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In the individual-particle model the expectation value of M, in
a closed shell (&1) nucleus is the sum of several terms. Each
term is the product of a spatial integral and a matrix element
over ordinary and isotopic spin. If the function f(r„„)is nowhere
negative, the spatial integrals seem to be non-negative. The sign
of the integrals has been established for the cases in which f(v„,)
is a delta-function, a Coulomb potential, or a constant independent
of the distance r, between nucleons I and v. For this reason M,
tends ta put the calculated magnetic moments outside the
Schmidt lines; but nearly all the measured magnetic moments
are inside. There are at least two ways to reverse such an unwel-
come conclusion. Perhaps better wave functions should be used.
Perhaps f(r„,) is positive when the nucleons are close together
and negative when they are far apart, like the nuclear interaction
proposed by Levy. ~ The 3E exchange moment seems to have the
same order of magnitude in light and in heavy nuclei.

The M' of four closed shell (%1) nuclei were calculated A.
delta-function was used for f(r,). The radial wave functions
R(r) were of the oscillator type

R(r) =P(r) exp( ——,'v'r'),

in which P(r) is a polynomial in v and v is related to the nuclear
radius. The results are listed in Table I. The values of 1/v are

TAm. E I. Calculated and measured magnetic moments.
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stated in units of 10 I cm. The 1/v for H' was taken to be 1.6
)&10 " cm. All magnetic moments are expressed in nuclear
magnetons. The AM are the deviations of the measured magnetic
moments from the Schmidt lines. The 83EI may be compared with
the calculated Af . The values of 3f& are those calculated by
Spruch. s

The preceding results are taken from a doctoral thesis submitted
to the Graduate School of Cornell University. Professor Philip
Morrison suggested the investigation. Prepublication copies of
the papers by Ross and Osborne and Foldy were available.
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conductivity was detected by ballistic measurement of the
'

magnetic induction of the specimens in a magnetic field of a few
oersteds; the transition temperatures quoted are those for the
mid-point of the transition extrapolated to zero field.

The following compounds became superconducting at the
temperatures given in parenthesis: V&Si (17.0'K), V~Ge (6.0'K),
MoaSi (1.30'K), MoaGe (1.43'K), MoSip. r (1.34'K), MoGeo. r

(1 20'K), WS&o.r (2 84'K), ThSi2 (3 16'K). On the other hand,
compounds which did not show superconductivity at temperatures
just below 1.2'K were Ti~Si3, Ti~Gee, TiSi, TiSi2, TiGe2, Zr4Si,
Zr~Si, Zr3Si2, Zr4Si3, Zr6Si5, ZrSi, ZrSi2, VSi2, NbSi0. 6, NbSi2,
TaSi2, Cr3Si, Cr3Si2, CrSi, CrSi2, WSi2, MoSi:. It will be noted
that in the isomorphous series VISi, V3Ge, Mo3Si, Mo3Ge, and
Cr3Si, which have a cubic structure with atomic positions similar
to those in P-tungsten, only the chromium compound remained
normal down to 1.2'K.

The transition temperature and breadth of transition of V3Si
were found to be rather sensitive to variations in impurity content
of the specimens. The purest samples were prepared from vana-
dium supplied by The Electro Metallurgical Company in which
the main impurities were about 0.1 percent of iron and manganese.
In these samples, the transition temperatures ranged from about
16.5' to 17'K, the sharpest transition being that of an arc furnace
specimen which passed from a completely normal to a completely
superconducting state between 17.1' and 16.8'K. On the other
hand, both sintered and arc furnace specimens of V3Si prepared
from vanadium containing about 1 percent of iron as its major
impurity showed superconducting transitions close to 14.5'K
with breadths of more than 1'K. This appreciable drop in transi-
tion temperature in the presence of 1 percent Fe suggests that
even for our purest samples, containing about 0.1 percent Fe,
the transition temperatures probably lie a few tenths of a degree
below the correct value for spectroscopically pure V3Si.

Finally, in an effort to produce superconductivity above 17'K,
we replaced a portion of the vanadium or silicon in V3Si by
neighboring elements in the periodic system. The effect of re-
placing one-tenth of the vanadium by either Ti, Zr, Nb, Mo, Cr,
or Ru, or one-tenth of the silicon by either B, C, Al, or Ge, was
to depress the transition temperature by amounts ranging from
a few tenths to more than ten degrees below that of control
specimens of pure VSSi. Carbon and boron produced the smallest
eGect, but it must be remarked that although the whole series of
specimens was prepared by arc furnace melting, completely
homogeneous solid solutions were not formed in all cases.

A detailed account of this work will be published later.

I Although Aschermann, Friederich, Justi, and Kramer [Physik. Z. 42,
349 (1941)],reported superconductivity in niobium nitride at temperatures
above 17'K, the more recent work of F. H. Horn and W. T. Ziegler [J.
Am. Chem. Soc. 69, 2762 (1947)] and H. Rogener [Z. Physik 132, 446
(1952)] indicates that the transition point for this compound is approxi-
mately 15'K.
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among the silicides and germanides of Groups IV, V, and
VI transition metals, we have recently observed that the com-
pound VISi becomes superconducting at about 17'K, apparently
the highest temperature at which the phenomenon has so far been
observed. This compound and twenty-nine other silicides and
germanides were prepared by sintering compressed pellets con-
sisting of appropriate mixtures of the powdered elements for
several hours in an atmosphere of purified helium at 1500 C
(silicides) or 1000'C (germanides). Additional specimens which
were prepared by melting the compressed pellets in an argon arc
furnace gave essentially the same x-ray and superconducting
results as those prepared by sintering. The presence of super-
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&HE following results, here quoted without proof, are taken
from the author's Ph. D. thesis. ' They have been derived

by an extension of the tensor operator methods introduced by
Racah. »

General expressions for the tensor force interaction between
two separate two-nucleon single-particle configurations have been
obtained by L. W. Longdon, of Southampton University, and
will soon be published. They are not discussed here. We are
concerned with the interaction between two configurations both
of which contain a group of 4(2lq+1) —1 equivalent nucleons of
orbital momentum ll (almost closed shell) and both of which
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contain an external nucleon, but this is of orbital momentum l2

in the one con6guration and lg' in the other. The results are given
for all of the neutral, symmetric, and charged isotopic spin
dependencies.

