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Under appropriate conditions, the thermal expansion of a solid is closely related to the Griineisen pa-
rameter . This in turn may be derived from the variation of the characteristic frequency of the lattice
with volume. If, however, this variation is calculated from the usual expressions for the velocity of sound
in solids at zero pressure, the v does not agree with that predicted from lattice theory, and an anomalous
thermal expansion is predicted for a solid with a purely harmonic atomic potential.

General expressions for the dependence on volume of the velocity of plane waves in one-, two-, and
three-dimensional lattices are obtained, and hence the corresponding Griineisen v’s. The three-dimensional
v differs by a numerical constant from that used by Slater. All three expressions are now consistent when
applied to a body with a purely harmonic atomic potential and predict no thermal expansion.

F it is possible to express the specific heat at constant

volume of a solid as f(7/0), where O is a function

only of volume, then, as was shown by Griineisen, the
thermal expansion coefficient « is given by

a=vyCyx/V, )]

where y= —d log0/d logV and x is the compressibility.
This is, in fact, equivalent to assuming that the fre-
quency »; of each normal mode of vibration of the solid
has the same volume dependence, »~1/V".

Although the small vibrations of any lattice may in
principle be resolved into its normal modes, such a
calculation is in general a cumbersome procedure. In
Debye’s theory of specific heats these are therefore
replaced by the appropriate number of normal modes
of a three-dimensional continuum.

For a linear lattice, however, the normal modes and
dispersion are well known, and we shall first consider
this case. In an infinite linear chain of identical particles
of mass m separated by a distance b, in which only
nearest neighbor interaction is considered, the velocity
of waves of length A and frequency » is given by the
expression’ '

3*u/dr*\? sin(wb/N)
V= V)\=b( ) .
wb/\
in which the energy of interaction between two parti-

cles, #, depends only on their instantaneous mutual
separation, 7. There is thus a limiting frequency,

1/0%/9r2\}
- (5)
T\ m

which may be used to characterize the spectrum of
frequencies. If, however, more than nearest neighbor
interaction is envisaged, it is no longer possible to
represent the spectral behavior by a limiting frequency.
From Eq. (3),

AZ22b, (2)

,  for
m

©)

d logvy, 1 ou'/al

— - ’

d logl 2 o’

* National Research Laboratories Postdoctorate Fellow.
1 L. Brillouin, Wave Propagation in Periodic Structures (McGraw-
Hill Book Company, Inc., New York, 1946), Chap. IV.

4)

where / is the length of the chain, and we have written
u for 9%u/or.

For the one-dimensional continuum, moreover, the
velocity of longitudinal waves (the only kind of vibra-
tion logically possible in one dimension) is

v=(E/p)}, ©)

where E is the elastic modulus of the continuum and p
its mass per unit length. Thus, the frequency corre-
sponding to a wavelength A is

v=\"1(E/p)?, (6)

and so
3 _E dE/dl ;
Y= T (N

This is quite equivalent to Eq. (4) for a linear chain
and, in particular, it vanishes if E is strictly constant.

The behavior of a two-dimensional lattice is already
too complex to be capable of brief calculation. However,
the velocity of propagation of plane waves in, say, a
monatomic triangular lattice with nearest neighbor
interactions may readily be evaluated for certain
particular directions, and the calculation could in
principle be extended to any arbitrary direction. The
results again indicate that the velocity depends on #’
in the form

'’ \*? sinwb/\
v=kb(———) il ®
m wb/\ :
where 4 is now a lattice parameter dependent on the
direction of propagation, and % is a geometrical constant
depending on the direction of the wave and its type
(i.e., longitudinal or transverse).
This leads directly to a value of v:

d logvn, 1 9u"/ol 3 A4 0°P/3A?
© dlogd 4 W' 4 2 oP/oA
(for P=0), (9)

where / is now a linear dimension of the lattice, P is the
force/unit length, and 4 is the area of the lattice.
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For the corresponding two-dimensional continuum
the formula for the velocity usually quoted in texts is

= (p(lj-o‘))%’

where x=—A9dP/3dA, p=M/A, and ¢ is the two-
dimensional Poisson’s ratio. If this expression is then
used to derive v, one gets

1 A 8P/oA?
yY=————

2 2 aP/aA’

(10)

(11)

using the fact that o (the limiting value of Poisson’s
ratio for small deformations) in a monatomic lattice
does not change with a homogeneous areal change.? It
will be seen that this does not agree with Eq. (9).
Moreover, if the continuum is to correspond to a lattice
in which the atoms oscillate purely harmonically [i.e.,
the atomic potential is the form # « (r—r,)%], then the
total internal energy U, at absolute zero (Roberts?
Slater?) must have the form

UQOC (A%—Aoi)z;
and hence, for 7—0 from Eq. (11),
r=—3+i-1
The predicted thermal expansion thus presents a
dilemma, since for a purely harmonic atomic potential
no atomic mechanism is present to produce such an
expansion.
These difficulties persist in the case of a three-

dimensional continuum where (see Slater®) a value for
the Griineisen parameter,

2V ap/ave

3 2 ap/ov’

(12)

is then predicted, and an ideal harmonic body with
Uo o (V}"‘ Vo§)2,

would then have

v=—3+1=3.

The error arises from the use of formulas for the
vibrational velocity which are in fact only valid when
P=0, and p=0 in the two-dimensional and three-
dimensional cases, respectively.

The correct expressions follow at once from the fact
that the velocity of “plane” waves in a monatomic
lattice of any dimensions with nearest-neighbor inter-

2 Indeed, under these conditions, for any given axis in the
lattice, the ratio of the differential orthogonal displacements is a
purely geometrical constant dependent on the specific lattice type.

