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Photoproduction of ~' mesons in hydrogen and deuterium is calculated in the weak coupling theory under
several diRerent assumptions regarding the interaction Hamiltoriian. All calculations are performed non-
relativistically taking into account the anomalous magnetic moments of the nucleons. The contribution of
the negative energy states for the nucleons and of the nucleon current are isolated. Calculations are also
performed with a phenomenological Hamiltonian which yields a (2+5 sintr) angular distribution in the
center-of-mass system for the photoproduction of m.o mesons in hydrogen. In the case of deuterium, the
relative importance of elastic and inelastic photoproduction is examined as a function of photon energy,
meson angle, and the theoretical results are compared with recent experimental data. Best agreement with
experiment is obtained if nucleon current eRects are neglected.

INTRODUCTION positive and negative energy intermediate states. Since
the odd part of the (PS, PV) meson-nucleon inter-
action Hamiltonian is needed to give a large amplitude
for negative energy state transitions, if for an as yet
unknown reason the odd part of the (PS, PV) meson-
nucleon operator is suppressed' and only the (»r q)
part (»r is the proton spin and q is the meson momentum)
is retained, the interference between negative and posi-
tive energy transitions is eliminated and the proton
cress section favors the emission of x' mesons in the
forward direction. For this reason the deuteron elastic
m' production is calculated with an interaction which
contains only the even part of the (PS,P V) interaction.
The elastic production is also calculated with the entire
(PS, PV) interaction Hamiltonian since the experi-
mental angular distribution from hydrogen is not Anal.

A second possible objection to a weak coupling
calculation which includes the anomalous magnetic
moment of the proton is that the anomalous moment,
which presumably is due to virtual charged meson cur-
rents, may be more important for the photoproduction
of x' mesons than the Dirac moment associated with
the bare proton. With this in mind, a third model is
considered in which the charge of the proton is com-

pletely ignored and the proton is assumed to interact
with the radiation field through its anomalous moment
alone. If the proton and neutron anomalous moments
are assumed equal, the photoproduction of m' mesons
is independent of the charge state of the nucleon target.
Since the explicit version of the (PS, PV) theory which

is used may be incorrect, it is interesting to inquire
into the most general phenomenological interaction
possible within the context of weak coupling theory.
It turns out that, for a pseudoscalar m.-meson, one can

'HE standard weak coupling theory which was
used to calculate the photoproduction of m+

mesons in hydrogen predicts much too small a cross
section for m' meson production. ' However, when the
anomalous magnetic moment of the proton is assumed
to interact directly with the electromagnetic field and
the x' meson is treated as a pseudoscalar particle, the
cross section for x' production becomes comparable to
the m+ cross section. ' If the anomalous magnetic mo-
ment of the proton is responsible for m production in
hydrogen, then the neutron should contribute an almost
equal amount to the x photoproduction in a nucleus
like deuterium. Indeed, the elastic production process

y+ D-+n'+ D

at all meson angles, and the total cross section (elastic
plus inelastic) for m' meson produced in the forward
direction, are especially interesting because of their
dependence, due to interference sects, on the relative
sign of the neutron and proton x' coupling constants.
In practice, it is easier to measure the total deuteron
cross section at large angles with respect to the photon
beam where the proton and neutron make their sepa-
rate contributions.

At least two objections can be raised against the
relativistic weak coupling calculation carried out by
Kaplon' to explain the photoproduction of x' mesons
in hydrogen. The first objection is that while the proton
cross section calculated in this way agrees well with
experiment' both as regards absolute magnitude and
variation with energy, it predicts an approximately
isotropic angular distribution in the laboratory system,
which seems to contradict experiment. The origin of
the isotropic distribution can be traced to interference
between the probability amplitudes for transitions to

~ This work was assisted by the U. S. Atomic Energy Com-
mission.

f Now at Indiana University, Bloomington, Indiana.' K. A. Brueckner, Phys. Rev. 79, 641 (1950).' M. F.Kaplon, Phys. Rev. 83, 712 (1951),and Aidzu, Fujimoto,
and Fukuda, Prog. Theoret. Phys. 6, 193 (1951).' A. Silverman and M. Stearns, Phys. Rev. 83, 206 (1951).

