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Deviations of measured magnetic moments from the Schmidt limits have been interpreted in terms of a
failure of LS coupling. The model of an odd nucleon coupled to a nonspherical core provides an unforced
theoretical basis for this interpretation. Projection operators for pure LS coupling states are introduced
and applied to compute the statistical weights of the L=7—% and L’=7+% components in Bohr’s strong
coupling wave function. The orbital gyromagnetic ratio of each component is also determined.

Numerical results on the energy displacements produced by the coupling of the odd nucleon to the
distorted core are generally unfavorable to the strong coupling description. A perturbation method ap-
propriate to a weak coupling description is more likely to provide a satisfactory solution of the dynamical

problem.

I. INTRODUCTION

HE theory of a nucleon moving in the field of a
spherical core requires two interaction operators:
Vi(r), the radial potential function, and V,(r)l-s, the
spin-orbit coupling potential. Some degree of arbitrari-
ness is involved in any attempt to generalize these
operators to a nonspherical core. A simple generaliza-
tion, possibly inadequate, but suitable for exploratory
studies, can be derived from the working hypothesis
that V; and V, are functions of the particle densities
on(r) and pz(r). To adapt this assumption to a non-
spherical core, 7 is replaced by a new variable,

r'=[N@l4x2) 422/ N ], (1a)
r=r1-Ya2+2a.V2.(0'¢") 17, (1b)

and the particle densities (and consequently also the
potentials) are taken to be the same functions of #’ as
they were originally of 7.

The first 7’ represents a spheroidal distortion of
arbitrary magnitude leaving the volume of the core
unchanged. The second is suitable for discussing small
deviations from spherical symmetry. Here also the
volume is held constant. The angles 6’ and ¢’ are
referred to a coordinate system in which the x3 direction
is a principal axis of the distorted core.! With this
choice of polar axis a;=a_1=0, a_s=a, and a,, @, are
real numbers.

Some information on the eigenvalues and solutions
of the Schrédinger equation,

or

hZ
[——5]‘—[13-}— Vi(r)+31-sVa(r)+3Vo()I- s]\P= EY, (2)
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can be derived from a study of the interaction operators
Hing=V1(r)—Vi(r), Q)
eHiny=3[V(r') = Va(r)-s+31-s[ V()= Va(r)], (4)

in the limit of small deviations from spherical sym-
metry. In first order

1Hing=—1(dV1/dr) L a,Y s, 6)
sHine=—37(dVs/dr)a,[1-8V o+ Vsl s]. (6)

With a rectangular potential well of constant depth D,
Eq. (5) reduces to

1H§m;= il 3(?"" R)DRZG,‘Yz,,, (7)

in which R is the nuclear radius and §(r—R) is a Dirac
delta-function. This is essentially the Rainwater?—*
interaction operator with corrections for the finite
depth of the potential well and the possible absence of
symmetry about the body fixed polar axis. The recent
study by Bohr! of the coupling between the odd nucleon
and the surface oscillations of the nonspherical core is
based on Eq. (7) and a quadratic approximation for the
potential energy of the surface oscillations

: 1
Vo=3%C2a? C= ?(2Es—Ev> ®)
m

derived from the theory of nuclear fision.® (E; and E,
are, respectively, surface and Coulomb energies of the
spherical core.)

The approximation represented by Eq. (7) is probably
adequate on the range |ao| <0.2. This statement is
based on explicit numerical calculations for a well of
infinite depth and a range of eccentricities® and also on
comparisons with exact solutions for two analytically
simple problems (harmonic oscillator well and well of

2 J. Rainwater, Phys. Rev. 79, 432 (1950).

3 E. Feenberg and K. C. Hammack, Phys. Rev. 81, 285 (1951).
4 S. Gallone and C. Salvetti, Phys. Rev. 84, 1064 (1951).

5 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

6 J. A. Wheeler and D. L. Hill (to be published).
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infinite depth in a rectangular region). The present
study shows that Eqs. (7) and (8) generally determine
deviations from the spherical shape approaching the
indicated limits of validity. In some applications @, is
not small compared to 1, and the theory clearly breaks
down. Nevertheless, some interesting conclusions can
be derived from the theory based on Egs. (7) and (8).
The need for a critical approach to the theory is
indicated by recent work” on the quadrupole moment
of OY.