The direct term is simply related to the corresponding one for
the mixing of the two separate two-nucleon con6gurations ill~
and l&l2', obtained from the above by replacing the almost closed
shell by a single nucleon of the same orbital momentum, which
can be found using Longdon's results. The relationship is as
follows: The corresponding direct terms are identical for the
neutral isotopic spin dependence and are of opposite sign for the
other two cases.

On the other hand, the expression for the exchange term,
which as here given is to be added to the direct, reduces to a
very simple result. The isotopic spin factors for the three cases
are as follows:

neutral k(T, 0) 2,
symmetric b(T, 1) xo,

charged 8(T, 1){b(Mr, I)+b(Mr, T)},
and the spin„orbit, and radial factor is

2g5b(S~ 1)( I)ti+olto+to'i —ZW(LIL'1~ I2)
X o (21,+I){(21,+1)(2l,'+1)Chtol Ct, t,'I.'}tX, {(2L'+1)Az+(2L+I)Bz }

—+ {5(2L+1)(2L'+I)CzxiCr:xi}&W(LL'11,2E)Cx .
X' 0

In this expression W(abed, ef) is a Racah coefficient and the
functions C &, have been tabulated by Shortley and Fried. s Also,
if one writes the general radial exchange integral,

A~
cxo 00

B =— otnitq{rt/ao)uno4(ro/ao)I (rq, ro) f(rz, ro)
Cx ~p

lao'4'{rr/ao) No r4(r o/uo) rr ro'drtdro,

in which I t(r/oo) is the general normalized radial wave function
(ao is the well parameter) and in which Ix(rt, ro) is defined in
terms of the radial distance dependence I(r&o) of the tensor force
by the expansion

I(rto)/rto = Z I (rt, ro)I'tc(cos&to),
K-o

then in the radial integral A» we have f(rr, ro) =roo; in Bx it is
equal to rP, and in C~ to r&r:.

We wish to draw attention to the similarity of these results to
those for central forces as derived for the atomic case by Racah.
We have also been able to obtain corresponding expressions with
a two-particle spin-orbit interaction, but these are more compli-
cated than those for the other forces and will be reported sepa-
rately. A full account of the derivation of these results is contained
in the writer's thesis.

I J. Hope, Ph. D. thesis, London University, 1952 (unpublished).' G. Racah, Phys. Rev. 62, 438 (1942).' G. H. Shortley and B. Fried, Phys. Rev. 54, 739 (1938).
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where E, ze, h, p, are, respectively, the energy, charge, momentum,
and rest mass of the particle; Ze/r is the Coulomb potential;
y4, p are the usual Dirac matrices; fit'=2oriro/(I —e~~'") is a
normalizing factor;

rt=Zse /iP; p=i(kr kr);—~k~ =k=PE;
S p2

L (p)= &(—)'
j=p

I' is a spinor satisfying {ooI k y4E+to}I'=0; and-

&(s) = (2or) IJdr exp(ioo r) P(r)

is the Fourier transform of f(r).
The Sommerfeld-Maue approximation is valid for all energies,

and is subject only to the condition
~

oooP~ o&1&. This is to be
distinguished from the first and second Born approximations,
which are subject to the more restrictive conditions ~ot

~

&&1 and

~

eo
~
&&1, respectively.

The first Born approximation is obtained from (1) and (2) by
putting m=0. One 6ndsi,.~, 1 . . 8 1
o~ ~=(, &,

:"'~, .~ i= —,„~ ' —,
(2~)& 2' ~p Be 6+( lc

The second Born approximation is obtained from (1) and (2)
by expanding to 6rst order in n:

ooj= '"'.1—y g d )(1+ f(p)}I',E,.l, , y4P

{2or)t 2r
(5)

where
l g~t —j.

f(p)=Ci[p)+iSi(p) —in(p( —C= dt;

complicated. ~ For low energy particles, the nonrelativistic Schrod-
inger equation may be used. As is well known, this equation with
a Coulomb potential is separable in parabolic coordinates, and
the wave function is fairly simple, depending on only one coordi-
nate. On the other hand, for high energies and low charge, the
first Born approximation may be used; in fact, almost all calcu-
lations concerning relativistic Coulomb particles have been done
in this way. Since the Born approximation is valid only for'

~
oo( «1, there is a considerable range of charge and energy values

not covered by either approximation.
For the Dirac equation, this gap was partially 611ed by Sommer-

feld and Maue. ' The iterated Dirac equation for a charged particle
moving in a Coulomb field is
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&HE exact relativistic wave functions describing unbound
charged particles moving in a Coulomb field are well

known. ' However, they have not proved convenient for actual
calculations. This is because they depend on three coordinates;
and, in the case of the Dirac equation, the spinor dependence is

Ci and Si are the cosine- and sine-integral functions, and C is
Euler's constant.

The Fourier transform of (5) is

E . . 8 p
o (oo) = ——limit ——-goy (grado+grad, ) +.

I

tt +(o ik)o-
1+e ln 1". (7)

For the Klein-Gordon equation with a Coulomb potential,

V Ij|+ E—
.

—P,2 /=0,


