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A study is made of the scattering of high energy protons by protons. Several types of "cutoGs" are intro-
duced into the singular tensor interaction proposed by Christian and Noyes; the triplet P state radial
equations are then solved by essentially exact numerical integration methods. The resulting cross sections
show a more pronounced disagreement with experiment than do the Born approximation cross sections
of Christian and Noyes. Calculations were carried out in the vicinity of 350 Mev and 120 Mev.

INTRODUCTION

S EVERAL experiments have been carried out on the
scattering of protons by protons at energies greater

than 100 Mev. ' 4 The resulting differential cross sec-
tions are characterized by spherically symmetric angular
distributions (in the center-of-mass system) and by a
lack of dependence on energy. Between scattering
angles of 20 and 160' and between energies of 120 Mev
and 350 Mev the cross section is about four or Ave
millibarns per steradian. The results have been in-
terpreted by Christian and Noyes' (hereafter referred
to as "CN"), by Jastrow, s and by Case and Pais. r In
the CN analysis (350 Mev) a square well singlet inter-
action was used which gave almost no scattering at
angles greater than 40 . The problem then was to And

a triplet interaction yielding an essentially isotropic
differential cross section. It was observed that any
triplet central potential is undesirable since the cross
section due to it would vanish at 90' (the wave func-
tion is antisymmetric), accordingly a tensor force model
was chosen. (The wave function must of course still
be antisymmetric; however, with a noncentral potential
the antisymmetrization is not expressed in terms of the
polar scattering angle 8 alone, but by the azimuthal
angle p as well. The antisymmetric spin scattering
matrix S(8, @)—S(sr—8, tt+sr) does not necessarily
vanish at 8=sr/2 as it would if there were no g de-
pendence. )

In order to obtain the desired "Oat" cross section,
Christian and Noyes found it necessary to use'a po-
tential with a "highly singular" radial dependence
e '"/r'. All triplet state calculations were carried out
in Born approximation. Jastrow, on the other hand,
attempted to obtain agreement with experiment by
introducing a hard core into the singlet interaction,
thus permitting greater momentum transfers and ac-
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cordingly a substantial amount of large angle (90')
scattering. The triplet interaction was not then re-
quired to yield an isotropic cross section. Neither the
CN nor the Jastrow interpretation was entirely success-
ful in 6tting the experimental data, the principal diK-
culty being too large a theoretical peak in the forward
direction due mostly to scattering of the singlet D
state. However, it was not in the spirit of the analyses
to indulge in a detailed program of "curve fitting" but
rather to illustrate the important features of the various
interactions chosen. This philosophy applies as well to
the present paper.

It is proposed here to examine more critically the
triplet state calculations of Christian and Noyes, and,
in particular, to investigate the validity of their use of
the Born approximation. Singlet scattering will be
ignored. There is reason to suspect that results of the
Born approximation applied to a highly singular po-
tential may not be even qualitatively correct. Consider,
for example, the radial equation for the '20 state
LAppendix, Eq. (A18)j. In the vicinity of the origin
this takes the form

d'u/dy'+Xou/y'= 0, y = kr. (1)
(Choosing Xs)0 implies that the nuclear potential is
electively attractive in this state, and su%ciently deep
to dominate the centrifugal term as r~0.) The solution,
for Xp) 4, is composed of spherical Bessel functions of
imaginary order having an oscillatory singularity at the
ori ing

u~yi cosp(Xv —xs)
'* logy+Be.

