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Deviations from I.S Coupling in the Spheroidal Core Nuclear Model*
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Deviations of measured magnetic moments from the Schmidt limits have been interpreted in terms of a
failure of LS coupling. The model of an odd nucleon coupled to a nonspherical core provides an unforced
theoretical basis for this interpretation. Projection operators for pure LS coupling states are introduced
and applied to compute the statistical weights of the L=I——,

' and L'=I+~ components in Bohr's strong
coupling wave function. The orbital gyromagnetic ratio of each component is also determined.

Numerical results on the energy displacements produced by the coupling of the odd nucleon to the
distorted core are generally unfavorable to the strong coupling description. A perturbation method ap-
propriate to a weak coupling description is more likely to provide a satisfactory solution of the dynamical
problem.

I. INTRODUCTION

HE theory of a nucleon moving in the field of a
spherical core requires two interaction operators:

Vt(r), the radial potential function, and Vs(r)l s, the
spin-orbit coupling potential. Some degree of arbitrari-
ness is involved in any attempt to generalize these
operators to a nonspherical core. A simple generaliza-
tion, possibly inadequate, but suitable for exploratory
studies, can be derived from the working hypothesis
that V~ and. V2 are functions of the particle densities

ptr(r) and pz(r). To adapt this assumption to a non-
spherical core, r is replaced by a new variable,

r'= [X(xts+xss)+ xpp/X'j& (1a)

r'=r(& Za.'+Lao—Ys.(e'e') j ' (&b)

and the particle densities (and consequently also the
potentials) are taken to be the same functions of r' as
they were originally of r.

The erst r' represents a spheroidal distortion of
arbitrary magnitude leaving the volume of the core
unchanged. The second is suitable for discussing small
deviations from spherical symmetry. Here also the
volume is held constant. The angles 8' and p' are
referred to a coordinate system in which the x3 direction
is a principal axis of the distorted core.' With this
choice of polar axis a~=a ~=0, a ~=u2 and uo, u2 are
real numbers.

Some information on the eigenvalues and solutions
of the Schrodinger equation,

A2

A+ Vt(rt)+pl sU, (r')+-,' Vs(r')1. s O'= E4, (2)
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can be derived from a study of the interaction operators

,at.,——V, (r') —V,(r),

2K t s(U2(r') —Vs(r)]l.s+pl sfVs(r') —Us(r) j, (4)

in the limit of small deviations from spherical sym-
metry. In first order

tII; p= r(d V—t/dr)ga„Ys„,

ski t yr(d Us/dr)Rascal'SYso+ Ys l s]. (6)

With a rectangular potential well of constant depth D,
Eq. (5) reduces to

tH;„r,———8(r R)DR+a„Y—s„, (7)

in which E is the nuclear radius and 6(r—E) is a Dirac
delta-function. This is essentially the Rainwater' 4

interaction operator with corrections for the finite
depth of the potential well and the possible absence of
symmetry about the body 6xed polar axis. The recent
study by Bohr' of the coupling between the odd nucleon
and the surface oscillations of the nonspherical core is
based on Eq. (7) and a quadratic approximation for the
potential energy of the surface oscillations

U, p
= —,'Cga„', (.=—(2E,—E,)2'

' J. Rainwater, Phys. Rev. 79, 432 (1950).
P E. Feenberg and K. C. Hammack, Phys. Rev. 81, 285 (1951).' S. Gallone and C. Salvetti, Phys. Rev. 84, 1064 (1951).' N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).
6 J. A. Wheeler and D. L. Hill (to be published}.

derived from the theory of nuclear fision. s (8, and E
are, respectively, surface and Coulomb energies of the
spherical core.)

The approximation represented by Eq. (7) is probably
adequate on the range ~ap~ (0.2. This statement is
based on explicit numerical calculations for a well of
in6nite depth and a range of eccentricities' and also on
comparisons with exact solutions for two analytically
simple problems (harmonic oscillator well and well of
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DF VIATIONS FROM LS COUPLING

inhnite depth in a rectangular region). The present
study shows that Eqs. (7) and (8) generally determine
deviations from the spherical shape approaching the
indicated limits of validity. In some applications uo is
not small compared to 1, and the theory clearly breaks
down. Nevertheless, some interesting conclusions can
be derived from the theory based on Eqs. (7) and (8).
The need for a. critical approach to the theory is
indicated by recent work~ on the quadrupole moment
of 0"

