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If a beam of unpolarized nucleons is scattered from a target of unpolarized nucleons, the scattered par-
ticles are polarized (in a direction normal to the scattering plane) provided that the interaction contains
tensor or spin-orbit forces. The polarization can be detected by means of a second similar scattering since
the cross section then contains an azimuthal dependence:

I(8, p) = Ip(e) (1+e cos4),

where e(8) is essentially the square of the polarization. Calculations are carried out by the author for a double

p —p scattering using the tensor interaction described in the preceding paper, and for a double n —p scatter-
ing using the central and tensor potential oi Christian and Hart (containing the "half-exchange" dependence
proposed by Serber). The polarization produced by the first scattering at the optimum angle of 8=50' was
found to vary from 6 percent at 40 Mev to 33 percent at 285 Mev for n —P scattering and from 10 percent
129 Mev to 15 percent at 350 Mev for p —p scattering. The e—p results (previously published) are consistent
with the azimuthal asymmetry detected in a double scattering experiment reported by L. Wouters.

SCATTERING OF A POLARIZED BEAM

~ OR a single nucleon-nucleon collision in a definite
initial spin state x;, the intensity of the scattered

state is given by (Sx;, Sx;), the expectation value of
St8. S is the 3X3 triplet spin scattering matrix defined
in the Appendix of the preceding paper'; S (4X4 di-
mensions) is the same with singlet states included. The
result of a measurement to which many scattering
events contribute is necessarily the average expectation
value of the measured quantity taken over an ensemble
of all possible initial states of the system. The totality
of information concerning a system can be expressed in
terms of the q-dimensional density matrix, p, ;«)
=P g (a; )*a, , where P,a,~l; is the wave function of
the system in the state a, g is probability of occur-
rence, and I; a complete set of expansion functions.
Following the method of Wolfenstein and Ashkin, ' ' let
p(4& refer to the initial spin states of the two.-nucleon
system; then the diGerential scattering cross section is
given by Tr(p&"St8). Consider for the moment an
ensemble of one particle (spin rz) systems; a measure-
ment of spin will yield the result (er) = Tr(p&"or), from
which it follows that the (two-dimensional) density
matrix can be written pip =sL1+(oi) oij. The four-

dimensional density matrix describing a spin state
ensemble of two-particle systems is given by the
"direct product"4 of the density matrices for the one-

particle ensembles, provided that the states of one
particle are not correlated with those of the other:

p &"(1, 2) =p"'(1)Xp"'(2),

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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ment Laboratories, Culver City, California.' Don R. Swanson, Phys. Rev. 89, 740 (1953). The notation of
this reference will be used throughout.' L. Wolfenstein, Phys. Rev. 76, 541 (1949).' L. Wolfenstein and J. Ashkin, Phys. Rev. SS, 947 (1932).

4 H. Weyl, Theory of GrouPs end Quantum Mechanics (Methuen
and Company, Ltd. , London, 1931), Chap. II.

or
(p ')' '= Lp"'(1)]'*'[p"'(2)] '

Hence,
p = s(1+(o'r) o' r) X (1+(e2) '(12). (1)

The differential cross section for a beam of particles of
polarization Pi= (or)/Ii scattered from an unpolarized
target (os)=0 is therefore given by

Tr(p "&StS)= —,'Ip Tr(8t8)+-,'(ei).Tr(eiX18tS)
(2),'Ip Tr(8t8)+—-s,(er) Tr(osts),

where c is the triplet spin operator and Io the intensity
of the incident beam. The second equality follows from
the absence of matrix elements in 5 between triplet and
singlet states; hence the latter do not contribute to the
"polarization term" sr(oi) Tr(osts).

For an interaction of the form

I a(r)+ e, e,Il(r)]La+& I',],
5 is proportional to the (triplet) unit matrix and so the
polarization term vanishes. In the case of a tensor or
spin-orbit force, it follows from Eq. (A2)' (or can be
proved by symmetry arguments') that the polarization
term in Eq. (2) is nonvanishing and proportional to the
component of polarization of the incident beam normal
to the scattering plane. Detection of an azimuthal
dependence of this type in the nucleon-nucleon scatter-
ing cross section would therefore constitute direct
evidence for the presence of noncentral forces. The
problem now to be considered is that of producing the
incident polarized beam of high energy (S states alone
do not contribute to polarization) nucleons.