y-+0

An interaction of this nature can be treated in a physi-
cally meaningful way only if the singularity at the origin
is in some arbitrary way "cut oG." It is evident, how-
ever, that the region of the cutoG cannot be arbitrarily
small since several oscillations of the wave function
within the region would lead to bound states of the di-
proton. Consider the integral equation satisded by the
solution to Eq. (A18):

g e—Qg

u= P,g, (y)+4&g, (y) I ug, dyJ, ys "e
+4kgr(y) ug &dy. (2)

yR

8 K. M. Case, Phys. Rev. 80, 797 (1950).
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The left-hand side of the equation becomes the wave
function in Born approximation if the plane wave solu-
tion I=gr(y) is inserted as a trial function in the inte-
grand. The Born approximation is valid if the exact
solution does not deviate greatly from the free particle
trial function. Near the origin the latter, gr(y), becomes
just -',y'; the next zero occurs beyond the region in
which the nuclear interaction is appreciable, even for
energies as high as 350 Mev. It is therefore evident
that for sufficiently short cuto6s the Born approxima-
tion is invalid since the exact (possibly oscillatory) solu-
tion does not resemble the trial function. Examination
of the integral equation (2) shows, moreover, that the
presence of a short range cuto6 has a negligible inQuence
on the Born calculation itself, simply because the singu-
larity in the potential is masked by the -',y' factor from
the trial function. (For convenience a square well cutoG
may be visualized here; that is, the potential e o/y'
for y&yo is placed equal to the constant e»/yo' for
y&yo.) It is evident that the larger the cut-off radius
the more nearly valid becomes the first-order iteration
procedure. On the other hand, a long range cuto6
cannot be ignored in a Born calculation. It seems,
then, that the CN procedure (Born approximation
without explicit introduction of cutoff) can be taken
seriously only if there exists some kind of cuto6 of
suKciently long range to permit first-order perturba-
tion methods to have real meaning, yet short enough so
that the perturbation calculation itself is not appreci-
ably influenced by its presence. It will be shown here
that, strictly speaking, a cuto6 fulfilling these two con-
ditions does not exist.

e"
V(r) = %15.2Srs Mev for r&ro,

(r/R)'

e
—rp/R

V(r) = %15.2Sqs Mev= constant for r&ro,
(ro/E)'

r'Sg2=—3eg. ro2 r—r'e-I e2, R= 1.6X10 "cm,

and "hard cores, "where

V(r}= oo for r&ro,

V(r)=Eq. (3) for r&ro

(3)

(4)

The W sign refers to what will be called "attractive"
and "repulsive" interactions, respectively. The Born
cross section of course is the same for the two signs of
the interaction.

PROCEDURE

The procedure adopted here is to introduce specific
cuto6s into the CN interaction and obtain an essen-
tially exact solution to the scattering problem by a
numerical integration procedure. The cuto6s considered
will be of two types: tensor force "square wells, " in
which the potential is given by
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FIG. 1. Born tensor amplitudes, C(e) LEq. (AI4)g, for singular
potentials with various ranges fxo= (ro/R) j of square well cutofis.
The radial dependence of the potentials is indicated on the plot.
~=~/z.

In attempting to choose a more or less physically
meaningful cut-o6 radius, ro, the "nucleon Compton
wavelength" 5/Mc is a convenient guide. Part of the
motivation for choosing a radial dependence of the
form e "~~/r' is its similarity to terms in the phe-
nomenological interactions predicted by meson theories.
Such motivation hardly exists at distances as short as
5/Mc where, for example, the nucleon structure, as
well as relativistic e6ects, may be expected to play an
important role. On the other hand, to introduce a cuto6
as large as 35/Mc (about —', the meson Compton wave-
length) more or less abandons the similarity to meson
potentials. Essentially the same limits on ro are ob-
tained by a few rough calculations which indicate that
a cutoff somewhat smaller than 5/Mc would lead to
a bound di-proton, and a radius greater than 3'/Mc
tepds to destroy the desired isotropy of the cross sec-
tion even in Born approximation. (The latter point is
illustrated by a plot of the Born tensor amplitude in
Fig. 1.) The calculations were therefore carried out
using a "short range cutoff, " ro=k/Mc, and a "long
range cutoff, " ro=25/Mc, for both the square well and
the hard core. The four cases considered will be denoted
by the following abbreviations:

SRSW: short range square well cuto6;
Eq. (3) with ro ——0.24X 10 "cm.

LRSW: long range square well cuto6;
Eq. (3) with ro=0.48X10-" cm.