4 Similar ad hoc assumptions are needed to explain both the
forward maximum in the differential cross section for the reaction
p+p~D+e Lsee Chew, Goldberger, Steinberger, and Yang,
Phys. Rev. 84, 581 (1951)g and the»r+ to»r meson ratio of about
one in the reactions

y+D—+n-++ri+e

y+D~ +P+P
Lsee R. E. Marshak, 3lesors Physscs (McGraw-Hill Book Com-
pany, Inc. , New York, 1952)g.
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use a linear combination of the following five terms:
(e X'), (e 2')(k' q'), (e k')(q' 2'), (e q')(q' 2'), [q'
~ (k'X3')], where e is the spin of the nucleon, q' is
the meson momentum, k' and Y are the photon mo-
mentum and polarization, respectively —all quantities
measured in the center-of-mass system. Coe%cients
are, in general, arbitrary functions of q' and k'.

If, in particular, the phenomenological interaction is
chosen as

2q' (k'X 7)+i[(e k')(q'. X')—(e 3 ')(q' k')],

the proton cross section is proportional to (2+3 sin'8').
This angular dependence is especially interesting be-
cause it agrees with the results of a quantum me-
chanical, strong coupling calculation' as well as corre-
sponding to the angular dependence which is associated
with the l= 1, j=-, state (/ being the orbital and j the
total angular momentum) of the meson-nucleon system. '

THE METHOD

The production of x' mesons in photon-nucleon col-
lisions is calculated with four nonrelativistic interaction
Hamiltonians. The 6rst of these may be obtained di-
rectly from the relativistic (I'S, I'V) Hamiltonian. To
lowest order in 1/M (M is the nucleon mass), the
Hamiltonian for a proton may be written

HI(p) HMN(p)+HRN(p)+HMRN(p)y
where

HMN(p) gp(e' V) VIII)

HRN(P) = —epp[e (~XA)]/2M —e(1I A)/M,

BU
HMRN(p) = —egp(e A)

Here c and p, ~ are the spin and magnetic moment of the
proton, respectively; A is the vector potential evaluated
at the position of the proton; p, is the meson mass; U
is the x' meson wave function; t,' is the charge of the
proton, and gp is the coupling constant of the proton
to the x' meson 6eld.

HMN(P) and HRN(P) are the usual nonrelativistic
approximations to the pure meson-nucleon and radia-
tion-nucleon interactions, respectively. The cata-
strophic term, HMRN(P), can be shown to result from
negative energy state transitions. If the catastrophic
term is neglected, the interaction becomes

Hs(p) =HMN(p)+HRN(p). (2)

Similarly, if the anomalous moment of the proton is
assumed to be entirely responsible for the x' production,
the interaction Hamiltonian takes the form

where p~' is the anomalous moment of the proton and
g~' is a constant.

Of all the interaction terms, H~z& is the only one
which has a diagonal matrix element; all the others
require second-order calculations. It is therefore con-
venient to define an effective interaction (H), which
enables the process to be calculated in first order.
Clearly, to determine (H)„we need only sum the
second order matrix element over all of the inter-
mediate states. After performing this calculation we
obtain the following effective Hamiltonians:

ie 2s. (q X)q
[H,(p)],= e'I' e —s0+-

Mp (ks) s

ppqX (kX 2)
gp (4)

ie 27r
t

(q X)q
[Hs(p)],=— e'*' e

Mp (ks)& I s

ppqX(kXX)
Pp (5)

k

$8 27/

[Hs(p)],= — e' (e'[qX(kX&)])pp gp (6)
Mp (ks)&

where q and e are the momentum and energy of the
meson, respectively; X, is the photon polarization whose
momentum is k; r is the position vector of the proton
and K=k—q.

As a fourth effective Hamiltonian we take the
following:

eGp 2x
[H4(P)].= e'K' "[2q' (k'X X')

My' (kV)&

+se. q'X (k'X Z')], (7)

where the primes indicate that the variables are meas-
ured in the center-of-mass system and G& is a constant.
In' the center-of-mass system, this phenomenological
interaction gives rise to a (2+3 sin'8') angular dis-
tribution, and this is at present the sole reason for
choosing it.

After squaring the matrix element of the effective
Hamiltonians, performing the usual summations and
averages, and introducing the statistical factor, we ob-
tain the following proton cross sections in the labora-
tory system:

ga ep~
H, (p) = — -(e.V) U — [e (VXA)],

p 235

p d0') AI gp 2s g sill 8
(3) )

—
~

=- —+ +jap'(1+cos'0) —2 sin'8
Eon), 2 q'

' Y. Fujimoto and H. Miyazavra, Prog. Theoret. Phys. 5, 1052
(1950).' K. A. Brneckner and K. Watson, Phys. Rev. 86, 923 (1952).