The possibilities for the exact solution of Eq. (2) are
illustrated. by the example of a nonisotropic harmonic
oscillator (omitting the spin-orbit interaction):

F1

0

0
0

2
0
1
1
0
0

0 0

-0
0
1

0

1
0
1
0

mf

0

a1
0

&2, 0

&1
0

2 and 0

2

0 and 2
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2.08

0.463

1.310
2.93

TasLE I. Nonisotropic harmonic oscillator.

e/Ace

3/2

2.38
2.38
2.16

3.12

3.435

2.565

( 2ns+1

&n,+n,+1)
(10)

Equations (9) and (10) yield

E= s A(o(2ns+1)&(n, +ns+1)& . (11)

Numerical results are shown in Table I. The inclusion
of the surface energy in the calculation would give
qualitatively similar results with somewhat smaller
deviations from spherical symmetry and smaller energy
displacements.

Of particular interest is the low state in the nr+ns
+ns 2 funct—i—on space. This state has rng=0 and, for
small deviations from spherical symmetry, contains
l=o with statistical weight -', and l=2 with statistical
weight 3.

Another example possessing a simple exact solution
has a well of infinite depth in a rectangular region with
dimensions L,=Ls L/X&, Ls——XL—.—The energy eigen-
value is

~= (&'w'/2~L') L&(n '+ns')+n '/&'j

in which the quantum numbers n~, n2, n3 take on all
integral values excluding zero.

II. INTERPRETATION OF DEVIATIONS FROM
THE SCHMIDT LIMITS

The nuclides 15P16 48Cd63, 65 50Snas, 6&, 69 and sj.Tlj.22, g24

have I=2 and magnetic moments far removed from
the Schmidt single particle limits. This group is assigned
even parity by the shell model. Other groups with
moments departing considerably from the appropriate
Schmidt limits occur at I=+~ (odd) and I=5/2 (even);
33As42 is an extreme example in the 6rst category and
53I74 in the second.

' Geschwind, Gunther-Mohr, and Silvey, Phys. Rev. 85, 474
(1952).

II= —(It'/2M)A+ -', MN'p(xts+xs')+ xs'/X']

The eigenvalues are

E=)'rte[X&(n, +n, +1)+(ns+-', )X), (9)

in which the quantum numbers n&, n2, n3 take on all
integral values including zero. Minimum energy occurs
for

I—~+ LI+ (1 crs) 1@ L'I (12)

The model of an odd nucleon coupled. to a non-

spherical core provides an unforced theoretical basis for
the failure of LS coupling. Bohr' has shown that this
model is the dynamical equivalent of Rainwater's'
spheroidal core considerations. In the present study we

investigate the conditions under which the model is
likely to produce an extreme failure of LS coupling
after erst determining the extent to which LS coupling
fails when j is treated as a constant of motion.

III. MAGNETIC MOMENTS %SHEN j IS A GOOD
QUANTUM NUMBER

%e consider the case of strong spin-orbit interaction
and close coupling between the orbital motion of the
odd nucleon and the motion of the deformed core.

F. Sloch, Phys. Rev Ssy 839 (1951).
s H. Mujazawa, Prog. Theoret. Phys. 6, 263, 801 (1951).
+ A. de Shalit, Helv. Phys. Acta 24, 296 (1951)."J.P. Davidson, Phys. Rev. 85, 432 (1952)."E.Feenberg, Ann. Rev. Nuc. Sci. I, 43 (1952)."C', N', 0",F' K" Y, and Pb~~ are mentioned in reference

11. The list should include MBau, and 79Auus (closed di shell at
Z=80 followed by sy shell closing at 82). The magnitude and
sign of the quadrupole moment of r&Au»8 PW. von Siemens,
Naturwiss. 38, 455 (1951)g support the single particle interpre-
tation."G. L. Trigg, Phys. Rev. 86, 506 (1952).

These groups present no dHBculties from the view-
point of an extreme single particle model if it is supposed
that the effective magnetic moment of the odd nucleon
when bound to the core is substantially reduced from
the free nucleon values. ' "However, as emphasized in
recent publications, ""the existence of many closed
(+1) shell nuclides with magnetic moments close to the
appropriate Schmid. t limits" is diKcult to reconcile
with a large systematic modification in the magnetic
properties of the bound nucleon.