SRHC: short range hard core cuto6;
Eq. (4) with ro=0.24X10 "cm.

LRHC: long range hard core cuto6;
Eq. (4) with ro=0.48X10 "cm.

The 'Eo, 'I'~ and 'P2, 'I" 2 states for the SRSW case
were solved by numerical integration and checked by
iterating the resulting radial functions (using the in-
tegral equations) to produce the same phase shifts and
amplitudes to within a few percent. All other states
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TAsx.K I. Triplet p- p phase shifts at 350 Mev for singular tensor potential with various cuto8s.
(Cross sections plotted in I'ig. 2.)

Short range square well cuto8
Born

At tractive Repulsive (Repulsive)
Long range square well cuto8' Short range hard core

Attractive Repulsive Attractive Repulsive
Long range hard core

Attractive Repulsive
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—0.013—i.016
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—0.037—i.357
—0.086 ag321 = 0.188 Same as SRSW

—0.045—i.356
—0.078 —0.082
+ i.325 —i.349

—0.035
+ i.331

$10 —0.626

0.580

2.00

—0.360

0.880
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—0.616

0.540

1.24

—0.351

—0.64

0.38

0.91

—0.37

—0.66

0.04

0.32

—0.47

('Fs'F4, sH4, etc.) were included in Born aPProxima-
tion, with cutouts ignored. Some details of the procedure
are given in the Appendix.

The phase shifts for the I RSW cutoG were then ob-
tained by a perturbation method using as trial functions
in the integral Eqs. (A21) the radial functions for the
SRSW case, except in the 'Po state of the "repulsive"
interaction, which was integrated numerically. (The
'Po state is electively attractive in the "repulsive"
interaction and repulsive in the "attractive" because

of a minus sign appearing in the corresponding matrix

element of the tensor operator Srs.) Inspection of the

differential Eqs. (A18) and (A19) shows that the effec-

tive well depth in the 'Po state is twice as great and of

the opposite sign as that of the 3P~ state. From the re-

marks following Eqs. (A23) in the Appendix, it is

apparent that the most important quantity in the

coupled system is the P-dominant P phase shift.
Furthermore, in the P-dominant mode the term

tanb„"=+J;(y )/J;. (y,).

The nature of the approximation can be readily seen

by considering a similar procedure for an uncoupled
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only in the 'Po and 'P& states and using the square
well cut-oG phase shifts in the coupled states. However,
the following somewhat more refined procedure was
used which still avoids the labor of repeating the
coupled numerical integrations. Starting with the un-
perturbed SRSK solutions, the P-dominant P phase
shift, 8~&', is added to the "hard sphere" P phase shift,

is asymptotically smaller than the term (e &/y')u; from

the power series expansion it is clear that it also starts
out much smaller near the origin. Ignoring for the

moment this coupling term, then, and comparing the

size of the 'P2 potential to the 'P~ and 3PO, it is seen

that the latter are, in absolute value, Ave and ten times

as large as the former. Accordingly it is reasonable to
think that the 'Po phase shift in the "repulsive" case

and the 'P& in the "attractive" will exhibit a great deal

more sensitivity to the nature of the cutoG than will the

coupled 'P2, 'J'2 states. The perturbation calculations

for the long range square well cutoGs indeed show just
this sort of behavior, The coupled phase shifts in fact
diBer negligibly from those of the SRSW cutofI'.

The foregoing arguments indicate that a fair ap-

proximation to the hard core cut-off cross sections

should result from taking the core into consideration
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Fzo. 2. Differential cross sections (center-of-mass system) for
triplet p —p scattering (neglecting Coulomb) at 350 Mev using a
singular tensor potential %15.2S12e "~ /(r/8)' Mev with various
cutofh. Dotted curves shown Born cross sections, solid curves
are "exact." Phase shifts are in Table I. "Short range" means
F0=0.24&&10 ' cm; "long range" =0.48)&10 "cm.



integral equation (see Appendix for notation): TABLE II. Phase shifts for triplet p —p scattering at 129 Mev,
using repulsive singular tensor interaction with short range square
well (SRSW) cutoff.

