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The Beta-Decay of the Triton*
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A general formula is derived for the beta-decay matrix elements in the decay of a nucleus into its mirror
nucleus. This formula is specialized to the decay of H. Under the assumption of charge independence of
nuciear forces, it is shown that the vaiue (J'e)'=3 computed on the basis of a pure 'St ground state is an
upper limit for the true value of this matrix element, provided only that the ~S; state is present with a
probability of at least 25 percent.

I. INTRODUCTION

ANY years ago Wigner' pointed out that the wave
- ~ functions of mirror nuclei should be very similar

to each other. Indeed, if neutron-neutron forces equal
proton-proton forces, and if the Coulomb forces can be
treated validly as a small perturbation which changes
the energy of the state without appreciably changing the
wave function, then the wave functions of mirror nuclei
are identical. In that case, the matrix elements for the
beta-decay of a nucleus into its mirror nucleus can be
computed without detailed knowledge of the wave
function. '

If we assume full charge independence of nuclear
forces, i.e., equality of NN, pp, and Np forces, then the
total isotopic spin T is a good quantum number. It is
then easy to show that the matrix element usually
denoted' by (J'1)' is given by

This equals unity for mirror nuclei, for which T=2,
~0=2& ~g = 2 ~

Unfortunately, no such simple result holds for the
matrix element (J'e)' which arises from the Gamow-
Teller interaction. 4 If the forces are spin-independent in
addition to being charge-independent, then the super-
multiplet theory of Kigner' can be applied. In addition
to the total angular momentum J and the total isotopic
spin T, there are then the following additional good
quantum numbers: the partition quantum numbers
I', I", I'", the intrinsic spin of the nucleus S, and the
orbital angular momentum of the nucleus I.. The value
of (J'e)' under these assumptions has been calculated

by signer. '
Unfortunately, the present evidence indicates that

the nuclear forces are probably charge independent but
are certainly not spin-independent. Trigg' has general-

*This research was assisted by the joint program of the ONR
and AEC.' E. P. Wigner, as quoted in White, Delsasso, Fox, and Creutz,
Phys. Rev. 56, 512 (1939).

~ E. P. Wigner, Phys. Rev. 56, 519 (1939).' E. J. Konopinski, Revs. Modern Phys. 15, 209 (1943).
4 G. Gamow and E. Teller, Phys. Rev. 49, 895 (1936).' E. P. Wigner, Phys. Rev. 51, 106 (1937).' G. L Trigg, Phys. Re.v. 86, 506 (1952).

ized signer's calculation to the extent that the orbital
angular momentum I. of the nucleus is no longer con-
sidered a good quantum number. However, Trigg
assumes no appreciable admixtures of states belonging
to partitions other than the dominant (sr, st, &-,'). Since
the tensor force leads to adrnixtures of other partitions, '
and since the tensor force is probably the main spin-
dependent force, we thought it worth while to calculate
the eGect of admixtures of states belonging to other
partitions.

We first derive a general expression for (J e)' under
the assumption of equal wave functions for the two
mirror nuclei, i.e., equality of Iss and pp forces, but no
assumption about rip forces. We then specialize the
formula to the case of full charge independence by
omitting all states with isotopic spin T@-,. The applica-
tion of these results to the decay of the triton is par-
ticularly simple because there are only three nucleons
present. The permutation group. on three variables has
only three different irreducible representations (parti-
tions); hence, all states which can be present in H' can
be enumerated easily, and the relevant matrix elements
can be calculated explicitly. When this is done, assuming
charge independence of the nuclear forces, it turns out
that there are only two states which would tend to make
the value of (J'e)' exceed 3. Since these states have to be
present to at least 75 percent of the total wave function
before (J'o)' exceeds 3, we conclude that the true value
of (J'e)' for the decay of H' is less than or equal to 3.

The calculations reported here can also be used for the
decay of other mirror nuclei, although they are not
complete (i.e., not all possible partitions are enumerated)
for nuclei of mass number greater than 3. In practice,
however, the partitions (st, —',, &-,') and (ss, ts, ~—,') are
surely the most important ones, and the results given
here are sufhcient for the computation of their sects in
all mirror nuclei decays.

An appendix contains the explicit forms of the spin-
isotopic-spin wave functions for all states of the triton.