An alternative working hypothesis puts the major
share of the responsibility for the deviations from the
Schmidt limits on the failure of LS coupling within the
bounds of a pure doublet description. ""The ground
state is represented by a linear combination of pure LS
coupling components, one with L=I—~ and the other
with L'=I+~~, both components having the same

parity:
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TABLE XX. Magnetic moments for nucleon states with a
de6nite value of j. of I.j with respect to the wave function of Eq. (13).

Straightforward calculations yield

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2

3/2
5/2
7/2

3/2
5/2
7/2
9/2

11/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2
9/2

1/2
3/2
5/2
7/2

1/2
3/2
5/2
7/2
9/2

Odd proton
Pi Pci;I

2.79 2.79
3.79 2.52
4.79 3.71
5.79 4.82
6.79 5.89

—0.27
0.12
0.87
1.71
2.62

0.12
0.87
1.71
2.62

—0.27
0.31
0.91
1.65
2.46

0.37
0.56
1.16
1.90

3.79 —0.86
4.79 1.96
5.79 3.24
6.79 4.42
7.79 5.53

—1.91—1.91—1.91—1.91—1.91

0.63
1.14
1.37
1.47
1.56

1.14
1.37
1.47
1.56

—1.91—1.91—1.91—1.91—1.91

—1.91—0.90—1.07—1.17—1.23

0.63
0.93
1.27
1.46
1.60

0.03
0.74
1.04
1.25

1.05—0.45—0.68—0.84—0.95

Odd neutron
Pi pc1';I I3j3+ I I2+ ' I

(Iij i+Ij,)4ir' ,'[2I——(j—I+1—) (j +I)J&cp

' LXT i+ M—, r i+—( 1) X I+1D—sr, r+—1)
(16)

In deriving Eq. (16) it must be remembered that the
components of I and j with respect to the principal
axes of the core commute and also that j)(j=ij, the
normal commutation relations, for both space and body
fixed axes, but I&(I= —/I for body fixed axes. Equation
(16) implies

(ImlI. jim)=I, I&-'„
=-:LI+(-1)'-(2j+1)3, I=!, (»)

and, consequently,

I
u.,;r= Pa I+—g.]I+1

(m l
I jlIcv)

~. ;r =g.I+(g g.)—I (15)

in which (IMl I.j le) is the diagonal matrix element

"We are indebted to Dr. N. Kroll and Dr. L. Foldy for valuable
discussions on the subject of the stron'g coupling approximation.

's H. Margenau and E. P. Wigner, Phys. Rev. 58, 103 (1939).

Under these conditions there exist solutions for which
the angular momentum components I3 and j3 are
approximately constants of motion. The product
function,

+M P(QIiDMI + (—1) 'X r'air r'—], (13)—

is a close approximation to such a solution. Here y+~&'

is a normalized nucleon wave function with j3=~I,
D~, +& describes a state of a symmetrical top with total
angular momentum I, I3=&I, I,=M, and q embodies
the zero-point Quctuations of the surface waves.

The detailed numerical evaluation of the energy
matrix in the space of the strong coupling wave func-
tions indicates that strong coupling is an extreme case
rather far removed from the actual situation. Never-
theless, the simplicity of the strong coupling model is
sufhcient justi6cation for a careful examination of all
its consequences. "

Consider first a nucleon state with a definite value of
j. The magnetic moment operator of the compound
system has the form

I .=g j+g.(I—j)
= (6 g.)I+g.»—

in which JM,;=g;j is the magnetic moment of the odd
nucleon on a spherical core and g, Z/A is the gyro-
magnetic ratio of the core." The magnetic moment
computed from Eq. (14) is

. ;= lL3g.+(g —f.){1+(—1)' '(2j+ I))] (19)

In particular,

1
P, t ~ &= Pi Pc ~ &=gg 3P&. (20)

Equation (18) with I=j is not new, 'r but the important
restriction to I&-,' has not been observed in previous
applications. Numerical results are listed in Table II.

Excellent agreement of p,~., z with the general trend
of the experimental moments is found'r for I=/+rs)
Two examples of extreme departure from the appro-
priate Schmidt limits may be interpreted in terms of a
failure of l and j as good quantum numbers; the
moment of 33A42 suggests approximately equal parts of
ii,i, a and Ia,I, , (odd parity) while that of »I&4 can be
fitted with two-thirds y, *, , ; and one-third p,7/s ~ (even
parity). Close coupling of f; and p; orbitals through
the mediation of the distorted core is a reasonable
possibility on the range 29~Z—38; similarly an ex-
ample showing close coupling between gy/2 and d~ is not
unexpected on the rarige 51—Z—58.