—4-I p cos8 , (8)
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& p'M'k)

(g—k cos8)1+—
M q

e2 3

(y'M'k J

e . (g—k cose)
1+2'

The erst three neutron cross sections are equal be-
cause the catastrophic term vanishes for a neutron
target and the neutron moment is entirely anomalous.

7 K. Watson, Phys. Rev. 85, 852 {1952).

t
do ) ~ Arsz~

&dQ), 2

I'g ——g g 'Cp~'(1+ cos'0)+ (sin'8) q'/e'j;

( do'i 'Ar p~ g~ (1+cos 8)
i
—

I

= —,(10)
&dQ& 3 2

(do-q ~ A"k"C2+3(sin'0)g'/P)e'Gy'
(11)

EdQ) 4 2p4kM(k+M)Cq —ke cos8/(k+M))

with 0 the angle between k and q.
The cross section (do/dQ)P is accurate to the first

power in 1/M, while Eqs. (8), (9), and (10) are accurate
to lowest order in 1/M since they are obtained from
effective Hamiltonians which are also accurate to
lowest order in 1/M. However, the statistical factor

'

in these and in several of the following equations con-
tain higher order corrections to insure a meaningful
comparison between these results and the plane wave
approximation to the total cross section.

The effective Hamiltonian for a neutron target may
be written

Qxgm
C& ( )3.= C& ( )j.= C& ( )j.= C& (P)j, (12)

gs gs

where p~ and gN' are the neutron's magnetic moment
and coupling constant, respectively.

We may assume that

C«(~)j.= C«(p).l' (13)
The proton and the neutron effective Hamiltonians

are indeed equal if the x' meson is produced in —, iso-
topic spin state. 7

The cross sections for the process

y+r3~3+ e
are, therefore,

(d )x (d )N (g
i )s(d pP

(dQ) r (dQI 3 (dQ] 3 gg& pg& EdQ) 3

and
(do.) ~ t'do. y

~

EdQ) 3 EdQ) 3

ELASTIC PRODUCTION

The cross section for the processs y+D~o+D is
calculated with the effective Hamiltonians deined by
Eqs. (4) through (7) and Eqs. (12) and (13).However,
since these interactions were derived for a free nucleon
at rest, their application in the deuteron calculation
must be justi6ed.

In deriving Eqs. (4) to (6), it was necessary' to sum
over free nucleon intermediate states. For the deuteron
problem, on the other hand, the intermediate states
are no longer free but are the states of a two-nucleon
system with a potential. However, the energy de-
nominator to lowest order in 1/M is independent of the
energy of the nucleons in the intermediate state and
therefore the application of closure over all inter-
mediate states results in the free nucleon effective
Hamiltonians.

A further objection to the employment of Eqs. (4)
to (7) and Eqs. (12) and (13) is that the momentum
operator p appearing in the corresponding Hamil-
tonians is evaluated for a target at rest. The validity
of this approximation has been checked, and the error
in this instance is also.negligible.

Furthermore, with the use of the effective Hamil-
tonian, one neglects processes in which one particle in
the deuteron absorbs the photon and the other emits
the meson. This two-body effect clearly depends
strongly on the behavior of the nucleon potential at
small distances. If the Hulthen potential is assumed
and if the energy of the incident photon is 300 Mev,
the two-body terms may be calculated and these terms
may also be neglected.

Finally, in this work the D state admixture to the
deuteron wave function is neglected. If the Hulthen
potential

—(0'—~')/(e" "—1)

is assumed, the deuteron wave function becomes

po(r) =1V(e ~' ee')/r—

where a'/M is the binding —energy of the deuteron
and where P and E are related to the triplet effective
range ro.