2. A GENERAL EXPRESSION FOR (J'tr)'

Consider a decay between two "corresponding" states
of mirror nuclei, each with total angular momentum J.
The initial nucleus has a neutron excess Tr= st(iV —Z)

A. M. Feingold, thesis, Princeton University (1952) (un-
published).
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where p=1, 0, —1, and v~ is the conventional isotopic
spin operator which changes a neutron into a proton and
vice versa. Let the wave function of the initial state be
O'J~, the subscripts indicating the values of the total
angular momentum and of its s component; the wave
function of the final state is C»~ . Since the states are by
assumption "corresponding" states, the value of J is the
same, but M' may be any one of M, M+1, M—1. The
quantity (J'a)' is then defined as follows:

( P $ +1 +J
1
(c~~ Vp +~~) I

' (2 3)
i J ) p=l 3E'=J

The value of this double sum is, of course, independent
of M, since a diGerent choice of M corresponds to a
diferent choice of the s direction in space, which cannot
acct the beta-decay probability.

To simplify expression (2.3), we observe that the
matrix elements of a vector operator such as Y depend
upon the magnetic quantum numbers M, p, and M' in
the same way as the Clebsch-Gordan (vector addition)
coeflicients (1JpMl1JJM'). ' We use the notation of
Condon and Shortley. ' Thus we may restrict ourselves
to particular values of 3f, p, and 3f'. Ke shill pick
M= M'= J and p=0 for ease of computation. Thus

(C'JJy VO +JJ)
(C Jsr, Vp @gsr) = (1JpMl 1JJM') —. (2.4)

(1JOJl1JJJ)

When we square this and sum over p and M', the sum of
the squares of the Clebsch-Gordan coe%cients is unity,
so that we get

( f ) (C'JJ) VO +JJ')

) (1JOJ
l
1JJJ)

(2.5)

'E. P. Wigner, Gruppentheorie und ihre Anmendung auf die
Quantenmechanik der A toms pektren {Vieweg and Son, Braun-
schweig, 1931, reprinted by Edwards Brothers, Ann Arbor,
Michigan, 1944).

9 E. U. Condon and G. H. Shortley, Theory of Atomic Spectra
(Cambridge University Press, Cambridge, 1935). Unlike Condon
and Shortley, the Clebsch-Gordan coeflicients (jj'mm'~ jj'JMl
used here are deaf, ned to vanish identically unless m+m'=M.
Thus, a double summation over m and m', say, really reduces to a
single sum.

=+0, the final nucleus has Tr' ————,. The direction of
the decay has no inhuence on the value of the matrix
element. Let us define the "spherical components" of
the Pauli spin vector e(+ for particle number k as
follows:

o~t —— 2—*'(—o,+choo),
. os=op, o,=2 l(—o. t'—o„) (2. .1)

The relevant operator for the allowed beta-decay with
Gamow-Teller selection rules is the vector operator Y
with the spherical components (A =mass number)

In order to get farther, we have to introduce a more
detailed classification of the possible states. The states
are linear superpositions of elementary states. Each
elementary state has a definite orbital angular mo-
mentum I with s component m, a definite spin angular
momentum S with s component p, a definite isotopic
spin quantum number T, and belongs to a definite row ~

of some partition (P, P', P') of the permutation group.
For the sake of conciseness, we shall use the symbol P to
denote all three quantities P, P', P"'. We denote the
space wave function belonging to row number ~ of
partition P and to an orbital angular momentum I., m

by P~„(L,P; rtrs, , r~). We denote the spin-isotopic-
spin wave function belonging to row ~ of the partition
adjoint to P, to spin S with s component p, , to isotopic
spin quantum number T, and neutron excess Tr=+ is,

by V„„(P,T, S).Explicit expressions for the functions V
in the case of three. particles are contained in the
appendix, and the reader unfamiliar with the repre-
sentations of the permutation group is urged to read the
appendix before proceeding with the rest of this paper.
The spin-isotopic-spin wave functions for neutron excess
Tr' —rswill ——be denoted Up„(P, T, S). They are ob-
tained from the V„„(P,T, S) by a systematic replace-
ment of neutron wave functions by proton wave
functions and vice versa (see the appendix).

Vfe may now write the wave function +J~ of the
initial state as a linear superposition of wave functions
4 J ia'(P, L, T, S) with definite values of the partition,
orbital angular momentum, isotopic spin quantum
number T, and spin quantum number S. We denote the
probability amplitudes by o.l.l,» '.