For I=l—-'„p,z, l is generally only slightly better
than p; leaving a substantial discrepancy between the
theory and the general trend of the experimental
moments. The possibility of a partial decoupling of 1

and s must be considered here since a state with I=j
=/ ——,

' is coupled through the distorted core toj '= i+-,'.
One needs the nondiagonal matrix element of the
magnetic moment operator

(I—s I k I g»+ g i/s I l+ ,', l—)-—
=(g.-g)(2/)-:/(2/+»
=4.58(2/) I/(2/+ 1), o'dd Z
= —3.82(2/)&/(2/+I), odd N. (21)

"A. Bohr, Phys. Rev. 81, 134 (1951); all the 8 curves in
Figs. 1 and 2 of this reference should coincide with the A curves
at I=2.
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If now
+r= (1 P—') ~ Ir.r; r+ P+or~i; r,

For I=-,'the statistical weight of the 'Sy component
(22) in 4'~& of Eqs. (9) and (13) is

the correction to the magnetic moment is

I r ~";r-P(g. g—i)(2I+ 1)'/(I+ 1) (23)

for P'«1. Rather small values of P' are able to account
for most of the observed deviations. Thus, at I=7/2
and odd Z a correction of 0.8 nuclear magneton
requires P' 0.06. Both odd X and odd Z require
negligible corrections at I=~ and ~ and the positive
sign for p at I)~.

The remaining important special case is I= , (even-

parity). Here the coupling between 'si and 'd; through
the distorted core provides a possible explanation of
magnetic moments far removed from the 2s; Schmidt
limit. The calculations are described in a later section.

IV. RESOLUTION INTO LS COUPLING COMPONENTS
WHEN j IS A GOOD QUANTUM NUMBER

21+1+[1+(—1)' &(2j+1)](—1)'+»'
+2

4(21+1)

t=0,

l=1,

j=I= 2

=0.4, t=2, j=I+1=-',. (32)

In the same way, the statistical weight of the I.S
coupling component with I.=I—~ in N~ for I& ~~ is

I(21+1)+2I'(—1)'+'
&

OP=
(2I+1)(21+I)

2I

(2I+1)We return to the strong coupling wave function of
Eq. (13) under the restriction that i and j are good
quantum numbers. The resolution of 4~ into I.S
coupling components is accomplished by the introduc-
tion of projection operators

P);zz+s =0 I.=I~—',
= 1, I.=I~—.

(33)—, j=r——,'=I.
(I+1)(2I+1)

Maximum mixing occurs at I=& with 1'5 percent P;
and 25 percent D; from a nucleon in a p; state.

The orbital gyromagnetic ratios are quantities of
interest in connection with the resolution of 0'~z into
pure I.S coupling components. To compute these
quantities we start from the operator for the orbital
magnetic moment:

(24)
Explicitly,

P;""=L(I—S)'-(I-l)(I+l)]/(»+1)
= (I+1—2I S)/(2I+1), (25)

P„&=[(I+—)(I+—)—(I—S)']/(2I+1)
= (I+2I S)/(2I+ 1). (26)

These relations and Eq. (12) yield

a'=(IM~Ptrrr '~I~),
independent of M.

In the body fixed reference frame, the componen
I and S commute; this fact and the relations IXI= —iI
and SXs=is yield

4I SI S=I(I+1)—2I S, (28)

in agreement with the idempotence property of the
projection operators.

The substitution

e-.=g8+g.(I—j)
=(gt g )j g&s+g I.

The easily veri6ed relations,
(27)

[j, I S]=[S,I S]=[I,I S]
ts of =iIXS, (35)

have the consequence that p„bcommutes with I S and
therefore also with the orbital angular momentum
projection operators. This property enables us to write

p„br+'(II
~

P(;rr+'~ II)
= (II

i
I.p(),bP( r +'i Il)/(I+1). (36)

From Eqs. (25), (26), and (34),

gl gc
I y.„bP(;rr+&= [(I+1)I j—2I jI S]

2I+ 1

+I[g.(I+1)+kgb]Pi, rr+', (37)

gL gc
I p.,bP(, rr &= [I(I j)+2I jI S—]