The possibilities for the exact solution of Eq. (2) are
illustrated by the example of a nonisotropic harmonic
oscillator (omitting the spin-orbit interaction):

H=— (12/2M)A+3I M A(x2+x:2)+x2/N2].
Th¢ eigenvalues are
E=ho[M(n+n211)+ (rs+3)N], ©®

in which the quantum numbers #, ns, n#; take on all
integral values including zero. Minimum energy occurs
for

2ﬂ3+1 3
A= (——*) ) (10)
nit+n,+1
Equations (9) and (10) yield
E=3ho(2n3+ 1) n+na+ 1% (11)

Numerical results are shown in Table I. The inclusion
of the surface energy in the calculation would give
qualitatively similar results with somewhat smaller
deviations from spherical symmetry and smaller energy
displacements.

Of particular interest is the low state in the #i+n,
+n3=2 function space. This state has m;=0 and, for
small deviations from spherical symmetry, contains
1=0 with statistical weight 3 and /=2 with statistical
weight 4.

Another example possessing a simple exact solution
has a well of infinite depth in a rectangular region with
dimensions Ly=L,=L/\}, Ly;=AL. The energy eigen-
value is )

E= (1272 2M L) N(n2+ns?)+nd/ 2],

in which the quantum numbers 71, #s, #s take on all
integral values excluding zero.

II. INTERPRETATION OF DEVIATIONS FROM
THE SCHMIDT LIMITS

The nuclides 15P16, 4sCdes, 65, 50565, 67, 69, and s1Tl129, 124
have I=% and magnetic moments far removed from
the Schmidt single particle limits. This group is assigned
even parity by the shell model. Other groups with
moments departing considerably from the appropriate
Schmidt limits occur at I=% (odd) and I=5/2 (even);
33As42 is an extreme example in the first category and
5374 in the second.

( 7 G)eschwind, Gunther-Mohr, and Silvey, Phys. Rev. 85, 474
1952).
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TasLE 1. Nonisotropic harmonic oscillator.

n1 ne n3 ml IA=1) A €/hw
0 0 o0 0 0 1 3/2

1 o 0 1 0630  2.38
0 1 0 1 0630  2.38
0 0 1 0 1 2.08 2.16
2 0 0

0 2 0' 420 2and0 0463  3.12
1 1 o

s Y ! +1 2 1310  3.435
o o0 2 0 0Oand2 293 2.565

These groups present no difficulties from the view-
point of an extreme single particle model if it is supposed
that the effective magnetic moment of the odd nucleon
when bound to the core is substantially reduced from
the free nucleon values.8—® However, as emphasized in
recent publications,'"? the existence of many closed
(==1) shell nuclides with magnetic moments close to the
appropriate Schmidt limits® is difficult to reconcile
with a large systematic modification in the magnetic
properties of the bound nucleon.

An alternative working hypothesis puts the major
share of the responsibility for the deviations from the
Schmidt limits on the failure of LS coupling within the
bounds of a pure doublet description.!*:** The ground
state is represented by a linear combination of pure LS
coupling components, one with L=I—3 and the other
with L'=I+%, both components having the same
parity:

VT = ¥y M4 (1 — 2) W 2L, (12)

The model of an odd nucleon coupled to a non-
spherical core provides an unforced theoretical basis for
the failure of LS coupling. Bohr! has shown that this
model is the dynamical equivalent of Rainwater’s?®
spheroidal core considerations. In the present study we
investigate the conditions under which the model is
likely to produce an extreme failure of LS coupling
after first determining the extent to which LS coupling
fails when j is treated as a constant of motion.

III. MAGNETIC MOMENTS WHEN ;IS A GOOD
QUANTUM NUMBER

We consider the case of strong spin-orbit interaction
and close coupling between the orbital motion of the
odd nucleon and the motion of the deformed core.

8 F. Bloch, Phys. Rev. 83, 839 (1951).

9 H. Mujazawa, Prog. Theoret. Phys. 6, 263, 801 (1951).

10 A, de Shalit, Helv. Phys. Acta 24, 296 (1951).

u J, P, Davidson, Phys. Rev. 85, 432 (1952).

12 E. Feenberg, Ann. Rev. Nuc. Sci. I, 43 (1952).

13 C18) N8, Q17 F19, K41, Y#, and Pb®7 are mentioned in reference
11. The list should include sBasi, and 7sAuns (closed dj shell at
Z=80 followed by s3 shell closing at 82). The magnitude and
sign of the quadrupole moment of yAuns [W. von Siemens,
Naturwiss. 38, 455 (1951)] support the single particle interpre-
tation.