&r r,rs +zM(P, L, T, S). (2.6)
I', X,, T, S

We shall normalize the functions 4'ger(P, L, T, S) to
unity; furthermore, they can be chosen in such a way
that the coeKcients o. are all real numbers, " and we
shall make such a choice. Thus, the quantities 0. are real
and the sum of their squares is unity.

The functions 4'@jr(P, L, T, S) must be antisym-
metric under the interchange of any two particles. Let f
be the dimension of partition P. Then

+L +S
@~sr(P, L, T, S)= f-& g

x=1 m L p=S

X(LS~pILSJM)0„„(L,P) V„„(P,T, S). (2.7)

Ke now turn to the wave function of the final state,
Cg~ . At this point we assume explicitly that neutron-
neutron forces equal proton-proton forces, and that the
eGect of the Coulomb forces on the wave function is
negligible (even though there may be a measurable
effect on the energy of the state). This means that the
probability amplitudes a are the same as in %ger (these
amplitudes are, of course, independent of 3E in any

"E.P. Wigner, Gott Nachr. B1, 546 (1932).
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case), and furthermore, that the space wave functions
P-„(L,P;ri, r~, , r~) are the same as the ones
occurring in the initial state. Thus, the integrations over
the space coordinates can all be reduced to the orthogo-
nality and normalization integrals for the functions
f „(L,P; ri, r~, , r~), which form an orthonormal
set. Hence, we can compute the beta-decay matrix
element without any detailed knowledge of the wave
functions; indeed, all we shall need to know are the
probability amplitudes +Pl.r s

Weareinterestedinthematrixelement(c Jj Yp&gg)
which occurs in (2.5). The operator Yo does not involve
any operations on space coordinates. Hence, this
matrix element vanishes unless I- and m are the same for
the initial and final states. Furthermore, I'0 is invariant
under permutations of the particles (see (2.2)7. Thus,
the matrix element vanishes unless the partition I', and
the row index I(: are the same for the initial and final
state. Since I'0 is a component of a vector operator as
far as the spin S is concerned, 5' may dier from 5 by
at most one unit. Similarly P may diGer from T by at
most one unit. We, therefore, obtain

(@JZy Yo+JJ) ZZ Q Q&PLT's'&PLTS
P li T'S' TS

X(cyy(PLT'5'), Yo+gg(PLTS)) (2.8)

where

(C gg(PLT'5') Yo 4gg(PLTS))

f +L +S' +S
=f ZZ Z-Z (LS' 'ILS'JJ)

~y ~—I l"=S' I"=S

to Racah. "We obtain

(Ls'mp'~LS'JJ) (Lsmp, ~LSJJ) (150p~ 155'p')
'PS P) P,

1)z+s+~i(2J+1),(25+1
XW(SJS'J, L1) (1JOJi 1JJJ), (2.11)

where the 8' are the Racah coefficients defined in refer-
ence 11, and the last factor just cancels the Clebsch-
Gordan coeKcient which appea, rs in Kq. (2.5). Wedefine
the following quantity:

Q(P, T'5', TS)

(25+1)'(U&, „(PTS),Yp V&, „(PTS))
(2.12)

(1so-,'i 1ss'-', )

with the symmetry property

Q(P, Ts, T'5') =(—1)s' sQ(P, T'S', Ts). (2.13

Q(P, T'S', Ts) may be considered a matrix with rows
labeled by T'S' and columns labeled by T, S. There
is one such matrix for every possible partition
P=(P, P', P").

We now combine (2.5), (2.8), (2.9), (2.10), (2.11),and
(2.12) to obtain the anal resmlt:

~ i= ZZ Z 2(—1)"""'(
E. P L T'8' TS

X(2J+ 1)'*nag, r s &er.rs

XW(SJS',JL1)Q(P, T'5', T5) . (2.14)

X(Lsmp~LSJJ) (U„.„(PT'5'), Y'p V„„(PTS)). (2.9)

One of the sums over p and p,
' is spurious, since p must

equal p, '.
Next we use the fact that the matrix element of a

symmetric operator such as I 0 is independent of the
row index A:. Hence, we may omit the sum over I(

provided we also omit the factor f ' in front. Further-
more, I'0 is the component with p =0 of a vector operator
as far as the spin S is concerned. Thus, the dependence
of the matrix element on the right side of (2.9) upon p,

and p,
' is given by the Clebsch-Gordan coefficients

(150p~ 155'p, '). All these matrix elements may, there-
fore, be expressed in terms of the one with p= p'=2 (we
recall that mirror nuclei beta-decays always involve odd
mass number nuclei), as follows