The effective Hamiltonians which were used to calcu-
late the proton and neutron cross sections may be used
to obtain the deuteron elastic result if we label par-
ticles 1 and 2 the proton and neutron, respectively.
Then the r and o appearing in CH(p)$, and CH(n)7.
will have subscripts I and 2, respectively. The deuteron
matrix element may now be written

'='x-*)~A( ) ""(C&'(p)j+C&'( )3 )
Xfo(r)«1«s 'Xmi (16)

where 'x is the triplet spin function, r=r~ —r2, and

' N. Francis and R. E. Marshak, Phys. Rev. 85, 496 (1952);
Heckrotte, Henrich, and Lepore, Phys. Rev. SS, 490 (19S2).
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[&4(p)] = [2q' (k'xx')
Mir (k6) *

+z~ q'x(k'xx')], (17)

where. q'=q —ge, k'=k —gk, P=(y+k)/(M+k). The
momentum of the target nucleon is p. If the gauge is
chosen so that the fourth component of the vector
potential vanishes either in the laboratory or in the
center-of-mass system, X=X'. It should also be re-
marked that in calculating the deuteron matrix ele-
ment, the p appearing in g must be treated as the
momentum operator which acts on the proton coordi-
nate if the y appears in [H4(p)], and on the neutron
coordinate if the p appears in PI4(e)],.

After the conventional manipulations the elastic
cross section for the four different effective Hamil-
tonians may be written

(do ) ~ gp'q' sin'8 e'
= i&PP(i K) +2gp2-

Edn), g2

+(ypgp+pNgÃ) (1+cos 8) 2gp slil 8—

46cpgp+p—~g~)gp cos8; (1—8)

(d /on

~

—
~

= 'a~22~'(i2K)[Fp+FN+2F pN];
Edn) g

R= (ri+rq)/2. The superscript i indicates which of the
four effective Hamiltonians is being considered. When
i=1, 2 or 3, the evaluation of the matrix element is
straightforward and requires no further discussion. To
find KD', however, [H4(p)], and. [H4(m)], must be
expressed in the laboratory system. In the laboratory
system

eapeiK ~ r

mesons in deuterium will be obtained assuming a
central nuclear potential that vanishes for odd parity
states ("Serber mixture"). The effect of the distorted
S state will be considered but all other partial waves
will be assumed undistorted. Since the plane wave
cross section may be considered to be a sum of terms,
each with a different orbital angular momentum, and
since the distortion is considered in only the 6nal S
states, the total cross section will be the plane wave
cross section less its 5 part plus the cross section calcu-
lated with the distorted final S state. That is,

(der) p'~' fd'r'r )
&dn &, ~„&dnd.),

( do' ) (doi
«+I —

I

Ednde) 8. Edn) g

where
(rr .L )&iK rr+ (~ .L )&rK rr (23)

where (do./dQ) r is the total cross section, (d'o./dnde) p. s .
is the spectrum derived assuming plane waves for the
final nuclear state, (d'a/dnde)s is the S part of the
plane wave result and (do/dn)s' is the cross section
calculated with the distorted S state. The plane wave
spectrum and its S part can be derived with relative
ease but the calculation of the cross section for the dis-
torted 5 state is tedious. We will therefore determine
(d'o/dnde)p. s. and (da/dnde)z exactly and find an
upper limit to (do/dn)s'.

Although the following procedure may be applied to
a calculation involving any of the four effective Hamil-
tonians dedned above, for dehniteness we shall calculate
the upper and lower limits to the total cross section
using H, = [H 2(p)]. +[H 2( 0)],. The effective Hamil-
tonian may be written

do
I
—

I
=-:X2'S'(-'K)y~'(g p' —g~')'(1+ co8)s; (20)

Ldn),
and

M 2'
L,= gz

Mp (ke)&

(q 2)
q —ppqX (kX 2),

(do) 4 ' k' 3k+a
P(-'K)Gp —(3 sin'8+2)

kdQJ 4 3 p' 2(M+k).

M 2'
L2 ——— g~p~qx (kx 2).

My (kc)&

where

8'+3k' Using the effective Hamiltonian defined by Eq. (23),
(21) the cross section for transitions to plane wave final

&(M+k) states is easily found to be

t'
I(K)= e+'K'P '(r)dr

Fp is desned above, F~=g~'p~'(1+cos'8), and
FpN= ppg pp~g~(1+cos'8). In the elastic cross sections,
we have neglected 1/M' terms in (do/dn)4~ and have
neglected 1/M terms in the other three cross sections.

TOTAL CROSS SECTION

An upper and lower limit to the tota1 cross section,
elastic plus inelastic, for the photoproduction of x'

(cPo P

Ednde) p.s .