1 G, L. Trigg, Phys. Rev. 86, 506 (1952).
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TaBLE II. Magnetic moments for nucleon states with a
definite value of j.

0Odd proton Odd neutron

i j 1 Hi peisI Bi poi; 1
0 1/2 1/2 2.79 2.79 —-191 —1091
1 3/2 3/2 3.79 2.52 —-191 —-0.90
2 5/2 5/2 4.79 3.71 —1.91 —1.07
3 7/2 7/2 5.79 4.82 —-191 —1.17
4 9/2 9/2 6.79 5.89 —191 —1.23
1 1/2 1/2 —-0.27 —-0.27 0.63 0.63
2 3/2 3/2 0.12 0.31 1.14 0.93
3 5/2 5/2 0.87 0.91 1.37 1.27
4 7/2 7/2 1.71 1.65 1.47 1.46
5 9/2 9/2 2.62 2.46 1.56 1.60
2 3/2 1/2 0.12 0.37 1.14 0.03
3 5/2 3/2 0.87 0.56 1.37 0.74
4 7/2 5/2 1.71 1.16 1.47 1.04
5 9/2 7/2 2.62 1.90 1.56 1.25
1 3/2 1/2 3.79 —0.86 —1.91 1.05
2 5/2 3/2 4.79 1.96 —191 —-045
3 7/2 5/2 5.79 3.24 —1.91 —0.68
4 9/2 7/2 6.79 4.42 —191 —-0.84
5 11/2 9/2 7.79 5.53 —-191 —-095 °

Under these conditions there exist solutions for which
the angular momentum components I3 and j; are
approximately constants of motion. The product
function,

Var'= e[ xr'Darr"+ (= 1)"Ix—1'Dar, 1", (13)

is a close approximation to such a solution.! Here x.r’
is a normalized nucleon wave function with js=-1,
Dy, 417 describes a state of a symmetrical top with total
angular momentum 7, I3==1, I,= M, and ¢ embodies
the zero-point fluctuations of the surface waves.

The detailed numerical evaluation of the energy
matrix in the space of the strong coupling wave func-
tions indicates that strong coupling is an extreme case
rather far removed from the actual situation. Never-
theless, the simplicity of the strong coupling model is
sufficient justification for a careful examination of all
its consequences.!®

Consider first a nucleon state with a definite value of
4. The magnetic moment operator of the compound
system has the form

pei=gii+g(I-3)
=(g,—g)i+gl, (14)

in which p;=g;7 is the magnetic moment of the odd
nucleon on a spherical core and g.~Z/A is the gyro-
magnetic ratio of the core.!® The magnetic moment
computed from Eq. (14) is

RN
Meji 1= e 8i—&e 711 )

in which (IM|I-j|IM) is the diagonal matrix element

16 We are indebted to Dr. N. Kroll and Dr. L. Foldy for valuable
discussions on the subject of the strong coupling approximation.
16 . Margenau and E. P. Wigner, Phys. Rev. 58, 103 (1939).

(15)
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of I-j with respect to the wave function of Eq. (13).
Straightforward calculations yield

I5jsW 3 =17y,

(IjrtT2j2) U =3[21(G—T+1)(G+I) Jte
Ixr D a, - (= DX 141D, 141 ]

In deriving Eq. (16) it must be remembered that the
components of I and j with respect to the principal
axes of the core commute and also that jXj=1j, the
normal commutation relations, for both space and body
fixed axes, but IXI= —:I for body fixed axes. Equation
(16) implies

IM|L|IM)=F, I>},

(16)

=i[1+ (=D 2j+1], I=3 (U7
and, consequently,
#cj;1=lj_1[gﬂ+gc], I>3, (18)
teisy=5[3gA (g~ g) {1+ (=D (2j+ 1D} ] (19)
In particular,
M= AL Men= ge—my. (20)

Equation (18) with 7= j is not new,"” but the important
restriction to 7>% has not been observed in previous
applications. Numerical results are listed in Table II.