2I+1(I+1)(2i+I)—2I j(—1)"' '
P& z'+'=— +(I+1)Lg.I—kgQP4" '. (38)(30)

(2I+1)(21+1)

I(21+1)+2I-j(—1)'+'* &

Pi,zz '=
(2I+1)(21+1)

Since the operator I j does not mix the two values
of j associated with the given /, the substitution

I &I s-(I j)'(—)"' "( + ) (39)

I s-(I j)(j.s)/[j(j+ 1)]
= (I j)(—1)'+~ '/(21+1) (29)

leaves unchanged all matrix elements of I S in the
function space de6ned by + z . +z . Consequently
the projection operators can be expressed in the
convenient forms:
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1/2

3/2

0

0
1

golub (odd Z) gprb (odd

0.760
0.600
0.280
0.835

0.829
0.700
0.571
0.870

0.160
0.267
0.480
O. iio

0.114
0.200
0.286
0.086

. TAar. g III. Values of go,b . There is little resemblance between these numerical
results for g„bL and the values postulated in the
S—3IIW interpolation procedure employed by Trigg'4
and Davidson. " Possibly these differences reveal the
crudeness of the S—M8' interpolation procedure;
however, the inadequacy of the distorted core model in
regard to magnetic moments for I=j= l——', suggests
that judgement should be reserved on this question.

Equations (33) and (43) can be used for a simple
alternative derivation of the magnetic moment formula
of Eq. (18). This procedure is useful in providing a
Partial check on the formulas for 0.' and gprb

V, MATRIX ELEMENTS OF 1Hjnt

7/2

9/2

0.867
0.760
0.689
0.893

0.891
0.800
0.755
0.909

0.089
0.160
0.208
0.071

0.073
0.133
0.164
0.061

We compute matrix elements of ~H;„~in the linear
approximation of Eq. p). In the jm; representation
with the axis of quantization along the symmetry axis
of the core the diagonal matrix elements are'

~ 5 q
l 3m,'—j(j+1)

(j~ I
~~'.~l j~)=k-~l —

I ~o ', (44)
(4~) 4j(j+1)

in which

~-b' '*=(I-k)g-b' '*, I. I 27

I I+—'
aorb'+' = ( .) I+) L I+1

I
(41)

For I=j=—', and l=0, both left- and right-hand
members of Eq. (36) vanish. In this case no calculations
are needed to establish the absence of an orbital
contribution to the magnetic moment. A more inter-
esting check is supplied by I=j =2, /=1 (a pure 'P'
state). Now

in agreement with expectations.
General formulas for gL are listed below

gorb
L

l+-',

1

2

e+ (g.—gi)/(I+ 1)
1+1 g~+2(g.—g~)/(I+ l)

g(+(g, g i)(2P+I+1)/(I+ 2) (2P—+2I+1)
i-1 g +(g.'g)»/(I+1)(I-;)-.

'
(43)

These formulas with g~
——1 (odd proton), go=0 (odd

neutron), and g,=0.4 are used to compute the values
of gprb listed in Table III.

is permitted in Eqs. (37) and (38). Equations (16) and
(17) suggest the procedure followed in computing the
diagonal matrix elements of (I j)'; these are found to
have the values

(-', —,
'

~
(I j)'~ —',-,') =—,', [1+(—1)'—~(2j+1)j',

(II
~

(I.j)'
~
II)=P(P+1), I=j & ' (40)

Orbital gyromagnetic ratios gL for the odd nucleon-
distorted core system are de6ned by the equations

(', ~-, l,z;„,I2, ~-,)=k„~l—I ao,
5 &4~I

1t'5 q&
(2, ~2 I ~»-~l 2, ~2)= —k-"I —

I
0

5 4x

(48)

In this case the dynamical theory of the coupling
between the odd nucleon and the surface oscillations
should yield two closely spaced low levels, one with
I=—', and the other with I= 2, both having the same
parity as the odd nucleon state.

k g=DR'E„P(R), (45)

and E„&is the radial function of the state occupied by
the odd nucleon. Since this matrix element vanishes at
j=-„there is no direct coupling between a nucleon in
a p1 or s' orbital and the surface oscillations of the core.