Slllhbc Uagagtdy+
~

Ublbgldy
dp QO

= sin 5~b'+ sin 8,„, 8b, =8„b'+8,„, (5)

where U,= strong repulsion (approximates hard core);
Ub=e ~"/y' for y&ys, ——e '»/ys'-=constant for y&ys,
trial function I =exact solution when Up=0; trial
function N~ ——exact solution when U =0; 8,„=phase
shift for square well cutoff; b~, ——phase shift for hard
core cutoff; and b„"'=I' phase shift for hard core alone.

3PO

3P

AI2=

+ i.012

—0.037

+ i.228

Exact

BP= 1.81
bI'= —0.240

-0.008
$312

Born

~bIo= 0.590
~&x'= —0.295

~g&+= —0.021

ISO
UbQbg rdy

is neglected. Analogous treatment of a~3', a3~', u33'

shows that the in6uence of the hard core on these
quantities is negligible. The phase shifts its', hsP (un-
perturbed SRSW value is s./2) feel the core somewhat
more strongly; however, they may deviate as much as
20 percent from s/2 without changing the 8~~ ~ by
more than a few percent fEqs. (A8)).

All hard core coupled I'Il phase shifts were obtained
in the manner just indicated; all uncoupled P-state
equations were integrated numerically.

RESULTS AND CONCLUSIONS

Phase shifts and differential cross sections at 350
Mev are given in Table I 'and Fig. 2. The "attractive"
interaction evidently leads to a greater anisotropy of
the triplet cross section than does the "repulsive, "
regardless of the nature of the cutoff. The near agree-
ment of the exact cross sections at 350 Mev with those
calculated. in Born approximation is surprising in view
of the large discrepancies in the corresponding phase
shifts. Similar discrepancies at 129 Mev lead to an
exact cross section much larger than that obtained in
Born approximation (Fig. 3); apparently, then, the
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FIG. 3. Differential cross sections for triplet p-p scattering
(neglecting Coulomb) at 129 Mev using cutoff singular tensor
potential. Curve A: SRSW cutoft. Curves 8, C have cutofts ad-
justed to give the 'Po phase shifts indicated on the plot.

0.002

—i.082

—0.027
A 2=

+ i.195

~a,~= —0.024

&g32I= 0 109

V(r)=15.2Srs Mev, r&rr ——048X10 "cm,
(r/8)'

V (r) = 15.25ts — Mev= constant, ro&r &r„(6)
(ri/E)'

V(r)= ~, r&rs ——0.24X10 "cm.

close agreement at 350 Mev is accidental. Figure 2 also
indicates that the greater the "volume" of potential
removed by the cutoG the greater is the angular varia-
tion of the cross section; Fig. 1 illustrates the same
point in, Born approximation.

The SRSW cuto6 for the "repulsive" case was calcu-
lated in detail at 129 Mev. The results, Fig. 3 (curve A)
and Table II, show that the predicted scattering is
much too great. The trouble comes almost entirely
from the large 'Eo phase shift. To investigate the eGect
(at 129 Mev) of modifying the cutoff, attention will be
restricted to the sos state. (The arguments of the pre-
ceding section indicate that the coupled phase shifts
are only slightly influenced by the nature of the po-
tential at short range; the 'I'~ state is repulsive and so
obviously insensitive to the cutoff. ) A sI's phase shift of
0.80 (instead of the 1.8 of Table II) yields roughly the
desired cross section (Fig. 3, curve 8). The required
phase shift can be produced, for example, by the com-
bination of a square well cutoff at 0.48)& 10 "cm and a
hard core of radius 0.24X10 " cm, (or, of course, by a
hard core alone of radius somewhat larger than 0.24
X10 "cm). The cross section at 350 Mev will then in
any case lie between that of the SRHC and the I.RHC
cutoffs shown in Fig. 2.