(Up x(PT'5')' Yo Vp„(PTS))

(U;, „(PT'S'), Y'p Vy, „(PTS))
=(150pi 155'p') —. (2.10)

(150-;~ 1SS'-;)

We 6rst show that this expression reduces to the one
derived by Trigg if we assume that there is no admix-
ture of states belonging to partitions other than the
dominant P=(P, P', P")=(-'„ i, ~-', ). That is, we as-
sume that the probability coeKcients +Pl.Ts are zero
unless I' is this particular partition. Since this partition
contains only one multiplet, namely, S=T=-2, the
sums over P, T', 5', T, and S in (2.14) all reduce to one
term. Furthermore, for S= ~ there are only two possible
values of L, namely, L=J+i' and L=J ,'. It is shown-—
in the appendix that Q= —g6 for this partition, so that
we get, with the notation azz, '"=p'(=the probability
of finding orbital angular momentum L),

(" )' J+1
' e

i =6(2J+1) p (—1)iW(-,', J, J;2L, 1)piiJ )

=LJ(J+1)7 '( 2 LJ(J+1)
J
+ 'L(L+1)7P')-' -(2»)

substitute (210) int (29) the ThisresultisthesameastheonegivenbyTrigg. Aswas

m, p, and p,
' can be evaluated explicitly by methods due» G. R~~~g, phys, Rgy. 6Q, 438 (].942).
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mentioned in the introduction, the applicability of this
formula is somewhat questionable. As long as the forces
are both spin-independent and charge-independent, the
orbital angular momentum L, is a good quantum number
and Wigner's calculation is applicable. It is believed at
present that the forces are charge-independent to a good
approximation, and that the main deviation from spin-
independence is produced by the tensor force. Now, the
tensor force has the property that its matrix elements
are zero between states belonging to the partition
(—',, —',, &—',).Thus, the one additional state considered by
Trigg is not admixed in first order by the tensor force.
Rather, the tensor force admixes in first order a term
belonging to partition (-,', -'„W-', ) with T=-,'and S=-', .
For example, the main admixture to the dominant"
(-'„-'„—-,') "S; state of H' is of type (-,', -'„-',) s4Dy (this
is the state considered by Gerjuoy and Schwinger), "
rather than of the type (-'„-', , —-', ) "P; implied by the
use of Trigg's expression (2.15). In this respect the
triton is typical of all the mirror nuclei. Thus, Trigg s
analysis of the data, which is based on Eq. (2.15), is
open to some doubt.

We now proceed to give the values of Q, (2.12), for the
partitions occurring in the wave function of the triton.
The computation of these values of Q is outlined in the
appendix. The dominant partition is (-'„-', , ——,') corre-
sponding to a completely symmetric space wave func-
tion and a completely antisymmetric spin-isotopic-spin
wave function. This partition gives rise to only one
multiplet, namely, T=S=-,', and

Q(P, ss, ss)=-46 «r P=(&, s, -&). (2.16)

The next partition in order of importance is (ss, ~~, xs)

with the three multiplets T=S= 2; T= 2, S= 2; and
T=-'„S=—',.We write Q as a matrix with rows labeled by
T'S' and columns labeled by TS:

Partition (-,', —',, —',)

T'S'
1 1
2 2
1 3
2 2
3 1
2 2

TS 1 1
2 2

g2/3
—4/2/3
—2/2/3

1 8
2 2

4+2/3
2+5/3

—2+2/3

-2g2/3 (2.»)
2+2/3

—2y2/3

If the forces are completely charge-independent (so
far we have assumed only the equality of er4 and pp
forces), the total isotopic spin T is a good quantum
number. In that case T= T'= 12 and the last row and
last column of the matrix (2.17) should be omitted.