For each value of
~
m;~ there exists a low state of the

compound system with total angular momentum
I=

~
m;~ . The ground state is associated with maximum

absolute value of (jm;~ &» &~ jm, ), i.e., with

2j—1
(j, ~jli»-tl j, ~j)=k-i( —

I '0, (46)
&4n 4(j+1)

'

and I=j; the next largest absolute value of the matrix
element occurs at I=

~
m,

~

=-: with

(j, ~k I i»-~ I j ~2)

)» ' (2j—1)(2j+3)= —k„(i—i
up . (47)(4-) 16j(j+1)

One exception must be noted; at j=s the absolute
value of the matrix element is independent of m;,
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Equation (2) clearly implies that t and j are not exact
quantum numbers. A number of nondiagonal matrix
elements are actually quite large, large enough in some
cases to invalidate the usual implicit assumption that 1

and j are good approximate constants of motion.
Elementary calculations yield the following results:

('%+1, ~ ., l iK.~l'&~ —.;, i;)
(5 q'

= —ka,3l —l— (49)
(4~3 (21+1)(21+3)

to compute the energy and the amplitude P from the
relationscl

P[E——,'C~. j+(1-P ):kao/(1O~)1=0, -

Pkap/(10m )1+(1—P') '[E—AE+ kap/(20~) & (54)
——,'Cap'$ =0.

Here AE denotes the excitation energy of d; relative to
s~ when the core is spherical; negative EE means d~

below s;.
%ith the notation

connecting two states with the same l; and

('&~+~. ~+il ~»-~l x~ -1, ~+i)

p5 q
& 2&(l+1)&

= —k'ap3l —
l

(4~1 (21+3)(21+5)

( +&+1, &+1l &II~~&l +~'+k. ~+i)

~ 5 y
& (l+1)*'

= —k'ap3l —
l

447r) (21+3)&(21+5)

AE=nk'/20mC, y. = (20')'Cap/k, (55)

the lower of the two eigenvalues determined by Eq.
(54) is given by the formula

(50)
E20~c/k'=r'[e —y+y' —{8y'+(e—y)'}13. (56)

The detailed analysis of Eq. (56) yields the result that
P'/(1 —P') lies between 2.0 and 0.5 and y between 1.67

and 2.00 on the range 0—e—3.33. The corresponding
values of p range from —', to o (approximately) of the

(51) Schmidt value.

connecting t and l'= (+2.Reversing the sign of mr ——f+ ~~

multiplies the matrix element by the factor (—1)' ".
Here k' denotes the geometric mean of the k's associated
with the el and e'l' states. Extensive calculations" of
particle densities in oscillator potentials and rectangular
wells show that k' and k generally diGer by less than
20 percent. In the following we ignore the diEerence
and replace k' by k.

Special cases under Eq. (50) of particular interest are

('si, +-', l,II;„,l'dt ~-') = ~k'ao/(10m)&,

('Pt, ~o l iK.~l'f;, ~o) =~k'ao3/7(5~)',
(52)

1f'5 y'*
('~t, ~5/2I iII;.~l'g7!2 +5/2) = +k'ao —

I

5 E6u)

VII. ROTATIONAL AND ZERO-POINT ENERGIES

Equation (54) represents a static approximation in

which the rotational kinetic energy and the zero point
vibrational energies are neglected. Bohr's. equations (50)
and (98) in reference 1 yield the following operator for
the rotational kinetic energy:

$2

T...= [I(I+1)+j(j+1) Ioo joo- —
68cp2

—2(I&j,+I&j,)$, (57)

subject to the restriction j3=I3=I. The diagonal
matrix elements of T„~can be computed with the help
of Eq. (17) and have the values

Comparing Eqs. (48) and (52) one sees that the coupling
energy between 's~ and 'd~ through the mediation of the
distorted core is indeed quite large; in fact, larger by a
factor 2& than the diagonal matrix elements of II; ~ for
the 'd~ state.

28ap'
for I=j 2&

for I= g)
Sap'

VI. COUPLING OF 'sy AND 'dg NUCLEON STATES

Consider the group of nuclides with I=-', and even
parity. Experimental evidence locating a state with
I=—', and even parity close to the ground state exists
for many of these; for the others the existence of such
a low-lying level can be inferred from the shell model.
Ke write

=gpoRo, pp denoting the mean density of nuclear
matter. In the absence of coupling to a 'sy state the
energies are given by the minimum values of

(20m C/k')E, a, 1
——y+-', y'+ I'/2y',

(20pr C/k')E, 1., ;=—y+-,'y'+ I'/y',

with

x+1=&x('», ~k)~(1 P')'x—('d~, ~o) (53)

in the static approximation for the core, and proceed

(20m k)' C'
r ——

8 k'
(60)

"K. C. Hammack, Doctor's thesis, Washington University
(1951) {unpublished).