It is concluded, therefore, that, within the framework
of the singlet and triplet models adopted by Christian
and Noyes, something similar to the following triplet
potential seems to yield the closest approach to the ex-
perimental cross sections (Fig. 4) at 120 Mev and 350
Mev:
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y;„, is the triplet spin function of the initial state,
where S(8, it) is the triplet spin scattering operator,
the matrix for which is given explicitly in terms of the
complex phase shifts, 8&J ', by

S= g (2l+1)Lexp(2i8i ")—1/pi~™Pi(cos8)
2$$ J,msil

I2QMEV

I

l I I I I I
IO 20 30 40 5Q 60 70 80 90 lO 2Q 30 40 50 60 70 80 90

e e

—v2De'i'

Ce"& —V28e'~

&2De—'~ 0. (A2)

It is to be emphasized that significance should be
attached only to the necessary degree of "severeness"
(i.e., volume of potential affected) of the cutoff and
not to its precise nature.

It should be mentioned that a cuto8 sufficiently
short to increase the 'Eo phase shift at 129 Mev to 2.2
is not obviously less desirable than (6) (see Fig. 3,
curve C); the 350-Mev scattering would be changed,
but not drastically. The eRect of so short a cutoG
would be more pronounced at some energy less than
120 Mev where the 'Eo phase shift will have decreased
to s-/2.

By using the potential given by (6), the discrepancy
with the experimental forward scattering is consider-
ably greater than originally was indicated by the CN
calculations. The disagreement seems suQiciently con-
clusive to justify ruling out a large class of static po-
tentials for the p —p interaction. The class of inaccept-
able potentials is by no means exhaustive, however.
Whenever a strong short range component (e.g., hard
core) is included in the singlet interaction (thus per-
mitting large angle scattering), the triplet potential
acquires several more degrees of freedom since the
requirement of isotropy may be dropped. In particular,
triplet central potentials then merit consideration.

APPENDIX

The nucleon-nucleon scattering problem for a non-
central static potential will be formulated and dis-
cussed. The notation and method of treatment adapts
conveniently to a description of polarization eRects
carried out in a concurrent paper. '

The asymptotic form of the triplet state wave func-
tion can be written"

P~sikz~. +(gikr/r)Sx. (A1)

' Don R. Swanson, Phys. Rev. 89, 749 (1953).
' J. Ashkin and T. Wu, Phys. Rev. 73, 973 (1948).

FIG. 4. I' —p scattering at 350 Mev, 129 Mev using the cut-o6
singular tensor potential given by Eq. (6) and a square well
singlet interaction (Christian and Noyes). Coulomb scattering
neglected. The experimental points at 350 Mev and those at 120
Mev denoted by ~ are taken from Chamberlain, Segre, and
Kiegand. (See reference 1.) The points, x, at 105 Mev are from
dirge, Kruse, and Ramsey (see reference 3).

A =P t (l+2)A, '+'+(2l+1)At'+(l —1)A, '—'jP

Q LB l+t B i—ljP t

l

1
C=Q 2 '+'—

i l+1

2l+1
A'+-A' ' P'

l(l+1) l

l+2 2l+1
D=Q A '+' — A '—

l+1 1(l+1)
A)' ' Pg'

E=gg Dl+1)Bi'+'+lBi' 'jPt,

3 i~ ——exp(2ibi~ +') —1

Bi~ exp(2——ibi") 1— (A3)

'P& is an operator in triplet spin space defined by
Eq (A6). .Coulomb scattering is neglected. The bound-
ary conditions of the scattering problem yield also the
relationship between the complex phase shifts and the
asymptotic form of the radial wave functions. To ob-
tain this relationship, first expand the wave function
of the system in eigenfunctions, ti~™,of total angular
momentum J' and J,. Separate the radial from the
spin-angular dependence by means of the expansion

where the Pi~ are eigenfunctions of J', J, and the
orbital angular momentum 1.2. The Schrodinger equa-
tion for the radial functions becomes

d'Ni~ l(l+1)
g J

r2

M J+&
+k'Ni~ PVii ~(r—)N—t ~ 0, (A4)——

l'=J—I

where Vii ~(r)=(Pt~™,V(r, et, es)ili ~ ) is independent
of ns. The scalar product denotes an integration over
the surface of a sphere and summation over spin
variables.