If an unpolarized beam strikes an unpolarized target,
the polarization of the scattered beam is given by

(8 .. .8,)r'(8 „8„,) =T.( SS )fT.(88 ),
where p&') = ~1 is the density matrix describing the
initial system. A proof, based on the transformation

~ L. Wolfenstein, Phys. Rev. 75, 1664 (1949).
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(t), however, 8=TF—2() and g=C~+ir. Consider, for
example, the experiment of %outers' in which incident
protons produce a neutron beam by means of a (p, I)
reaction. The (p, n) collision is described by 5(8, $),
and the polarization of neutrons observed at 0, C is
(IT,)(8, p)/I(8) where 8= Tr —20~ and &=Ci+ir. The
scattering matrix itself carries all information on the
exchange nature of the interaction. In the case of two
protons the 5 matrix is antisymmetric, so it is of course
immaterial whether 8= 20, p= C or 8= ir —20, p= C+TF
is used.

The subscript 1 will be used hereafter in place of (b)
or (t) to indicate that the operator in question refers
to once-scattered particles which form an incident beam
for the second scattering.

Fro. 1. Coordinate axes for double scattering problem.

properties of 5, that

Tr(iTSST) =Tr(eS "5)

has been given by %olfenstein and Ashkin. ' An
braic tour de force, however, using the form
(reference 1) for 5, yields the equality

THE DOUBLE SCATTERING PROBLEM

The coordinate system for the second scattering
(x2y&s2) is obtained by rotating (x,yisi) about the yi
axis until the s axis lies along the new incident beam
(Fig. 1). Hence Py, P~. is unc——hanged and represents
(in the form of (ei)) just the quantity that must appear
in the density matrix for the new initial state

tan8 cos$
Tr(ITyStS) —Tr(IT„SSt)=- p"'=pi"'X ps"'= A'(1+(o'i). ei) X (1+(~2) o's). (6)

4k'
The subscript 2 refers to particles of the second target.

X IFFY @'q+p+J(J+1)P~+,][(2z+,~ A~, ~) T—he latter is supposed to be unpolarized, so that (os)=0.
The differential cross section for the second scattering

Bgyi I3z i A P C= 0,—3—

which vanishes immediately for purely central or S.L
forces (uncoupled, therefore 8i~" = bi~) and does so for
tensor forces as a consequence of the Wronskian condi-
tions (A9), (A11b), reference 1.

If the s& direction is taken as that of the incident
beam, then Tr(ITATSTS) =—0 may be readily confirmed.
Placing the xi axis in the scattering plane, (I|IT——0), the
polarization is given by
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where the subscripts 1 will be used throughout to denote
the first scattering.

In the first scattering, introduce the subscript (b) to
represent the particles originally in the incident beam,
and (t) to denote those from the target. The polariza-
tion of the two scattered beams is the same:
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(&TA)= Tr(ei, x18T8)=Tr(1x 8T8G)i= (o.i)
=-', Tr(oSTS).

The nucleons emerging at some laboratory angle
(O', C) will be used to form the incident beam for a
second scattering. If particles (fI) are to be used, the
center-of-mass angles are 8= 20 and g = C; for particles

IO 20 30 40 50 60 70 80 90 IQ 20 30 4Q 5Q 6Q 70 80 90
e e

FIG. 2. Values of Q(8)=)Tr(0„StS) for p —p scattering at
(lab. system) energies of 350 Mev, 129 Mev. 8=scattering angle
in center-of-mass system. The interactions indicated (cut-oR'
singular tensor) are those for which cross sections were computed
in reference 1 (Figs. 2, 3).

' L. Wouters, Phys. Rev. 84, 1069 (1951).
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is obtained from (6), (2), (3), and (4):

(ilo/dfl) 2 J(81) 821 42) Il(81)I2(82)

+Q,(8,)Q,(8,) cosy, . (7)

I,(8i) and Is(8s) are the differential cross sections with
polarization terms omitted.