$%e are indebted to Dr. A. Bohr for calling our attention to
an error in a Grst statement of this problem.
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TAsr.z IV. Values of the physical parameters. interaction. This condition takes the form

k2/20m C* k/(20m) ~C +Ep+E —E„(0 (67)

31
203

41.5
63.8

40
40

Energy in Mev units.

0.613
0.400

0.123
0.080

53
9.0

It is easily seen that Eq. (67) fails for r))1 and ri'r»1.
A numerical example will make this clear. At A =203,
j=I=—', g= —1, g'=1, F=9,

(20~C/k') E.;;r= —riy+-,'y'+ ri'r/2y' (61)

Numerical values of the physical parameters are listed
in Table IV.

Equation (59) is a special case of the general form

or

( 20vr C/k') E;„',= 1.14,

( 207rc/k') Ep= 7 16

(207rc/k')E, =3.74,

( 20m. C/k')E„=7.5,

in which p and q' are constants determined by j and I.
In the extreme case of g'F)&1 the minimum value of
E„..y occurs near

y=-,'&+(~'r)*', ~&0,
=-,'q —(q'r)', ~&0,

(62)

and has the value

20xCE„,= (ri'r) i—
I ri I

(ri'I') & ,'rP+ —.—. (63)

Equation (62) yields ap——0.16 for I=j=aa, .4=203.
The zero point energies Ep and E~ of the distorted core
[Bohr's equations (108) and (113)] are given by

(E„;;+Ep+E,E)= 1.8—Mev.

These results show that the numerical values of the
physical parameters are inconsistent with the assump-
tion of strong coupling embodied in Eq. (13)." An
alternative treatment employing the occupation num-
bers of the surface oscillation states as diagonal vari-
ables is indicated "

Ke turn now to estimate the inQuence of the rota-
tional kinetic energy on the location of the I= ~ state
when 's; and 'd~ nucleon states are coupled through the
distorted core. The energy formula Eq. (56) is re-
placed by

(20m C/k') E;= ', [m y+ y'+—I'/—y'
—(8y'+(&—y+r/y')'}'j (68)

(2o c/k)E, =2r/y+-', (rp/c)i

2 (3 1 ) IyI=r' 1+—,-I -+—, I, ,E8 ri'&0 (g'r) i

(20~C/k2) E,= (2n')'r/y'[I+
I
~y'I/2~'r3'

= (2r)&[I-
I & I/4(&'r)

'rhe zero-point energy of the spherical core [Bohr's
equation (9)) is

TAnLE V. Coupling of rsvp and d~ P/(1 —P )&=1.

Numerical results appear in Table V for a particular
value of P/(I —P')' corresponding to a moment ap-
proximately midway between the Schmidt limits. The
example at A =203 shows the substantial inhuence of
the rotational kinetic energy on the location and magni-

(3 21 2 tude of the energy minimum under relatively favorable

+I + I
+. , (64) conditions for the validity of the strong coupling ap-

(8~'I 128) (~'r)i proximation. It appears that a perturbation method
appropriate to a weak coupling description is more
likely to provide a satisfactory solution of the dy-
namical problem, particularly for small values of the
mass number.

One of the authors (JPD) wishes to thank the Central

+( 3 7 g/64)/( fr) I+ ] (65)
Administration of Washington University for the grant
of a University Fellowship under whose tenure this
work was done.

20~C 207rC 5 (O'Ci '
I-' =

kr k2 2&a)

=(5/2)r: (66)

90
203

20.7
9.0
0.0

0.24
1.06
1.91

2.83
2.50
1.91

Cp

0.28
0.20

(20~C/k~) B~

0.00—0.41—0.87

A necessary condition for the validity of strong
coupling is that the diagonal matrix elements of the
energy are lowered by the introduction of the Rainwater

' The strong coupling approximation appears to better ad-
vantage when two or more equivalent nucleons are coupled to the
core (private communication from K. W. Ford).~ L. L. Foldy and F. J. Milford, Phys. Rev. 80, 751 (1950).
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APPENDIX A

We evaluate the allowed beta-decay matrix element

l fo l' for image transitions. Trigg" has shown that

I f~l'=L(I+1) '—I(1— ')1'/LI(I+1) j (A1)

Then
I'

I+1 (l+-')'

in agreement with Eq. (A2).