The last partition which can occur in the triton. is

(s, -'„—',) which corresponds to a completely antisym-
metric space function and a completely symmetric spin-
isotopic-spin function. This partition gives rise to two
multiplets, T=S=2 and T=S=—,'. Only the first of
these occurs if the forces are charge-independent. The

"The two superscripts on the term symbols denote the multi-
plicities 2T+1 and 2S+1, in this order."E.Gerjuoy and J. S. Schwinger, Phys. Rev. 61, 138 (1942}.

matrix Q is given by

Partition (-,', —,', $)

T'S'
TS 1 1

2
3 3
2 2

1 1
2 2
3 3
2 2

5+2/3 —4/1/3
4/1/3 —4+(5/3)

(2.18)

Partition (-,', —,', ——,'):
Partition (-,', —,', -',):
Partition ($, -'„s):

'22S 22+,
s7

22S 22P 24P

22S 22+
"D*„(3.1)

The first state listed is the dominant state, and is the
only one present if the forces are spin- and charge-
independent. The tensor force admixes in 6rst order only
the (-'„-'„-',) "D; state. In the next order all states are
admixed, but states belonging to the completely anti-
symmetric Partition (ss, ss, —',) are high uP in energy and
consequently are not admixed to any appreciable extent.

For convenience of notation, we shall number the
partitions by Roman numerals I, II, III. Since all states
considered here have T= —,'and J=~, we shall omit
those symbols. Hence, the erst state in (3.1) will be
denoted by IsS, the last state in the second line of (3.1)
by II D, and so on. Their probability amplitudes will be
denoted by n(IsS) and n(114D), respectively, and their
squares, the probabilities themselves, by P(IsS) and
P(II4D). With this notation the matrix element (J'4r)s
for the triton decay is

2

~t 4r
~

=3{p(IsS)——;p(IsP)——s'p(11sS)

+-s,LP(IIsP) —5P(II'P) —16n(II'P) n(II'P)]

+-,'p(II4D) —(5/3) p(IIIsS)

+ (5/9) p(III'P) }'. (3.2)

In the special case that the II4D state is the only
appreciable admixture, so that P(IsS) = 1—P(II4D), ex-
"The two superscripts on the left side of each state stand for the

multiplicities 2T+1 and 2S+1, in that order.

The rest of this paper will be devoted to the triton
decay. We would like to point out, however, that the
partition (ss, ~s, Wxs) is the dominant admixture pro-
duced by the tensor force in al/ mirror nuclei, so that
(2.16) and (2.17) together with (2.14) give probably a
more adequate description of mirror nuclei decays than
Trigg's expression (2.15). Unfortunately, there are in
general two or more states admixed in 6rst order by the
tensor force (the triton is an exception to this rule),
making the analysis much more di%cult in practice.

3. THE DECAY OF THE TRITON

We shall assume from the outset that the forces are
charge-independent so that states with isotopic spin
T= 2 can be omitted. There are then the following states
possible 4
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pression (3.2) reduces to"

(3.3)

matrix elements. One of them is the III25 state, which
would lead to (J'a)'=25/3 if it were the only state
present. The other state is a linear combination of II2P
and II4I' obtained by diagonalizing the quadratic form
in the brackets of (3.2). The eigenvalues of this quad-

This quantity is less than or equal to 3, no matter
what the amount of admixture is. A D-state admixture .

of 4 percent follows from the Ineasured magnetic mo-
ments of H' and He', if the exchange magnetic moments
are assumed to be equal and opposite in these two
nuclei, and if relativistic eRects on the magnetic mo-
ments are ignored, the latter assumption being a rather
doubtful one. If we assume a 4 percent D-state admix-
ture for the sake of argument, the value of (J'a)' is
changed by roughly 5 percent, becoming 2.84 instead of
3.00. Such a 5 percent change is not much smaller than
the experimental uncertainty in the ft value of the triton
decay. "Since the amount of D-state admixture is by no
means well known, and since other states may be
admixed appreciably also, the value of (J'o)' is quite
uncertain.

We would like to point out that admixtures of
(2, —,', W —', ) states of the same order of magnitude, or even
larger, may be expected in all mirror nuclei. It is quite
likely that these are the dominant admixtures to the
usually considered (-,', —,', &-,')P states in the odd nuclei
with mass numbers between 7 and 15, If this conjecture
is correct, one should not attempt to make too detailed
an analysis of the ft values of these mirror nuclei without
taking this correction into account. ' It is not apparent
that the admixture correction is negligible even for
those mirror nuclei which have one more or one less
nucleon than some closed shell. Indeed, the triton
satisfies this condition, yet the admixture correction to
the matrix element is probably of the order of 5 percent,
and may be a lot more than that if the magnetic mo-
ments of H' and He' are corrected for relativistic eRects,
which would change the D-state probability. Un-
fortunately, we do not know at this time how to make
this correction, not even the direction of the relativistic
eGect; all we know is that the relativistic eGect on the
magnetic moment is not negligible compared to the
admixture eRect, which is not much consolation.