Excellent agreement of p.r;r with the general trend
of the experimental moments is found for I=1/4-3>1.
Two examples of extreme departure from the appro-
priate Schmidt limits may be interpreted in terms of a
failure of / and j as good quantum numbers; the
moment of 33A4e suggests approximately equal parts of
key:3 and peg;3 (odd parity) while that of s3Iz can be
fitted with two-thirds s and one-third pee.s (even
parity). Close coupling of f; and pjy orbitals through
the mediation of the distorted core is a reasonable
possibility on the range 29=Z=38; similarly an ex-
ample showing close coupling between g7/ and dj is not
unexpected on the range S1I=Z=38.

For I=I1—1%, w1 is generally only slightly better
than u; leaving a substantial discrepancy between the
theory and the general trend of the experimental
moments. The possibility of a partial decoupling of 1
and s must be considered here since a state with /=7
=]—1 is coupled through the distorted core to j'=1+3.
One needs the nondiagonal matrix element of the
magnetic moment operator

(=3, 1=}l guswtgal 143, 1—1)
= (g:— g1 (2D)Y/ (21+1)
=4.58(20)}/(20+1), odd Z
=—3.82(20)}/(2i+1), odd N. (21)

17 A, Bohr, Phys. Rev. 81, 134 (1951); all the B curves in
Figs. 1 and 2 of this reference should coincide with the 4 curves
at I=3.



DEVIATIONS FROM LS COUPLING

If now
Y= (1—62)§\I/¢I;I+ﬁ\pcl+l;1, (22)
the correction to the magnetic moment is
pr— per; 1~ B(gs— g) QI+ 1)Y/ (I+1) (23)

for 8«1. Rather small values of 8% are able to account
for most of the observed deviations. Thus, at I=7/2
and odd Z a correction of 0.8 nuclear magneton
requires B?~0.06. Both odd N and odd Z require
negligible corrections at 7=% and § and the positive
sign for B at I>%.

The remaining important special case is =% (even
parity). Here the coupling between 253 and 2d; through
the distorted core provides a possible explanation of
magnetic moments far removed from the 2s; Schmidt
limit. The calculations are described in a later section.

IV. RESOLUTION INTO LS COUPLING COMPONENTS
WHEN j IS A GOOD QUANTUM NUMBER

We return to the strong coupling wave function of
Eq. (13) under the restriction that / and j are good
quantum numbers. The resolution of ¥j! into LS
coupling components is accomplished by the introduc-
tion of projection operators

Pyrt#4=0, L=IF}

=1, L=I+1. (24)
Explicitly,

Py H=[(I-8y—(UI—-5)U+HI/@I+1)
=(I+1-2I-S)/(2I+1), (25)

Py =[I+3)(I+3)— A-8y/(2I+1)
=(I+421-8)/(2I+1). (26)

These relations and Eq. (12) yield

2= (IM| Py #|IM), 27

independent of M. ,
In the body fixed reference frame, the components of
T and S commute; this fact and the relations IXI= —il
and SXS=18 yield
41-SI-S=1(1+1)—2I-8§, (28)
in agreement ‘with the idempotence property of the

projection operators.
The substitution

L-S~I-1)G-8)/Li(G+1)]
= (I-)(=1)H+/(21+1) (29)
leaves unchanged all matrix elements of I-S in the
function space defined by ¥_;I---¥;f. Consequently
the projection operators can be expressed in the
convenient forms:

I+1)(241)—21-j(—1)H+

P ti=— , (30)
2r+1)(214-1)
I(21+1)+21-3(— 1)+~
Piie 2+1)+21-5(—1) . G31)
QI+1)(20+1)
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For I'=1% the statistical weight of the %S} component
in ¥yt of Egs. (9) and (13) is

AL (= DA DI (- D

[64

4(20+1)
=1, 1=0, j=I=1}
=0, I=1, j=I=}
=04, =2, j=I+1=%. (32)

In the same way, the statistical weight of the LS
coupling component with L=7—% in ¥y for I>1% is

| QD) +2P(= 1)

(2I+1)(2i+1)
o1
T+ j=iti=l
I |
~ oy (33)

Maximum mixing occurs at =34 with 75 percent P
and 25 percent Dy from a nucleon in a pj state.