8g
A2= A=

M'p'k

X2MÃ2
(~ (Fp+ Far)+ 8J3Fpar), (24)

E

o pE: a+pE—
logQ;

b—pX b+pK b —o,
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b a—1 -~a+pEq 1 p pE+b q-
—»gl

b+a a (a—pE) b ( pE—+b)
a= n +P'+E'/4; b=P' —n'+a; 11=(P&—Ps)/2,

and
a+pE b —pE

a pE—b+pE

The matrix element for transitions to distorted S
states may be written

Ke'=x&* iI pf*(r)e ~P'
L(e& Li)er'I r&+(gs'Ls)e~x. rr)

X1bs(r)dridrs'x„, (26)

where Pr is the distorted 5 state wave function. The
cross section for distorted anal S states is as follows:

eq g„&lm, 'I )
(»)

(dQ) e f (2m)'L1+ (e/2M) (q—k cos8)/qj

where Q' implies a summation over all final spin states
and only those nuclear 6nal states that conserve energy.
An upper limit to (de./dQ) e' is obtained by replacing q

by its maximum value and summing over the complete
set of anal nuclear states. Ke finally obtain

)d~~
' - 8~As'S'J

&dQ) s

where

FP+FN+ sFPK
- Q =Qmax

(da) '

(2g)
&dQ) e

E E E E—tan ' +tan '——2 tan '
2 2n 2P n+P

n 4n'+E' P 4P'+E'——log +—log
2 4n' 2 4P'

Therefore,

( +tI) ( +~)'+E'
+ log

(n+P)'

t'dog (do I" p'~*
p d'o q

I

—
I &I —I+ '

EdQ) r EdQ) e ~„(dQde) p. a .

(d'0 )
(29)

EdQde),

The part of the plane wave spectrum corresponding to
6nal S states is

(do )
I

=A'1V'M[FP+. F~+ssFp~j-
(dQde) e

X (log'Q)/2E p. (25)

If the m' meson spectra calculated with and without
distortion are compared, it is apparent that the effect
of the distortion is to increase the spectrum for low
nucleon energies and decrease it for high nucleon en-
ergies. Due to the closure principle, the integral over
all relative nuclear energies of the undistorted and dis-
torted spectra are equal. Therefore, if the integration
over the relative momentum extends from zero to a
Qnite upper limit, the distorted integral exceeds the
undistorted and the plane wave result is a lower limit
to the total cross section. '

Since both an upper and a lower limit to the total
cross section have been derived, it is instructive to
determine when one limit may be more accurate than
the other. For mesons produced in the forward direc-
tion, the distorted S state spectrum is sharply peaked
at a very high meson energy. Consequently, above
photon energies of about j..5p, when the half-width of
the spectrum is small compared to the entire energy
range, the error introduced by replacing q by q, and
summing over a complete set of kraal states is quite
small and the upper limit to the total cross section is
very accurate. However, as the meson angle increases,
the distorted S state spectrum becomes diffuse and re-
mains appreciable from e . to es where e, =(q,„'
+p')'*and es is the energy of a vr' meson photoproduced
by a nucleon at rest. (e, —es Es'/4M w——here Es is
the momentum transfer to a free nucleon. ) Therefore
for large meson angles, when Es is also large, (do/dQ) e"
is a good deal larger than (do/dQ)e'. This difference,
though significant compared to (do/dQ) s', will be small
compared to (do/dQ) r if many partial waves contribute
to the photoproduction as they generally do.

If a single curve representing the total cross section
as a function of angle is desired, a reasonably accurate
result could be obtained if it is assumed that

(da ) 1 t'do') (do )
I
—

I

=—01 —
I

+(2--0)
I

—
I

EZQ), 2~ EdQ) . EdQ),

(do' ) (do
+

(dQde) p.s. &dQde) e

A simple and fast method, "which yields an upper
limit to the total cross section approximately equal to
the upper limit obtained with the procedure mentioned
above, will now be applied to the problem when

&.= I:&4(p)j.+I:&4(~)j'
This method, which is applicable when the energy of
the incident photon is high, involves the replacement
of the rigorous conservation of energy equation which
appears in the cross section as the argument of a 8-

function with the conservation of energy condition for
a free nucleon at rest. Then, if the summation over

' This argument is due to G. Chew I',private communication)."M. Lax and H. Feshbach, Phys. Rev. Sl, 189 (1951).
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6nal states is extended to include the complete set of
6nal states, the result is an upper limit to the total
cross section and may be written

( do ) A, 'k'
. rP (2+3 cos'fI)—

KdQP z p' q(k+M)

I(K) p (k+ e) i+
~

1— —((11 sin'8+2)
k+Mi

2 (ps+ ke) cos8

q(k+M) ~ = tp,

where ri =M/(M+A). This result is quite near the cor-
rect total cross section for small 0 but is about 20
percent high in the backward hemisphere.