In view of the uncertainty in the actual value of
(J'o)', we think it may be useful to point out that, under
very reasonable assumptions about the wave function of
H', the true value of (J'e)' is no larger than the ele-
mentary value 3. A look at expression (3.2) shows that
there are only two states which can lead to larger

'~ This expression was 6rst calculated by E. Feenberg (quoted in
reference 6); a trivial mistake in sign in the formula quoted in
reference 6 was corrected by Professor Feenberg in a private
communication to the author.' For references regarding the end-point energy and lifetime of
the triton, see Hornyak, Lauritsen, Morrison, and Fowler, Revs.
Modern Phys. 22, 291 (1950).

'~ R. Nataf and R. Bouchez, Phys. Rev. Si, 155 (1952); R.
Souchez and R. Nataf, Compt. rend. 234, 86 (1952); O. Kofoed-
Hansen and A. Winther, Phys. Rev. 86, 428 (1952); and un-
published work by the same authors.

,

~ o
~

=3(1—2.172Pg —2.667Pg)'.
E~

(3.4)

This can exceed 3 only if the following inequality is
satisfied:

1.086pg+1.333p2 )~1. (3.5)

If p& is the only admixture (i.e., p&
——0), the state

involved has to be present to the extent of at least 92
percent. The situation is a little more favorable for the
II12S state; it would have to be present to only (!) 75
percent. Conversely, if the domirtant I'S state is present
to at least ZS perceut probability, the true value of (J'a)'
does cot exceed 3.

Because of this theorem it is very much worth while to
measure the comparative half-life (ft value) of the
triton decay with high accuracy, even though the true
value of (J'o)' is not known theoretically to anything
like comparable accuracy. For such a measurement will
allow us to put a very accurate upper limit on the
product (J'e)'ft, which would help considerably in
narrowing down the beta-decay interaction. This point
is discussed in more detail in the preceding paper.

APPENDIX. SPIN- AND ISOTOPIC-SPIN
FUNCTIONS FOR THE TRITON

Let ~ be the spin function for a particle with spin up,
P the spin function for a particle with spin down. In
accordance with expression (2.10) we may restrict
ourselves to spin functions with 5,= p = —,'. There
are three linearly independent functions, namely,
n(1)n(2)P(3), n(1)P(2)n(3), and P(1)n(2)n(3). These
three functions form an orthonorrnal set. Ke now con-
struct another orthonormal set with the property that
members of the new set transform according to irre-
ducible representations of the permutation group. These
new functions are

q~= 6 'LP(1)n(2)+n(1)P(2) hn(3)
-(2/3) '*n(1)n(2) P(3)

q2= 2 'I:P(1)n(2) —n(1)P(2)7n(3)

q~= 3 'Ln(1) n(2)p(3)+ n(1)p(2) n(3)
+P(1) (2) (3)j

ratic form are (including the factor —', in front) +0.727
and —I.172. Only the latter of these is larger than
unity. We clearly get the most unfavorable estimate if
we assume that the two bad states are the oddly admix-
tures Le. t p& stand for the probability of the particular
mixture of II' and II' involved here, and denote
p(1112S) by p&. Then p(12S) = 1—p&

—p2 by assumption,
and we get from (3.2)
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permutation group (two of these three representations
are exempliied by the set (», ss) and by the one function
v3, respectively; the third representation is exempliied
by a completely antisymmetric function).

Ke start with the completely symmetric spin-
isotopic-spin functions which go along with completely
antisymmetric space wave functions. Clearly one of
these symmetric spin-isotopic-spin functions is the
product ~3q3 which corresponds to isotopic spin T'=-,'
(because of vs) and mechanical spin S=-', (because of
qs). The only other symmetric function is 2 (»qt+»qs),
corresponding to isotopic spin T=-', (because of the
occurrence of » and ss) and to mechanical spin 5=-',
(because of the occurrence of qt and qs). Thus, the
supermultiplet (I', P', P")= (-'„—',, ss) (meaning a com-
pletely antisymmetric space wave function) gives rise to
two multiplets, namely, T=S=-', and T=S=-'„with
the spin-isotopic-spin wave functions Vl, „(I', T, S):"

V(III; s) s) =2 &(»qt+vsqs), (A.3)

(A.4)V(III; —,', —,') = esqs.