The orbital gyromagnetic ratios are quantities of
interest in connection with the resolution of ¥ into
pure LS coupling components. To compute these
quantities we start from the operator for the orbital
magnetic moment:

Uorb=gll+gc(l'—j)

=(g1—g)i—gS+gL 34)
The easily verified relations,
03, I-S1=(8, I-S1=[1, I-§]
=4IXS, (35)

have the consequence that gor, commutes with I-S and
therefore also with the orbital angular momentum
projection operators. This property enables us to write

#orbli%(ll| Plﬂli%l II)

=11 gornPyr"**| IT)/(I+1). (36)
From Egs. (25), (26), and (34),
81— 8 . . v
I worn Py = [@4+1)I-j—21-51-S]
2I+1
+Ilg.(I+1D)+3g 1Py, (37)
Lo Prr = = [ T(1-§) 421 18]
2741
+ I+ [gl—3g]Pur™E (38)

Since the operator I-j does not mix the two values
of j associated with the given /, the substitution

L51-S~ (L )(— 1)/ (21+1) (39)
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TaBLE III. Values of gorbE.

I=j ! L &orb® (0dd 2)  gorp” (odd N)
1/2 0 0 0 0
1 - ) —
1 0 — —
1 1 0
3/2 1 1 0.760 0.160
2 0.600 0.267
2 1 0.280 0.480
2 0.835 0.110
5/2 2 2 0.829 0.114
3 0.700 0.200
3 2 0.571 0.286
3 0.870 0.086
7/2 3 3 0.867 0.089
4 0.760 0.160
4 3 0.689 0.208
4 0.893 0.071
9/2 4 4 0.891 0.073
5 0.800 0.133
S 4 0.755 0.164
5 0.909 0.061

is permitted in Egs. (37) and (38). Equations (16) and
(17) suggest the procedure followed in computing the
diagonal matrix elements of (I-j)?; these are found to
have the values

G2 L3139 =61+ (- D25+ 1) P,
I3 ID=r+1), I=j7>%. - (40)

Orbital gyromagnetic ratios g for the odd nucleon-
distorted core system are defined by the equations

Morbl_%= (I— %)gorbl—éy L= I_% 3
I(I+3) (41)
po P =g, 4}, L=I+},
I+1
For I=j=3% and !=0, both left- and right-hand

members of Eq. (36) vanish. In this case no calculations
are needed to establish the absence of an orbital
contribution to the magnetic moment. A more inter-
esting check is supplied by I=j=%, I=1 (a pure 2P,
state). Now

porb!Ti=2g; and gom!ti=g, (42)

in agreement with expectations.
General formulas for g, are listed below

i L
A
43 +1
-1
1 11

gorbL
git(g.—g)/(I+1)
git+2(g.—g0)/(I+3)
gt (g—g) CQP+141)/(I+3)(21*4-214-1)
gt (go—g)2I/(I+1)(I—3).

O] DOji DOt RO[

(43)

These formulas with g;=1 (odd proton), g;=0 (odd
neutron), and g,=0.4 are used to compute the values
of gorp” listed in Table III.
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There is little resemblance between these numerical
results for go.»” and the values postulated in the
S—MW interpolation procedure employed by Trigg!
and Davidson.!! Possibly these differences reveal the
crudeness of the S—MW interpolation procedure;
however, the inadequacy of the distorted core model in
regard to magnetic moments for I'=j=]—} suggests
that judgement should be reserved on this question.

Equations (33) and (43) can be used for a simple
alternative derivation of the magnetic moment formula
of Eq. (18). This procedure is useful in providing a
partial check on the formulas for o? and gom”.

V. MATRIX ELEMENTS OF Hiy;

We compute matrix elements of ;Hiny in the linear
approximation of Eq. (7). In the jm; representation
with the axis of quantization along the symmetry axis
of the core the diagonal matrix elements are!

S\t 3mP—j(+1)
(jm;| \Hini| jm;) = knz(—) ao—]—.‘.”“—‘: (44)
4r 47(5+1)
in which
kni=DR3*R,*(R), (45)

and R, is the radial function of the state occupied by
the odd nucleon. Since this matrix element vanishes at
j=1, there is no direct coupling between a nucleon in
a py or sy orbital and the surface oscillations of the core.