70 .-
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~ 30.
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O
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6
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00 /50 900
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I55'

Fn. 1. Curves A~ and A2 give the differential cross section at
k=300 Mev/c for the process y+P-+s.P+P, considering and neg-
lecting negative energy state transitions, respectively. The curve
B gives the differential cross section at k=300 Mev/c for the
process y+e~m'+e.

"G. Cocconi and A. Silverman, private communication.

RESULTS AND CONCLUSIONS

The most recent measurement" of the angular de-
pendence of the photoproduction of x' mesons in
hydrogen indicates that for mesons produced between
45' and 135' in the laboratory system, the yield is
large at 45' and decreases sharply as the meson angle
increases to 135'. This experimental result should be

00 F50 90' l35 I80
8 inLab

FIG. 2. Same as Fig. l at k=250 Mev/c.

compared with the theoretical predictions which were
calculated for a photon energy of 300 Mev since the
experiment was performed with a photon beam whose
average energy was 290 Mev. The cross sections calcu-
lated for k=300 Mev/c using both [H&(p)j. and
[H, (P)$, are shown in Fig. 1 as curves At and As,
respectively. The curve A& is far too isotropic in the
angular region in question to agree with the experi-
mental results. The curve A2 increases steeply from
0=90' to 45' in qualitative agreement with experi-
ment, but its behavior from 0=90' to 135' is too
slowly varying. The closest agreement is obtained if
the cross section is assumed to have the form (2+3
sin'8') in the center-of-mass system. If this theoretical
cross section is transformed to the laboratory system,
the resulting differential cross section in the laboratory
decreases monotonically as 0 increases from 45' to
135' and is shown in Fig. 9 as curve I'.

The curve A~ of Fig. 1 is a plot of the proton cross
section calculated nonrelativistically with the cata-
strophic term included and, therefore, may be com-
pared with the results of the relativistic calculation. '
At 0=0, where k= ~, the relativistic and nonrelativistic
results are equal. However, as 0 increases, the rela-
tivistic curve remains constant while curve A~ of Fig. 1
decreases. The difference in the shapes of the two curves
is a result of neglecting terms of order 1/M in the non-
relativistic calculation. The error is especially large
because of the destructive interference present when the
catastrophic term is included.

If p~'= —pN, and if the effect of the proton charge
is neglected, the proton and neutron cross sections are
equal and their angular dependence is the same as
curve B of Figs. 1 and 2. These curves, like A2 of
Fig. 1, are too Bat from 0=90' to 135 .
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Tmz, E I. Ratio 8 of deuteron elastic cross section when
gp= —g~ to that when gp= g~.'
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eo.
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a The subscript on R defines which effective Hamiltonian is used. The

Ri and Rg are calculated neglecting and considering negative energy state
transitions, respectively, while Rg is calculated assuming that the anomalous
moment alone contributes.

20.

The deuteron elastic cross section depends strongly
on the relative sign of the neutron and proton coupling
constants. If we de6ne (do/dQ)n and (dc/dQ)D+ to be
the elastic cross sections when g~= —g~ and when

gz ——g~, respectively, and if we de6ne their ratio to be
E, we obtain the values given in Table I.

The significant feature of Table I is the large values
of R for all three theories. Therefore, if g~ ———g~, the
elastic deuteron cross section is appreciable, but if
g~=g~, the calculated elastic result is so small that it
is probably not measurable with the present techniques.

Figures 3 and 4, and Fig. 9, curve D, show the angular
dependence of the cross section for the reaction

y+D~'+D.
For meson angles near zero, the relatively well-known
low momentum components of the deuteron wave

OO 45 I55 ' Iep'

8 |n Lab.

Fzo. 4. Same as Fig. 3 at k=230 Mev/c.

function contribute while at large meson angles, where
the momentum transfer E is not small, the high mo-
mentum components of the deuteron wave function
are needed. Therefore, at the small meson angles the
elastic cross section is quite accurate as well as large.
At the large meson angles, where the cross section is
small, the result is uncertain because the high mo-
mentum components of the deuteron S state wave
function are not well known and because the D state
admixture of the deuteron wave function, which we
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FIG. 3. Curves C& and C& give the differential cross section at
k=300 Mev/c for the process y+D-+as+D, assuming g~= —g»
and considering and neglecting negative energy state transitions,
respectively.