There is only one completely antisymmetric spin-
isotopic-spin wave function, namely )we use the Roman
numeral I for the partition (sr, rs, —sr) j,

(A.S)V(I; —,', —',) =2- (t tqs —tsqt).

It is easy to verify that this is indeed the properly
normalized Slater determinant corresponding to three
nucleons in the states va, s.n, and vP, respectively.

Finally, we write down the functions belonging to
partition (s, s, ~s), which we shall denote by the Roman
numeral II. There are two functions for each multiplet,
which will be distinguished by the subscript z= 1, 2.
The functions V„ for the multiplet T=S= ~ are

Vt(II; s, s) = —2 '(»qt —»qs),

Vs(II; s, s) =2 '(»qs+»qi).
(A.6)

The signs are chosen in such a way that V& and V2
transform into each other under permutations precisely
in the same way as q& and qs of (A.1), or as» and»
of (A.2).

The second multiplet in this partition is T= ~, S= ~

with the spin-isotopic-spin functions

Vt(II; —,') —,') = »qs, Vs(II; —',, -', )= ssqs. (A.7)

Finally, we have the multiplet T=~, S=—,'with the
functions

Vl(II j 2) 2) ssql) Vs(II j s 1 s) t sqs. (A.fo

Equations (A.3) through (A.8) contain nine different
and mutually orthogonal functions. Since there are only
nine linearly independent products v;q; we have ex-
hausted all possibilities.

We must now 6nd linear combinations of products of
q's and ~'s which transform under permutations of the
spin and isotopic spin coordinates jointly according to
the three possible irreducible representations of the

's We omit the common index p =5,= $, and denote the partitioI&
($, $, $) by the Roman numeral III for convenience as was also
done in Sec. 3 of the paper. Since the representation is one-
dimensiona1, we can omit the index ~.

The function q3 is completely symmetric under per-
mutations of 1, 2, 3. It is the S,=~~ function belonging
to the multiplet S=-', (quartet state). Since the com-
pletely symmetric representation of the permutation
group is one-dimensional, there is only one such func-
tion, which transforms into itself under all permu-
tations.

The functions q~ and q2 are necessary to describe the
doublet (S=-',) spin state with S,=-', . lt should be noted
that the complete doublet state for three particles
cannot be written as the product of a space wave
function and a spin wave function, but rather it is the
sum of two such products. This should not be too
surprising since, in the usual way of writing such states
by means of Slater determinants, the wave function
appears as a sum of even more products (the products
are obtained. by writing out the determinant explicitly).
Under the permutation which exchanges coordinates 1
and 2, q~ transforms into itself whereas q2 transforms
into its negative. But under all other permutations
(except the identity, of course) qt and qs transform into
linear combinations of each other. The matrices corre-
sponding to the various permutations are given in
signer's book' on page 63, with the notation given at
the bottom of page 71.

There is no completely antisymmetric spin function
among the set (A.1), corresponding to the fact that it is
impossible to put three neutrons into the same space
state (which would mean a completely symmetric space
wave function).

If we were considering a nucleus containing three
neutrons, say-, the spin function q3 would have to be
multiplied by a completely antisymmetric space wave
function to give an acceptable total wave function for
the quartet spin state. To get a wave function for the
doublet state of three neutrons, we would have to con-
struct two space wave functions ft and fs which trans-
form analogously to q& and q&, and use them to construct
a sum of two products of type 2 &(lt&qs —lfsq&) which
would then be completely antisymmetric also.

The situation is appreciably more complicated for the
triton with its two neutrons and one proton. Let v be
the isotopic spin wave function for the neutron state, m

be the isotopic spin wave function for the proton state.
v corresponds to Tr=+s, sr to Tr —s. We now con-——
struct three orthonormal base functions for the triton
analogous to (A.1):
wt

——6 &Lm. (1)v(2)+ v(1)7r(2) fv(3)
—(2/3) &v(1)v(2) s (3),

=2 t~(1) (-') —(1) (2)3 (3), (A.2)
»=3 'Lv(1) v(2)~(3)+v(1)~(2)v(3)

+~(1)v(2)v(3)j.
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Ke have written down these functions without indi-
cating any method of constructing them systematically.
The easiest way is by means of the Young symmetry
operators (see Van der YVaerden" Sec. 129, or Weyl"
Chapter 5C). However, a detailed exposition of this
method is beyond the scope of this appendix.