In the case of p —p scattering, or I—p scattering
with exchange dependence 1&P, so that interaction
occurs only in orbital angular momentum states of the
same parity, then the condition

l.2—

4

l.O

CC .8
Kl

.6

X

1 t t t ) t t I

V

V
EV
EV

10 20 30 40 50 60 70 80 90
e

I I l l I I I I

SHORT RANGE SQUARE WELL
CUTOFF

REPULS IVE

I I I I I

l ONG RANGE SQUARE WELL
CUTOFF

lO 20 30 40 50 60 70 80 90 0 20 30 40 50 60 70 80 90
e e

FIG. 3. Values of Q(8)/I&(8) for p —p scattering at 350 Mev.
I&(8)= triplet cross section. Polarization is given by

Q(8) /LI~(f!)+I (8)g

I,(8) =singlet cross section. The function plotted hence represents
the polarization at those angles (8&50' for Christian and Noyes
model) for which singlet scattering is negligible. The interactions
indicated (cut-off singular tensor) are those for which cross sec-
tions were computed in reference 1.

(&'&)(8, ~) =(&t&)( 8, ~—+ )

implies Q(8) = —Q(ir —8) so that Q(z/2) =0. The con-
tribution to the polarization at 8=rr/2 must therefore
come exclusively from odd-even interference terms; the
possibility of such a measurement suggests a test of
the 1+P dependence proposed by Serber.

Ignoring for the moment the fact that the second
scattering occurs at a somewhat lower energy than the
6rst, and assuming the two involve the same types of
particles (i.e., both npo, r—both p —p), then the meas-
ured ratio at the optimum angles 0~=82——6I, is

&(~.=0) 1+(Q/I)'
R=- &1.

J(y, =~) 1—(Q/I)'

Barring a somewhat remarkable dependence of Q(8) on
energy, a ratio greater than 1 should in general be ex-
pected as the experimental result whenever 6I~=82. A
relationship which led to Eq. (3),

v2(3 —D)cot8 —(A C E)——
=Z~[P~+ +~iV+1)Pz+ij[(As+i' —Az i')

(&z+i' &z—i') j=0,—(9)
l l I l I I
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FIG. 4. Values of Q(t!I) =-,' Tr(O„StS) for n —P scattering at the
energies indicated. The interaction used is that of Christian and
Hart. A simi!ar plot of polarization (Q/I) is given in reference 7.

can be used to simplify appreciably the form of Q(8)
by eliminating A —C.

64

Q(8) = Im)E'(8'+D')*+D*'P' cot8j
8k2

62

+ (C +F)@—(P+D) =Q'+Qr. —(10)
4p

es, e4 are defined in Eq. (A17) of reference 1.

RESULTS AND CONCLUSIONS

For p—p scattering, Q(8) is plotted in Fig. 2 for all
cases considered in reference 1 except the long-range
hard core model which has been omitted because the
coupled phase shifts were found only roughly. The
dominant term of Eq. (10), which alone yields a value
of Q(8) correct to within 50 percent or so is quite simple;
for singular potentials (Crc—Ct) is very small, so that

. Q')&Qr, only P states have been kept:

Q(8) =Im{B,"*[8," +'( A"i—Ai")])Ps'(cos8). (11)

The importance of obtaining accurate values for the
coupled 'P2 phase shifts. is clear; even rigorously there
is no contribution to the polarization from the 'Po and
'P~ states alone. The polarization,

P(8, ~= o) =Q(8)/I(8),

is plotted in Fig. 3; the value of I(8) was taken in all
cases to be the predicted triplet cross section for the
potential model used; that is, the singlet scattering is
assumed negligible for e&50'. If, instead, it is assumed
that singlet scattering can be introduced in such a way
as to bring the cross section in each case up to the ex-
perimental value of 4 millibarns, then Fig. 2, rather

.than Fig. 3, shows more clearly the dependence of
polarization on choice of cutoQ'. With the potential
given by Eq. (6) of reference 1, the polarization (at
8=50') is 10 percent (2=1.02) at 129 Mev and 15
percent (8=1.05) at 350 Mev.

For fs —P scattering, the tensor and central inter-
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action of Christian and Hart (containing the "half-
exchange" dependence proposed by Serber) is used. In
Fig. 4, Q(8) is plotted for energies of 40, 90, 200, 285
Mev. A similar plot of the polarization Q(8)/I(8) was
given in an earlier report. 7 A comparison of Q(8) with
Q/I illustrates the point that I(8) alone carries almost
the entire energy dependence of the polarization.