For each value of |m;| there exists a low state of the
compound system with total angular momentum
I=|m;|. The ground state is associated with maximum
absolute value of (jm;| 1Hint| jm;), i.e., with

Gy 7ol )= () a0
jy :l:j 1L int jy :i:] = nl(_) Qg . 3
4(541)

4
and I= j; the next largest absolute value of the matrix
element occurs at I=|m;| =% with

(46)

(4, =3[ Hins| 7, £3)
( S\ (2j—1)(25+3)
. —) a2
4r 165(j+1)

One exception must be noted; at j=3% the absolute
value of the matrix element is independent of m;,

175}
(3, 31 Hin 3, i%)=knr(—) @,
5\ 4r
48)
175\
G, £31Hinel 3, £3)= “knr‘(—) ay.
5\4r

In this case the dynamical theory of the coupling
between the odd nucleon and the surface oscillations
should yield two closely spaced low levels, one with
I=4% and the other with /=%, both having the same
parity as the odd nucleon state.
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Equation (2) clearly implies that 7 and 7 are not exact
quantum numbers. A number of nondiagonal matrix
elements are actually quite large, large enough in some
cases to invalidate the usual implicit assumption that /
and j are good approximate constants of motion.
Elementary calculations yield the following results:

CX s3] 1 Hine |2 X104, 1-3)

5\} (20)*
bt =) s 9
© \drn/ QI+1)(21+3)
connecting two states with the same /; and
CX v 14| 1Hine|2X 13, 143)
5\ 2¥(41)}
= _k’llo3 (‘—‘) . (50)
4w/ (2+3)(20+5)

CX oy a1 Hine| 2X 143, 149)

, (+1)*
= ke (41) (2+3)421+5) D

connecting [ and I'=1+2. Reversing the sign of m;=1+3%
multiplies the matrix element by the factor (—1)7=7".
Here %’ denotes the geometric mean of the %’s associated
with the #l and #'l' states. Extensive calculations!® of
particle densities in oscillator potentials and rectangular
wells show that 2’ and % generally differ by less than
20 percent. In the following we ignore the difference
and replace £’ by k.

Special cases under Eq. (50) of particular interest are

(s3, :*:%l 1Hint|2d§, +1)=Fkay/(107)?,
Cpy, £3 | 1Hine| *f5, £35) =Fk'a3/7(57)3,

175
(2‘1%7 :t5/2[ 1Hint I 2g1/9, +5/2)= :Fk'ar(—) .
S\67

Comparing Eqgs. (48) and (52) one sees that the coupling
energy between 25y and %d; through the mediation of the
distorted core is indeed quite large; in fact, larger by a
factor 2% than the diagonal matrix elements of Hins for
the 2d; state.

VI. COUPLING OF ?s; AND d; NUCLEON STATES

Consider the group of nuclides with /=% and even
parity. Experimental evidence locating a state with

=32 and even parity close to the ground state exists
for many of these; for the others the existence of such
a low-lying level can be inferred from the shell model.
We write

x+3=Bx(sy, £3)E(A—pHix(ds, =3)  (53)
in the static approximation for the core, and proceed

18K, C. Hammack, Doctor’s thesis, Washington University
(1951) (unpublished).
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to compute the energy and the amplitude B8 from the
relations§

BLE—31CAF ]+ (1—B*)kao/ (107)=0,
Bkao/(107) 4 (1— B2) i E— AE+kao/ (207)}
- %Cdoz:] =0.

Here AE denotes the excitation energy of dj relative to
sy when the core is spherical; negative AE means d;
below s3.

With the notation

AE=nk?/20xC, y=(20m)¥Cao/k, (55)

the lower of the two eigenvalues determined by Eq.
(54) is given by the formula

E20xC/R2=1[n—y+y*—{8y*+(n—y)*}t]. (56)

The detailed analysis of Eq. (56) yields the result that
8%/(1— ) lies between 2.0 and 0.5 and y between 1.67
and 2.00 on the range 0=#=3.33. The corresponding
values of u range from % to } (approximately) of the
Schmidt value.

(54)

VII. ROTATIONAL AND ZERO-POINT ENERGIES

Equation (54) represents a static approximation in
which the rotational kinetic energy and the zero point
vibrational energies are neglected. Bohr’s equations (50)
and (98) in reference 1 yield the following operator for
the rotational kinetic energy:

h2

Trot= [I(I+1)+j(j+1)—‘132_
6B(102

=2(IijrtI2g)], (57)
subject to the restriction js=Is;=I. The diagonal
matrix elements of T4 can be computed with the help
of Eq. (17) and have the values

hZ
for I=j=3%,
23(1«02
(58)
h2
for I=3, j=%.
B1102

Here B=1poR®, po denoting the mean density of nuclear
matter. In the absence of coupling to a 2s3 state the
energies are given by the minimum values of

(207C/ ) Ecyiy=y+35"+T/29",

(207C/B)E 3= —y+3y*+T/5, (59
with
(20wh)? C*
- P (60)
B ®

§ We are indebted to Dr. A. Bohr for calling our attention to
an error in a first statement of this problem.
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TasLE IV. Values of the physical parameters.