For a tensor interaction, the orbital angular mo-
mentum is not a constant of the motion and V(r, ei, es)
contains oG-diagonal elements between states of the



H I GH ENERGY p —p SCATTERI NG

same parity. "
J—1

—2(J'—1)

0
2J+1

6LJ(J+1)7*'

2(2J+1)
—2(J+2) J+1

(A5)

J+1 /'g/
6[J(J+1)7& J—1

The subscript i in Eqs. (A/) here takes on the values
J—1, J+1 instead of 1, 2. The Wronskian conditions
(A9) follow immediately from the differential equations
(A4) or (A20):

ugu1' —u1ug'+wgur1' —legs'1' ——constant. (A10)

Boundary conditions at the origin require the constant
to be zero; the asymptotic form of (A10) is (A9).

In Born approximation, Eqs. (A2) and (AS) become
The orthonormal set of spin-angular functions, 1/g j",

can be expressed in terms of spherical harmonics and
spin functions by means of the Clebsch-Gordon ex-
pansion:

Pgj" Q(/sJ——m~/smgm, )Ymgg(8, &)y' '

and
Y ggx'" =P (/sJm~/smgm, )ygj g+,

where m=mg+m, . Defining the projection operator,
IIg'", by

II1 ~Y~-~ 'y'"'= (/sJm
~
/s, m m„m, )—g/ g

j™,
so that

c;J- ug j(r)f=ZZ Zj~ 1-j—1 '-1 (/1Jm I /1, m m„m,)—
XII '-Y'--- 1™ (A7)

ug; j~gggg j sin(kr —/n. /2+ 8g;j).The subscript i is summed
over the two regular solutions to the coupled equation
in (A4) [see discussion following Eqs. (A20) j. For
uncoupled states, put C2J =0. The asymptotic form
of (A/) is the same as (A1) with S defined by (A2)
provided that'

Dj exp(2i8 j 1 +') =Ej+2i[J/(J+1)7 W
=[Dj exp(2i8 j+1j ')7*,

(AS)
Dj exp(2ib j 1

j ') =Ej 2'/[(1+1)/J—)&W

=[D, exp(2i8 j+1j+')7*,
where

Dj=exp[ i(8 j g.j 1+—8 j~g—j~l)—7
J—1, J+1~ J+1,J—1

J
g(8 j—1, j+1+8 j+1,j—1)7

Ej=—exp[/(8 j 1,j 1—8 j+1, j+1)7
J—1, J+1+ J+1,J—1

J
Xexp[&(8 j—1, j+1 8 j+1,j—1)7.

W= gi j—1, j+1 Sill(8 j—1,j—1 8 j—1, j+1)
=gg j~g, j i sin(8 j+1, j~g—& j~g, j 1), (A9)

J—1, J—1 + J+1,J+1J J
b~J =8~J for all uncoupled states.

"W. Rarita and J. Schwinger, Phys. Rev. 59, 556 (1941).

(/1 Jm, ~/10m, )g/1
~ = IIg "IYogy'"' (A6)

the general expansion for the wave function of the
system takes the form

sS=- Q (2/+1) s8g j *ggj Pg,
P J,l,ms

(A11)

where

Cg C2e
—'&

sS=F1+ C1egg' —2C1
C3e"@ —Cge'@

C3e
—"&

—C2e
—'&

Cg

(A13)

F=aF(8)+bF(gi 8)=aFgr+b—Fz,.—

M
t

sinE'r
F(8)= r'Jo(r) —dr,

jggs J E.r

Ci = ——,'C++2 cos8C,

C&——(3/K2) sin8C,

C3= —-', [C++cos8C 7,

Cg aCjr& bCz——=aC(8)+bC—(7r 8), —

3E g g1(Er)
C(8)=— r'J(r) dr

Er

(A14)

The procedure for calculating S will be to remove from
the Born scattering matrix (A13) 'the first few terms of
its partial wave expansion (A11), and to replace them
by the corresponding terms in the exact scattering
matrix. The result will then correspond to a scattering
matrix containing explicitly the phase shifts of the
few lowest angular momentum states and implicitly
the Born approximation on all higher states.