If odd-state forces were introduced into the triplet
rt —p interaction (by changing the 1+I', dependence),
the polarization could be considerably larger because
of the contribution from 5—I' interference:

Qas = (1/8k') Isn(Bo'(BP —Bx'
+so(Aq' —Az') j*}sin8. (12)

s Don R. Swanson, Phys. Rev. 84, 1068 (1951).

To obtain some idea of the magnitude of this term,
suppose the same amount of triplet odd-state interac-
tion were introduced into the rt —p Hamiltonian as was
used for the p —p interaction in the preceding paper. '
Interpolating the p —p phase shifts to obtain rough
values at 200 Mev, the result is Qst =0.5 sin8 milli-
barns leading to E(sr/2)=1. 03. Hence, although the
asymmetry is appreciably influenced by the presence
of odd states, the quoted uncertainty in the experi-
mental results of Wouters' is too great to permit any
sharp conclusions to be drawn on the question of the
exchange dependence of the st —p interaction. The
desirability of further experiments on rt —p double
scattering is, however, indicated.
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The 390-kev y-line reported to be associated with Tc' is found to be Tc 3 and is shown to be a M4 iso-
meric transition. Mass assignment to Tc" is made for the isomeric transition previously known to have
34.4-kev energy and 51.5-minute half-life, and a weak positron branching was found.

'ASS assignment of the many technetium activi-
~ ~ ties which are usually produced by irradiation

of molybdenum is quite dificult because the latter
element has seven stable isotopes of roughly equal
natural abundance. From the standpoint of nuclear
shell structure, knowledge of these activities is of par-
ticular interest since according to this model, tech-
netium with 43 protons lies in a region of isomerism.
Until now characteristics of isomeric transitions were
known for the odd-even isotopes 95, 97, and 99. This
report concerns isomeric states in the nuclei 93 and 96.

The three strongest activities produced when en-
riched Mo" is bombarded with protons of energies be-
tween 5 and 10 Mev decay with half-lives of 4.5
minutes, 43.5 minutes, and 2.7 hours. ' ' At the proton
energies used (p, rt) and (p, y) reactions are the most
probable, so the activities are expected to be associated
with Tc" or Tc". In order to attempt to 6x the mass
of the 390-kev y-transition of 43.5-minute half-life as
being Tc", the activity was produced by two addi-
tional separate reactions. Thresholds calculated from

f This work was supported by the U. S. Atomic Energy Com-
mission.
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2 D. N. Kundu and M. L. Pool, Phys. Rev. 74, 1775 (1948).
'Medicus, Preiswerk, and Scherrer, Helv. Phys. Acta. 23, 299

(1950).

the empirical mass formula' for (d, rt) and (d, 2n) re-
actions on Mo" are —2 Mev and +10 Mev. The 390-
kev line was observed in 1-mil molybdenum foils
throughout the full range of 20-Mev deuterons; how-
ever, it could not be produced with neutron bombard-
ment on the same type of foil. Thresholds for (n, 4rt)
and (ct, 5st) on Nb" are calculated to be 34 and 45
Mev, respectively. The activity was found to be pro-
duced in slight amount with 0,'s between 39 and 40
Mev. Although this evidence cannot be considered
conclusive, it appears to indicate that the 390-kev line
is Tc ' instead of Tc" as previously reported.

The multipole order of the 390-kev line was deter-
mined by measurement of the E/I. ratio and the con-'
version .coefficient. The activity for the multipole
order measurements was produced by bombardment of
enriched Mo" with 9.5-Mev protons from the 60-inch
cyclotron and the activity observed in a P-spectrometer.
Chemical separation of the Tc activities was made by
heating the bombarded molybdenum oxide in a glass
tube open at one end. By controlling the temperature,
the technetium oxide can be made to condense in the
cooler part of the tube whereas the less volatile molyb-
denum oxide is not aGected. The activity is removed
with a drop of dilute ammonium hydroxide and mounted
on a thin Tygon foil. Figure 1 shows the E- and I;

E. Fermi, Nucleu~ Physics (University of Chicago Press,
Chicago, 1950), p. 7.