The spin-isotopic-spin functions U for the nucleus
He' are obtained simply by replacing v&, v2, v3 everywhere
by u&, N2, N3 which are defined analogously.

sci ——6—'L v(1)s (2)+s-(1)v(2))sr(3)
—(2/3) 4.(1)sr(2) v(3),

ns ——2 f(v(1)sr(2) —sr(1)v(2) (sr(3),

us ——3 &/or(1) sr(2) v(3)+ sr(1) v(2) sr(3)

+v(1)sr(2)sr(3)).

(A.9)

In order to calculate the matrix elements (U, VoV)
which appear in the numerator of (2.12), we note first of
all that Fo is a symmetric operator under permutations
and, therefore, does not have matrix elements con-
necting diferent partitions. Within the same partition it

"B.L. Van der Waerden, Moderne Algebra (Julius Springer,
Berlin, 1940); reprinted by F. Ungar Publishing Company, New
York (1943).

"H. Weyl, The Theory of GroaPs and Qaanfura hfechamscs
(Methuen and Company, London, 1931).

Zg ll
2 2

1 322 3 1
2 2

Partition III:

1 1
2

1 3
2 2
3 1
2 2

-4/3 —1/3
2/3 2/3

2/3
2/3
2/3

T leaf

1 1
2 2
3 3
2 2

1 1
2 2

—5/3
8'/3

3 3
2 2

81/3 (A.10)
2/3

Combination of (A.10) and (2.12) then gives the
matrices Q(P, T'5', TS) listed in Sec. 2 of the paper.

connects only functions with the same value of a, and
furthermore (V„, F'oV„) is independent of x. As far as
the s component of the mechanical spin is concerned, I'0
connects only states with the same 5,= p, which we
have chosen to be +is. From here on the calculation is
trivial though slightly tedious, leading to the following
matrices for (V, VoV):

Partition I: (U, Vp V) = 1

Partition II:
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Previous calculations of all second- and fourth-order radiative corrections, which contribute to the Lamb
shift, are discussed. Further corrections to the Lamb shift in hydrogen and deuterium, resulting from the
finite mass and internal structure of the nuclei, are calculated. The 6nal theoretical results for the Lamb
shift, excluding all sixth-order corrections, are (1057.19&0.16) Mc/sec for hydrogen and (1058.49&0.16)
Mc/sec for deuterium. These values are about half a megacycle smaller than the corresponding experi-
mental results.

l. INTRODUCTION

HE accuracy of the experimental determination of
the Lamb shift has improved considerably over

the last few years. A detailed account of the experi-
mental techniques and calculations involved in ob-
taining a precision measurement of the Lamb shift will

be found in a series of papers entitled "Fine Structure
of the Hydrogen Atom. '" ' The total Lamb shift
(denoted by S and expressed in megacycles per second)
is the total energy difference between any e '5; and n 'E~
levels for a hydrogen-like atom, which coincide in the
elementary Dirac theory for an electron in a Coulomb

' W. E. Lamb and R. C. Retherford, Phys. Rev. 79, 549 (1950);
81, 222 (1951);86, 1014 (1952).' W. E. Lamb, Phys. Rev. 85, 259 {1952).' Triebwasser, DayhoG, and Lamb, Phys. Rev. 89, 98 (1953).

field. In the present paper we shall be mainly concerned
with the case of e= 2 for hydrogen and deuterium. For
this case 5 is now known experimentally to within one-
tenth of a megacycle.

The contributions of a large number of eRects to the
Lamb shift have by now been calculated by diGerent
authors. The main aim of the present paper is to
summarize the results of these previous calculations and
to calculate the contributions of a few more terms.
Corrections to the Lamb shift of relative order n',
(nerd/M) and (n 'rrP/M') and smaller corrections will

not be treated in this paper.
The electromagnetic displacement of the energy

levels of an electron bound in a 6xed Coulomb potential
involves an expansion in powers of n, the fine structure
constant. All the terms of the lowest two orders in n


