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Certain Explicit Relationships between Phase Shift and Scattering Potential

NORMAN LEVINSON
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(Received October 21, 1952)

An intuitive account is given of recent important results of Gelfand and I evitan for the determination of
the potential in the one-dimensional Schrodinger equation from the S-phase shift, the bound states, and
certain normalizing parameters.

The method is then used to obtain the first variation in the potential corresponding to a small change
in the phase shift, bound states, and normalizing parameters.

HE determination of the potential from a given
S-phase shift has been considered in a number of

recent papers. For particulars see the introduction and
references of Jost and Kohn. ' The method of Jost and
Kohn for constructing a potential from a phase shift
has much to commend it. However, as the authors
point out, it has a limited range of convergence, and of
necessity is ambiguous in case bound states occur.

Here methods developed recently by Gelfand and
Levitan' for the determination of the potential from
the spectral function will be presented in intuitive
form. These methods introduce a number of quite new
ideas which are of great interest in themselves.

The problem may be described as follows. The
Schrodinger equation,

g"+k'p= V(r)ztz,

is considered over the interval 0&r& ~. It is assumed
that

function F(r),

F()=E;~,() F()e,()d
, J,

2 p" k' QQ

+— y(k, r) F(r)y(k, r)dr dk, (3)-~. If(k)l'

where f(k) is as given in Eq. (2) and the c;& are the
normalizing factors for @t(r).

Let k'= X and let zt (k, r) = ztz(QX, r) be denoted by
y(X, r). Let p(X) be a monotone nondecreasing function
which for P (0 is constant except for jumps at ) = —k,~,
the magnitude of each jump being c;. Let p(0) =0 and
let

X&

t ().)=— ' d)~-
~o If()')I'

for ) )0. Then Eq. (3) becomes

lf(k) I .
y(k, r) sinLkr+ zt(k) j, (2)

where st(k) is the phase function and f(k) is f(k, 0) =g(k)
as given in Jost and Kohn. ' Let ikz, . , ik denote the
values of k for which there are bound states of energy
—k&', . , —k '. That m is finite has been shown by
Levinson. ' The eigenfunctions associated with the
bound states are ztz(ik, , r), j=1, , zzt, and will be
denoted by P;(r).

The expansion theorem associated with the eigen-
value problem states that, for any suitably restricted

~ .IV(r)Idr&
0

I et p(k, r) be the resolution of (1) satisfying $(k, 0) =0,
@'(k, 0)= 1. It is well known that as r moo and—for real
k&0

F(r)= ~f y(X, r)I F(r)y()t, r)dr Idtz()t). (4)E, ' )

The problem of determining V(r) when z)(k) is given
has been shown by Bargmann4 not to have a unique
solution. It has been shown by Levinson' that if no
bound states exist zt(k) does determine V(r) uniquely.
Jost and Kohn' showed that this uniqueness proof could
be extended to the case where bound states exist,
providing the normalizing factors cI, ~ c are also
given.

Suppose now that rt(k), ik;, and c,, j=1, , zzt are
given. Then proceeding as in Jost and Kohn, ' $2, f(k)
may be found. Once f(k) is known, p()t) as defined
below Eq. (3) is completely determined. The function
p(X) is known as the spectral function. It will be shown
how p(X) determines V(r) explicitly and uniquely.

*The preparation of this paper is sponsored in part by the
U. S. OKce of Naval Research.' Res Jost and Walter Kohn, Phys. Rev. 87, 97'7 (1952).' I, M. Gelfand and B.M. Levitan, Izvest. Akad. Nauk S.S.S.R.,
Math. Series 15, 309 (1951).' N. Levinson, Kgl. Danske Videnskab Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).

This section will develop the motivation for the
method of Gelfand and Levitan. '

'V. Sargmann, Phys. Rev. 75, 301 (1949); Revs. Modern
Phys. 21, 488 (1949).
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The function p(k, r) =y(X, r) is written in the form Recalling that O'= X, and that

y(k, r)=
sinkr

t
" sink)

+ E(r, 'P) dg.
k ~p k

S(k, )~(k, )dp(&)=B(- ),

It must now be shown that E(r, $) ex'ists. Integrating where 8 is the Dirac function, it is seen that
Eq. (5) by parts twice yields

k2$= k sinkr —E(r, r) coskr+E(r, 0) &t&(k, r)y(k, r~)dp(X) =0, rAr~.

t "sinkr~
@(k,

r)dpi',

) =0.
k

Computing P" directly from Eq. (5) and using the
above result, it is found that

BE(r, r) sinkr p" O'E sink&
dt. If this is used in Eq. (9) there results for r&r, &0

Bg r p BP k

sinkr dE(r, r)
&1&
"+k2&t& = 2 +E(r,0)' Then if one refers to Eq. (5), this implies that for

r&rg&0

p" sinkr sinkr&
( "(B2E(r, $) O'K(r, $)) sink/ ' dp(X)

k'
Jp & Br' BP ) k

By Eqs. (1) and (5) the right side above must be equal
to

sinkr r
' sink(

V(r) +V(r) E(r, &)
r ~p k

This will be true if, for 0& (&r,
O'E/Br' B2E/BP—= U(r)K(r $)

and the boundary conditions

r
' p" sink) sinkr~

+ E(r, $)dg —dp(X) =0.