3J. K. Roberts, Heat and Thermodynamics (Blackie and Son,
Ltd., London, 1951), pp. 534-5.

4]. C. Slater, Introduction to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939), p. 212.

5 See reference 4, p. 239.
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action is always of the form
vec l(u''/m)},

where [ is the lattice constant and # the interatomic
potential.

Alternatively, by extending elasticity theory to the
case of small deformations under a finite applied
pressure, it is readily shown that for a three-dimensional
solid the instantaneous Young’s modulus is related to
the bulk modulus by

E=3(1—20){Vap/oV+3p}. (13)
Either mode of attack then yields
v [(—F/al)}, (14)
v A(—9dP/3A—P/24)}, (15)
ves V(—ap/aV—3p/ V)" (16)

These expressions evidently reduce to the conventional
formulas for the particular case of zero “pressure.”
However, when differentiated to yield v, we now have

1 8F/op
—— (17)
2 OF/dl
3 A{62P/6A2~3P/4A2} 18)
=—— , 18
4 21 oP/3A+P/24
V(8*p/oVi—10p/9V?
y=-1-— L)
20 ap/aV+2p/3V
which for zero “pressure’ reduce to
1 &@F /o
=—-" s (20)
2 OF/dl
3 A{62P/6A2| (see Eq. )
y=——-——{———1, (see Eq. (9 21
4 219P/34 e =
V(o*p/aV?
Y= _'—{ =7 (22)
21 ap/av

and for a “body” of # dimensions,

S(n——l) ’ola20>/a°o2

LA 2l a¢/6 } ’

where ® and U are the generalized pressure and volume,
respectively. If now these expressions are applied to the
case of ‘“bodies” with purely harmonic potentials, v
(and hence the expansion coefficient) is always zero,
as we should expect.

So long as we consider only equations of state at
absolute zero, the derivatives dp/dV and 3%p/dV? are
determined without ambiguity, since then the p, V
relationships only involve purely mechanical quantities.
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In general, however, these derivatives must be evalu-
ated under the physical conditions obtaining when a
sound wave is propagated through the body. For
example, at low enough temperatures a perfect infinite
lattice without impurity will have a thermal conduc-
tivity tending to infinity. Consequently, the changes
which occur during the propagation of a sound wave will
be isothermal, and (8p/dV)r is the appropriate deriva-
tive. At higher temperatures, however (and this will
usually include room temperature),the processes will be
practically adiabatic so that (9p/8V)s should be
employed.

At intermediate temperatures the conditions for the
first derivative will be neither isothermal nor adiabatic
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but lie between. Then within the limitations of the
theory 9p/9dV, and hence the wave velocity and O,
depend only on the volume. Under these circumstances,
the second differentiation with respect to volume
presents no ambiguity.

Comparing Eq. (22) with Eq. (12), it follows that
Slater’s values® based on experimental p:V data must
be diminished by 0.33. This correction then slightly
improves the over-all agreement.

This work forms part of a general investigation of
the effects of anharmonicity on the thermodynamic
properties of simple solids and the electrical resistance
of metals.

6 See reference 4, pp. 393, 451.
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Exact solutions for the scattering of a fast particle by two heavy scatterers are obtained and compared
with the usual treatment of the impulse approximation in which multiple scattering is neglected. It is
found that the multiple scattering qualitatively changes the solution except in the extreme Born approxi-
mation limit. The methods developed are applied to the isotopic spin dependent, but spin independent,
scattering of mesons in the deuteron. It is found that if high energy scattering is assumed to be in the
isotopic spin £ state, a considerable depression in the total cross section can be expected for phase shifts

larger than 45 degrees.

I. INTRODUCTION

HE impulse approximation!— has been developed

to deal with the scattering of a fast particle by a
system of heavy scatterers where the motion of the
scattering centers can be neglected during the scattering
process. This approximation leads to simplified theo-

retical evaluations of many processes and has been
applied in particular to a variety of phenomena in

deuterium.? In these applications, it has been argued
that multiple scattering effects can be neglected if the
free-particle scattering amplitudes are small compared
with the deuteron radius. It will be shown, however,
that this criterion is incorrect and that the neglect of
multiple scattering is valid only in the limit where the

* This work was done in part while the author was a visiting
physicist at Brookhaven National Laboratory during August and
September, 1952. The hospitality of this laboratory is gratefully
acknowledged. This work was also supported in part by a grant
from the National Science Foundation.
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Born approximation is valid for the single scattering
center, leading otherwise to qualitatively incorrect
results. The exact solutions, in the framework of the
impulse approximation, will be discussed first for the
simple case of S-state scattering and secondly in the
case of P-state meson scattering. In the latter case,
spin independent but isotopic spin dependent scattering
will be considered.

We shall not discuss the validity of the impulse
approximation as such, since this has been discussed in
detail particularly by Chew and Wick,? and by Chew
and Goldberger.? We shall also not attempt to consider
the effects of scatterings which do not conserve energy
since, although such processes undoubtedly give cor-
rections to the impulse approximation, they are distinct
from the effect we wish to consider here.

The methods developed here will be applied to the
evaluation of spin dependent scattering and to photo-
mesonic phenomena in a forthcoming paper.

II. THE IMPULSE APPROXIMATION FOR
S-STATE SCATTERING

We shall consider this very simple case to illustrate
the consequences of an exact treatment of the impulse
approximation. For the case of S-state scattering from