4 C* ke R2/202C*  k/(207)IC r 2/ B*
31 41.5 40 0.613 0.123 53 0.50
203 63.8 40 0.400 0.080 9.0 0.023

* Energy in Mev units.

Numerical values of the physical parameters are listed
in Table IV.
Equation (59) is a special case of the general form

(Q07C/R)Eejir=—ny+5y*+0'T/2y*  (61)

in which » and »’ are constants determined by j and 1.
In the extreme case of 'I'’>>1 the minimum value of
E ;.1 occurs near

=In+(T), 7>0,
in (nl )L 62)
=in—'T)} 9<0,
and has the value
20mwC . ,
Eej;r=(n'T)}= || (') —go*+---.  (63)
Equation (62) yields a=2—0.16 for I=7=3%, 4=203.

The zero point energies Eg and E, of the distorted core
[Bohr’s equations (108) and (113)] are given by

(20nC/R) Eg=2T/y*+5(T'p/C)?

ol G

3 21 Uk
+(8n'é 128)(n'r)%
@)/ 1+ ny*| /29'T T

= (2T)'[1—[n[/4(n'T)}

(= Trt/64) /(' TV

(207C/F)E, =

(65)

The zero-point energy of the spherical core [Bohr’s
equation (9)] is

20eC ~20mC3 (fﬁc)-%
2 r 2\B

=(5/2)T

(66)

A necessary condition for the validity of strong
coupling is that the diagonal matrix elements of the
energy are lowered by the introduction of the Rainwater

DAVIDSON AND E.
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interaction. This condition takes the form
E . 1+Es+E,—E,<O0. (67)

It is easily seen that Eq. (67) fails for T>>1 and #'T>>1.
A numerical example will make this clear. At 4 =203,
.7 I= 257’—_177,—‘1 I'= 9

(207C/ k) E y;y=1.14,
(207C/ %) Eg=".16,
(207C/F) Ey=3.74,
(20xC/R)E,=1.5,

or

(Ee;3+Es+E,—E.)=1.8 Mev.

These results show that the numerical values of the
physical parameters are inconsistent with the assump-
tion of strong coupling embodied in Eq. (13).® An
alternative treatment employing the occupation num-
bers of the surface oscillation states as diagonal vari-
ables is indicated.?

We turn now to estimate the influence of the rota-
tional kinetic energy on the location of the I=% state
when 253 and 2ds nucleon states are coupled through the
distorted core. The energy formula Eq. (56) is re-
placed by

(20xC/R) Ey=3%[n—y+y*+T/*
(8 Gy b1/

Numerical results appear in Table V for a particular
value of B/(1—p?%* corresponding to a moment ap-
proximately midway between the Schmidt limits. The
example at 4 =203 shows the substantial influence of
the rotational kinetic energy on the location and magni-
tude of the energy minimum under relatively favorable
conditions for the validity of the strong coupling ap-
proximation. It appears that a perturbation method
appropriate to a weak coupling description is more
likely to provide a satisfactory solution of the dy-
namical problem, particularly for small values of the
mass number.

One of the authors (JPD) wishes to thank the Central
Administration of Washington University for the grant
of a University Fellowship under whose tenure this
work was done.

(68)

TasLE V. Coupling of 253 and %d3, B/(1—p%)*=1.

A T n ¥ ao (207C/k?) Ey

90 20.7 0.24 2.83 0.28 0.00
203 9.0 1.06 2.50 0.20 —0.41

0 0.0 1.91 1.91 X —0.87

9 The strong coupling approximation appears to better ad-
vantage when two or more equivalent nucleons are coupled to the
core (private communication from K. W. Ford).

