*+ bb*5(v)de= 1
aJ p

for all t, if the relation is satisfied at t=0.
The implication that processes involving frequencies

much greater than v&" do not contribute appreciably to
the decay of the excited state is expressed mathe-
matically by the assignment of the property of uniform
convergence to the integral occurring in the first of
Eqs. (6). It is not dificult to establish that W(v) does
actually have the requisite behavior when calculated
for an actual atomic model. For sufBciently large values
of v, the Fourier components of the vector potential
oscillate rapidly over the atomic domain, thus forcing
cv»& to cut oG sharply in this limit.

The "moment density" is evidently to be taken as
(1/2zr) f(ri/2zr+vs~) and directed so that the "poten-
tial" is positive in the right half-plane and negative in
the left half-plane. The field lines are clearly sym-
metrical with respect to the imaginary axis. Using the
terminology of the electrostatic analog, , we can rewrite
the first of Eqs. (10) in the more useful form

()=L+I'(* X)+'~(', X)1 ' (14)

where V and U now denote the "potential" and "field."
3 This method is particularly advantageous. Compare the treat-

ment of internal conversion by N. Tralli and G. Goertzel, Phys.
Rev. 83, 399 (1951l.

4 D. V. Widder, The I.ap/ace Tralsform (Princeton University
Press, Princeton, 1946), first edition, Chap. VIII.

~ For example the so-called complex inversion theorem for the
Stieltjes transform becomes the well-known theorem of electro-
statics that the potential is discontinuous at a double layer by an
amount equal to 2~ times the moment density.
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An immediate consequence of the properties of V and
U is that the a(s) can have no singularities in the entire
s plane' with the possible exception of the imaginary
axis. It is, therefore, impossible to expand a(t) in a
6nite series of the form'

a(t) =Q„,„C„„t"ve s",

Re(X„) ~) 0, Re(P.))0, («)
with C„,arbitrary. It will be noted that the conclusion is
valid with no other restrictions on W(v) than that it be
of such a form as to make the integral in Eqs. (6) con-
verge uniformly. The Hermitean nature of the inter-
action has, of course, already been exploited in writing
~»&=co»&* and in eRect' forces the moment density
to be real.

Reverting to the second of Eqs. (10), one can prove
by elementary means that the spectrum of emitted
radiation is given by'

lim
I b(v, 1)

~

W*(v)

(2s (v —vg")+ U[0, 2s (v—vn") /+i V[0,2s(v —vn") g

(17)

One sees that the line shape is necessarily asymmetric

INTRODUCTION OF PARTICLE OSCILLATOR

While the rejection of Eq. (15) is somewhat disturb-
ing, no "model" has been presented in terms of which
this result could have been foreseen.

It is perhaps of some interest to point out that such
a model can be derived on the basis of elementary
concepts. One simply retains the picture that the
emission of radiation is associa, ted with an actual oscil-
lation .of charge. This oscillation must be damped, in
accordance with energy conservation. The reaction
force, representing this damping action, should, of
course, be derivable from Eqs. (10) as a functional of
the interaction matrix. The precise form of the reaction
force clearly cannot be assumed u priori However, o. ne
point of primary importance emerges from this pic-
turization. The reaction force represents the integrated
effect of all modes of oscillation of the radiation field in
retarding the charge vibration. In terms of the electro-
static analog one must therefore anticipate the replace-
ment of the "moment density" along the imaginary axis
by an "equivalent dipole, "in the simplest possible case.
This "dipole" is, schematically, the origin of the reac-
tion force causing the decay of the classical vibration.
The preceding discussion, it will be shown, provides a

~ Derivation of an exponential decay results from an a proxi-
mation which creates a singularity in the left half s plane M. F.
Ripelle, Compt. rend. 232, 2403 (1951)g.' The class of functions excluded is broader than that indicated
by Kq. {15).

G. Doetsch, I.ap/ace Transforms'on (Dover Publications, New
York, 1943), erst edition, Part III.

framework adequate to de6ne the mathematical pro-
cedure which must now be followed.

%e note 6rst that the s plane is not sufhcient to map
a(s) completely. One must employ the concept of a
multisheeted Riemannian surface of which one sheet is
the s plane. The remaining sheets are entered through
the cut in the s plane along the imaginary axis from
—2s ivy" to +i.The simplest space of this type would
be one of two sheets. For an arbitrary assumption as to
the matrix elements W(v) one would require an infinite
number of sheets to map u(s) uniquely.

From the appearance of the spectrum of emitted.
photons, as given by Eq. (17), we see, however, that
only frequencies near the resonance frequency vz" are
important in causing the excited state to decay. In
seeking to replace the actual interaction matrix co~~&

by an equivalent form more amenable to calculation,
one must, therefore, match the magnitude of co~~& for
v v&" and merely achieve a qualitative 6t in the
regions v&&v&" and v»v&". By way of comparison, it
may be mentioned that Keisskopf and tA'igner con-
sidered that ~~~& could be replaced in the 6nal formulas
by its value at v=s~~. The approximation is good
because of the smallness of the natural widths.