FIG. 5. Curves D~ and D2 give the upper and lower limits to
the total cross section for the photoproduction of x mesons in
deuterium at 300 Mev/c with g~= —g» and neglecting negative
energy state transitions.
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have neglected, might introduce an appreciable correc-
tion to the cross section. "

The point at 8=0' of Fig. 9, curve D, is uncertain
due to the cancellation of the first and second order
terms in 1/M.

Figures 5—8 show the variation with angle of the
upper and lower limits of the total cross section for the
photoproduction of m' mesons in deuterium calculated
with LH2(p)],+[H2(N)]„ that is, neglecting negative
energy state transitions. At the meson angles near zero,
where transitions to S states are important, the upper
limit is quite accurate. For mesons emitted in the
backward direction, many partial waves contribute to
the cross section and therefore the lower limit, which is
actually the plane wave result, is likely to be as close
to the total cross section as the upper limit.

We have observed that the measurement of the
elastic production at any angle determines the sign of
g~/g~. That is, the coherent production determines the
relative phase of the proton and the neutron ampli-
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Fio. 7. Same as Fig. 5 with gp= g~.
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Fio. 6. Same as Fig. 5 at &=250 Mev/c.
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The upper limits to the calculated ratios assuming no
negative energy state transitions are 1.51 and 1.29
when gp ———g» and when gI =g», respectively. The
larger calculated ratio is smaller than the experimental
result by about 20 percent which is outside the range
of the experimental error. The reason why the calcu-
lated cross section is small is because the neutron con-

tudes. For 0&90, the total cross section is chief in-
coherent and is, therefore, essentially independent of
the relative sign of gp and g». However, the cross sec-
tion at these angles is quite sensitive to the neutron
contribution and, thus, the comparison of the theo-
retical results with experiment at large meson angles
offers a good method for determining the neutron con-
tribution to the m' production.

Cocconi and Silverman" have measured the ratio of
the deuterium total cross section to the hydrogen cross
section when the maximum photon energy is 310 Mev
and for 8=45', 90', and 135' in the laboratory system.
We will 6rst consider the 90' ratio. The measured
result is
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~ Chew, Goldberger, Steinberger, and Yang, Phys. Rev. 84,
581 (1951).
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be compared with an experimentally measured result
of 1.53. Therefore, the measured ratio of the total cross
sections is not inconsistent with the hypothesis that
the anomalous moment alone contributes to the photo
x' meson production. The ratio of the upper limit to
total cross section in deuterium to the hydrogen result
is 2.1 at 90' and 2.0 at 135' when the proton's cross
section is (2+3 sin'8') in the center-of-mass system.
The ratio at 135' is approximately 33 percent above the
experimental value, which is not inconsistent consider-
ing that the experiment at 135' is uncertain to about 20
percent and the upper limit is probably large by about
10 to 20 percent.

Finally, we may predict that if the anomalous mo-
ments of the proton and neutron alone contribute to
the photoproduction of m' mesons, then for k= 300 Mev
and for 0=90'
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FIG. 9. Curves I D; and T are the proton, elastic deuterium,
and upper limit to the total deuterium cross section, respective]y,
for 4=300 Mev/c, assuming an interaction which gives a
(2+3 sinss') proton cross section in the center-of-mass system.

tribution is only about one-half that of the proton when
the measured magnetic moment of the latter is used.

If we assume that p, p' ———p~ and that the proton
current does not contribute, however, and furthermore
that g~' ———g~, the upper limit to the ratio of the total
deuteron to the proton cross sections at 8=90 may be
estimated to be about 2 in rough agreement with the
experimental value (see Fig. 9). When 8=135' the
lower limit to the ratio of the total deuteron cross sec-
tion to the proton cross section is about 1.5, which may

A ratio of 0.65 is obtained if the calculation is per-
formed with the interaction which yields a (2+3 sin'8')
distribution for the proton.

In conclusion, the only interactions which yield a
ratio of about 2 in agreement with experiment for
(do/dQ) r/(do/dQ) ~ at 8= 90' are the interactions which
give approximately equal proton and neutron cross
sections. The production of m' mesons in photon-
nucleon collisions thus appears to be charge inde-

pendent, although further experiments are clearly
necessary.
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