2 L. L. Foldy and F. J. Milford, Phys. Rev. 80, 751 (1950).
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APPENDIX A

We evaluate the allowed beta-decay matrix element
| S'o|? for image transitions. Trigg! has shown that

| So|?=[I+1)a?—I(1— ) F/[IT+1)]. (Al)
Introducing o? from Eq. (33), we get
|So|*=I/(I+1),  I=j=I+3>4,
=[I/I+DP, I=j=i-3>3 (A2
Thus, the coupling to the core leaves the ratio for /43
and /—% unchanged relative to the values for pure LS
coupling, but reduces both by the factor I?/(I+1)%. An

alternative derivation starts from the equivalence

relation,
2 (—1)Hi—

o~ 11—
I+1  2i41

(A3)
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Then
LI £ 1
s
IH+1 (3

in agreement with Eq. (A2).

(Ad)

APPENDIX B

The diagonal matrix elements of (I—3)? and (I—j)*
can be evaluated with the aid of Egs. (16), (17), and
(40). Results are

GM| A—33M) = G+Dj+3— (—1)i=];
aM|A-ip|IM)=2I, I>};
(IM| A=j)¢| IM)=2QI)%, >}

For I=%, Eq. (16) shows that (I—4)? is a constant of
motion.
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A Third Rydberg Series of N,

R. EpwiN WORLEY
Department of Physics, University of Nevada, Reno, Nevada

(Received October 31, 1952)

A third series of Rydberg bands, converging to the 2II state of N.*, has been identified in the far ultra-
violet absorption spectrum of nitrogen. Its interpretation substantiates an assignment of vibrational
numbers for the 2II state, and indicates that this state is derived from the o state of No.

’/ I ‘WO series of Rydberg terms have previously been
identified for N, one!? converging to the X 2%
state of Nt the other®* to the excited B %X state. I
shall refer to these as the X— X and the B—X series,
and discuss here a third, or 4 — X, series that converges
to the A 2II state, about 1 ev above the ground state.
Some years ago Professor Mulliken suggested I
examine my spectrograms of the far ultraviolet absorp-
tion of Nj, with the object of identifying the corre-
sponding bands and thus locating the *IT state. How-
ever, due to overlying absorption on the best plates
(nitrogen pressure too high), this proved unfeasible.

The recent identification of 2IT—22 bands of Nt by
Meinel,® in auroral spectra, affords an approximate
value for the limit of the anticipated Rydberg series.
I have accordingly re-examined my plates, and have
found five distinct bands® which fit the following Ryd-

1R, E. Worley and F. A. Jenkins, Phys. Rev. 54, 305 (1938).

2R, E. Worley, Phys. Rev. 64, 207 (1943).

37, J. Hopfield, Phys. Rev. 36, 789 (1930). See also Takamine,
Suga, and Tanaka, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 34,
854 (1938).

4R, S. Mulliken, Phys. Rev. 46, 144 (1934).

5 A¥B. Meinel, Astrophys. J. 114, 431 (1951); 112, 562 (1950).

6 Most bands referred to herein are listed in Table I, reference 2.
Omitted were the following (cm™): 123 995* (m=23); 124 069*

(footnote 8). Recently measured for use in Table I herein were
122 068; 133 995; 135 361 cm™.

berg formula with residuals of +1, —2, 42, 42, —2
cm™L

¥m=136 607— R/ (m—0.0441—0.018/m)*; m=2 to 6,
R=109 735 cm™. The bands are rather narrow, are
shaded to longer wavelengths, and show but one head.
Starting with the first member, intensities progressively
decrease in a normal manner, the values being com-
parable to those of corresponding X—X bands. The
upper term for the first band is the v=1 level of state o.

Dalby and Douglas” have photographed the *II—22
bands of Nyt at large dispersion, using a laboratory
source. From preliminary results of the analysis, kindly
supplied by Dr. Douglas, the empirical series limit,
above, is found to correspond to the »=1 level of the
211 state, and apparently to its upper component *IT;.
The position of this component, as found by adding
voo+AGR)+34 to the limit of the X—X Rydberg
series,? is 136 597 cm™ above the ground state of Ns.
In fact, if the heads of the higher members of the X—X
series represent origins—that is, if they are of Q-form
as is suggested by the extreme narrowness of the bands
—and if a computed origin-to-head interval is added

7F. W. Dalby and A. E. Douglas, Phys. Rev. 84, 843 (1951).

See also R. Herman, Compt. rend. 233, 926 (1951); N, D, Sayers,
Proc. Phys. Soc. (London) 65, 152 (1952).