It will now be demonstrated that the equivalent
form can be selected in such a way that a(s) will then
be mapped on a two-sheeted Riemannian surface. The
dipole previously described as replacing the continuous
"moment density" will appear on the second sheet. If
one then maps the points of this surface upon a l -plane,
with l taken to mean the transform parameter for the
classical damped oscillations, the prescription is
complete.

The "model" interaction permitting a solution for
a(1) in terms of elementary functions is

f(v) =
s (v+8'),

(18)

where 2 and 8 are constants to be determined by com-
parison with the actual matrix cog~f'.

With f(v) de6ned according to Eq. (18), g can be
evaluated by elementary methods and is found to be'

is= 2wivn" (s+2rrive") (20)

The meaning of the various terms of Eq. (20) follows.
The factor z+2xivz~ merely expresses the fact that the

' The insertion of this result into Eq. (10) can be shown to lead
to the expression of a{t) in terms of three error functions of complex
argument. Owing to the lack of complete tables, the result is not
of practical interest.

( si Ai

&2~ i 2~[(si/2~ ve")1+—a)
The f'-plane (representation) is obtained by pulling

this dipole through the cut along the imaginary axis by
means of the transformation
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cut in the s plane extends to —2miv~~. The factor "i"
outside guarantees that the axis of imaginaries in the 1'

plane corresponds to the cut in the s plane. The factor
2+v~~ insures that the classical vibration "keeps
correct time. "

By transformation (20), g becomes

sA (vii") &

(21)
1-+2wB(vn&) l

The "dipole" accordingly is found in the 1-plane at
2rr(v~"—) '*B and has a "moment" equal to A (vn")'.

The transform derived by the insertion of the value of g
given by Eq. (21) into the first of Eqs. (10) must be
understood as the Laplace transform image, not of a(t)
but of a motion, say R(t)."

Using the same symbolism for this function, we have

2m.iv ~

&(1-)=. .. , , „, . (22)
P+(2wva ) —2'(vii ) A/[1+2s. (v&")'*Bj

The last term in the denominator represents the
damping of the harmonic oscillation f's+2w(vii")'.
Actually all three poles of R(l ) lie in the left half-plane.
R(t) therefore contains only retarded effects." In fact,
the damping force is a memory term of the form

la(t)l =
4mB&t& ~p

R'(7) r exp( —7'/4Dt)dr, (26)

where

and

D=(2wivri~) i

Z'=2~~DZ.

This relation between R(t) and a(t) can be expressed
most conveniently in terms of an auxiliary function
y(t, r) satisfying the following equation,

58p 1 ( 8 gs ( 8
I

sa I+I sa
s at 2Mn" ( rtcr, ) ( clcrs)

where

(.+I sh
I p, (29)

acr, i

One can easily show that R(t) defined by Eq. (24)
has two decay periods. The "fast" decay, which is non-
oscillatory, is important only for very short times.

Finally, we note that a(t) can be expressed directly
in terms of R(t) "

2vrm(vn") &A exp[—2rr(vii") ~B(t—r) jR(r)dr. (23)

The equation of motion of such a particle oscillator
is thus

8E
m +4wsm(v~+) sR —2rrm(v~+) lA

dI2

X) exp[ 2s(vz )—&B(t r)]R(r)—dr=0. (24)
0

rs r 2+r s+r2

Mii" = -,'hv~"/c'

with the "initial" condition,

4-'I.(o, ) I'= IR'I

One finds then that Eq. (26) reduces to

I a(t) I',=
I &(t, 0)

I
.

(30)

(31)

(32)

(33)
Generally, "

8 R
+4''m(vn~) 'R —47rmve~

cQ

X f(v'/vie")e ""&' '&dvR(r)dr—=0. —
(25)

, J,
"The transformation of E(t) into a(t) can be considered as

representing a perturbation in the equation of motion governing
E(t). One may consider the stochastic perturbation of a harmonic
oscillator as illustrative of this point of view LW. R. van Wijk,
Physica 3, 1111(1936)j.

"Compare F. Bopp, Naturforsch. j., 53 (1946).
~r Assuming that j"(v) is single values and that f(v) v & is expres-

sible as a Stieltjes transform.

The straggling phenomenon previously discussed is
thus identi6ed with a characteristic behavior of wave
packets.

It has been frequently suggested that the results may
be altered on considering the scatteririg problem. This
point will be dealt with in a subsequent paper.

"The Laplace transform of a(t) is
co

n(s) =R(t) = R(r) exp —r' —s+— dr,
0 lD D

using Eqs. (20) and (27). If we then find the inverse Laplace trans-
form of the integrand as a function of s (reference 8, pages 402
and 148) and take absolute values, Eq. (26) follows.