(A4)

Introducing n' from Eq. (33), we get

l f~l'=I/(I+1),
=P/(I+1)j', I=j =l ,')—-

APPENDIX 8

The diagonal matrix elements of (I—j)' and (I—j)4
can be evaluated with the aid of Eqs. (16), (17), and
(40). Results are

(A2)

Thus, the coupling to the core leaves the ratio for i+tv
and l—2 unchanged relative to the values for pure I.S
coupling, but reduces both by the factor Is/(I+1)'. An
alternative derivation starts from the equivalence
relation,

(HAMI (&—j)'I lM) =(j+l)Lj+l—(—1)' "j;
(IM l (I—j)'

l IM) =2I, I)-', ;

(IMl (I—3)'l IM) =2(2I)', I)-', .
2I (—1)'+1 '

e I
I+1 2l+1

(A3) For I=a, Eq. (16) shows that (I—j)' is a constant of
motion.
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A Third Rydberg Series of N&
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A third series of Rydberg bands, converging to the 2II state of Nm+, has been identihed in the far ultra-
violet absorption spectrum of nitrogen. Its interpretation substantiates an assignment of vibrational
numbers for the II state, and indicates that this state is derived from the 0 state of ¹.

%0 series of Rydberg terms have previously been
identiied for N2, one" converging to the X 'Z

state of N2+, the other" to the excited 8'Z state. I
shall refer to these as the X—X and the 8—X series,
and discuss here a third, or A —X, series that converges
to the A 'II state, about j. ev above the ground state.
Some years ago Professor Mulliken suggested I
examine my spectrograms of the far ultraviolet absorp-
tion of ¹, with the object of identifying the corre-
sponding bands and thus locating the 'Il state. How-

ever, due to overlying absorption on the best plates
(nitrogen pressure too high), this proved unfeasible.

The recent identi6cation of 'II—Z bands of Nz+ by
Meinel, ~ in auroral spectra, a6'ords an approximate
value for the limit of the anticipated Rydberg series.
I have accordingly re-examined my plates, and have
found 6ve distinct bands6 which 6t the following Ryd-

s R. E. Worley and F. A. Jenkins, Phys. Rev. 54, 305 (1938).
~ R. E. Worley, Phys. Rev. 64, 207 (1943).' J. J. Hop6eld, Phys. Rev. 36, '789 (1930). See also Takamine,

Suga, and Tanaka, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 34,
854 (1938).' R. S. Mulliken, Phys. Rev. 46, 144 (1934).

s A.!B.Meinel, Astrophys. J. 114, 431 (1951);112, 562 (1950).
Most bands referred to herein are listed in Table I, reference 2.

Omitted were the following (cm '): 123 995* (vs=3); 124069*
(footnote 8). Recently measured for use in Table I herein were
122068; 133995; 135361 cm ',

berg formula with residuals of +1, —2, +2, +2, —2
cm '.

v =136607—R/(srt —0.0441 —0.018/stt)s' rrt=2 to 6,
R=109 735 cm '. The bands are rather narrow, are
shaded to longer wavelengths, and show but one head.
Starting with the Grst member, intensities progressively
decrease in a normal manner, the values being com-
parable to those of corresponding X—X bands. The
upper term for the Grst band is the e= 1 level of state o.

Dalby and Douglas' have photographed the 'II—'Z
bands of N2+ at large dispersion, using a laboratory
source. From preliminary results of the analysis, kindly
supplied by Dr. Douglas, the empirical series limit,
above, is found to correspond to the m=1 level of the
'II state, and apparently to its upper component 'II~.
The position of this component, as found. by adding
vss+AG(s)+~sA to the limit of the X—X Rydberg
series, ' is j.36 597 cm—' above the ground state of N2.
In fact, if the heads of the higher members of the X—X
series represent origins —that is, if they are of Q-form
as is suggested by the extreme narrowness of the bands—and if a computed origin-to-head interval is added

' F. W. Dalby and A. E. Douglas, Phys. Rev. 84, 843 (1951).
See also R. Herman, Compt. rend. 233, 926 (1951);N. D. Sayers,
Proc. Phys. Soc. (London) 65, 152 (1952).