t

" sinkr sinkr~ (2X')
d( (

= B(r—r,),
I. 3 )Jp

there results for r& r~&0,

If Eq. (8) is used in the above equation in conjunction
with the fact that

K(r, 0)=0, E(r, )=g ~ V(r)dr&
dp

f."sinkr sinkr~
do. (X)

hold. If the range 0($&r is replaced by r&$(r r&0—
and the boundary conditions by

t "sink) sinkr~
+ E(r, ()dg da (X)

p oo k

+K(r, r,) = 0. (10)
K(r, r) = —E(r, r) = 'V(r)dr, —-

2J
1

t
" 1—cosku

da(X) =C(u).
2 „k'then the problem is the standard one of solving a linear

hyperbolic partial differential equation with boundary
conditions prescribed on two intersecting characteristic
curves. Thus E(r, $) is determined.

In case V(r) —=0 then it is readily seen that the p(X)
in (4) becomes 2X'/(3&r) for X&0 and zero for X&0.
The pP, ) for (1) is written as

4 (r+ r~) —C (r—r,) =P(r, r~)

p" sinkr sinkr~
do (X). (12)

oo k
Thus (10) becomes

p(X) = 2X&/32r+o (X), X&0

p(~)= (X), &&0. P(r, r&)+ E(r, &)P(P, r&)dP+E (r, r&) =0. (13)'
pIn much the same way as Eq. (5) is justified it can

be shown that there exists a K(rp„p) such that

sinkr~ p~1

=~(k, ")+ ' E.(, ~)~(k, ~)d~

From continuity considerations this holds for 0&r&&r.
It is (13) which forms the point of departure for the

(9) determination of V(r) from p(X). It is clear from (12)
that P(r, rz) =P(r&, r).
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Suppose now that p(X) is given. Then a(X) is deter-
mined by (8), and thus P(r, ri) from (11) and (12). It
is clearly the case that for each fixed r) 0, Eq. (13) is
a Fredholm equation with K(r, ri) as an unknown
function of rj.

It will now be shown that the homogeneous equation,

P(, ehu)dS+h( )=0,
a

has only the null solution, k =—0.
Let

T f/ 7

I= " P(r„g)h(g)h(ri)dgdri+ h'(ri)dri.
0 0

Clearly I=0. By using (12), it is found that

i
"sinkri sink/

P(ri, $) = I
— do(g)

k

~" sinkri sink)

k'

@(k, r) given by (5) satisfies (1), and p(X) is the spectral
function of (1) with boundary condition g(k, 0) =0.

In summarizing, it is found that a knowledge of the
phase function rt(k), the bound states ki, .k, and
the normalizing factors c~, . c determines the spec-
tral function p(X). By Eq. (8) this determines o(X).
From o (X), C (N) is determined in Eq. (11),and P(r, ri)
by Eq. (12). The function K(r, ri) is then determined
from the Fredholm equation (13) for 0(r,(r. The
variable r appears in the Fredholm equation as a
parameter, and thus the determination of K(», ri)'
computationally may be a long process. Once K(r, ri)
is found, V(r) is given by 2dK(r, r)/dr.

IV.

Suppose the potential V(r) corresponding to a given
spectral function p(X) is sought. Let po(X) be another
spectral function, and suppose its potential function
Vo(r) is known or has been determined. Then what is
the relationship between V(r) —Vo(r) and p(X) —po(X)?
The case treated above corresponds to Vo(r) =—0.

Let &0(k, r) denote the solutions of Eq. (1) where V
is replaced by Vo. Let p(X) —poP)= (Xo). Then the
same argument as used above, for the case Vo(r)

—=0,
shows that

V(r) Vo(r) =—2dK(r, r)/dr,

where JC is the solution of

(1S)

fQ T t
" sinkri sink/

I= h($)h(ri)dgdr, I dp(X)
0 0 k' K(r, ri)+Po(r, ri)+ K(r, g)PO(P, ri)d(=0, (1&)

T pT

h(g) h(ri) b(ri $)d /dr—i+ h'(ri) dr i.
J, J, PO(r, rl) 40(k r)$0(k rl)d&(~) ~

Or, since the last two integrals are equal,

r" ( r "h(g) sink)
dg

~
dp(X).

k )

If p(X) —po(X) is small, then P0 is small and as a
first approximation, Eq. (16) yields

K(r, ri) —PD(r, r,).
Since

T

h($) sinkfdP
k&o

In Eq. (15) this gives

V(r) —Vo(r) 4$p(k r—)$0 (k, r)do(X),

is an entire function of X and since p(X) has a continuous
spectrum for X)0, it follows that I)0 unless (14) is
identically zero. This last implies h($) =—0 so that indeed
the homogeneous equation has only the null solution,
and thus by the Fredholm theorem the nonhomogeneous
integral equation (13) has a unique solution, K(r, ri).
If it is assumed that C "(u) exists, then it can be shown

that the first and second partial derivatives of K(r, ri)
exist. As suggested by (7) let V(r) =2dK(r, r)/dr. Then

or, if V—VO=BV and p —po=bp, then

SV(r)- 4y(k, r)@—'(k, r)d(Sp(X)).

These formulas are, of course, only approximations
which neglect terms of higher order than the first in

~p(li)