S=~S+S'
Ag' =exp(2ilg +') —1—2i 8g

Bg' ——exp(2iBg ') —1—2/ 8g ', (A15)

where S' is def'ined analogously to Eqs. (A2), (A3),
but with 2 ~'J, B~'J replacing A gJ, BlJ.

For P—P scattering, replace S(8, @) with S(8, P)—S(~—8, y+~).
The triplet contribution to the diGerential scattering

cross section, reduced to terms containing just Legendre

s8gj"'=sbggj egjm'egg—gzj /= J—1, J+1; L=2J /—
&j-1 &jyg ' 1/&j+1

= —1/ej 1
j '= [J/(1+1)7&. (A12)

For any linear combination of central and tensor poten-
tials, with arbitrary exchange dependence, V(r, grg, gr&)

=[—J(r)S»—J,(r) 7[gg+bP, 7, Eq. (A11) can be written
in the closed form"
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polynomials, is

(der/dQ) 4.;,1.4= (d~/dQ) s„prs'"+ (d~/d Q) Ti
+(«/dQ)cr+(do/dQ)'=-', Tr(sts),

(der/dQ) „;pa"" '——T-r(eSt ~S)=-,'~ F ~'

+6/asCx'+ bsC Ls 48b—CL4CL],

(do/dQ)» —— (1/4—k) (C~C&+bCL]
X [00(&0+~2P2)+02(~1P1+~sP8)]
+LoCX bCL]L02(1 0+ 8'2P2)+ 001 1P1]))

(do/dQ) cz = (1/4k) PaFJr+bF L]
XL00(&pc+ &2OP2)+02(~1OPi+~sOPs)],

(d~/dQ)'= (.,/4k') $X,+A,P,+A,P,
+A8P8+A4P4] = ,' Tr(S't—S'). (A16)

(For rs —P scattering, 00=02= 04=1.) (For P—P scatter-

ing, 00—=0, 02—=2, 04—=4 and a=—1, b= —1.)—
g 10+g n+sg 11 (5/2)141221++281,

62= 2h " hsn+56—2"+—62"—352",

g 00+8+ n+sg 21 2P 20+3+ 21

A3= —263"—3632o

o—g 10+2+ 11

o—2g 10++ 11+5' 21+3+ 80+4g 81

—3Q 00+8+ 21++ 21 (9/2)g ll

—6Q 20 614 21+9+ 20 4g 21

3g 10 3110n+66210 28 112n
—(15/2) a,"+3z,s',

o—g 00+3+ n+2g 20+3+ 21

g o—3g 20+2+ 21

000+3+ 111+2611220+314111221+3+88220

+2~8P'+~00"'+2&00"'+2&22no

+Q 111+5+ 221+3+ 880+4g 881

A =4~ "'+-'~ "'+9i111"'+2~11'"+2~11"'
+6141 020+6+ 121+(12/7) +18220 (6/7) +18221

+(24/7)g 220+ (8/7)g 221+4/ no+2/osni

+10' 121+6' 180+8g isi+2g no ig in

+(25/1 4)g 221+ (24/7) g 881+(24/7) +22880

121+(40/7) 14 281 (8/7) g 181

+ (12/7) g 180

(72/7) g 220+ (48/7)g 221+ (18/7) A Pp
—(8/7) asss"+ (40/7) d 22"'+ (100/7) 142'"

+ (4/7) ~2288'+ (36/7) ~22"'+(72/7) &2218'

+(18/7) 622880.

010+6g in+ 6g 121+4+ 120+4+ 010

+3+ 111+9+ 121 8g 121+4+ 120+3' 221

+ (48/5) 61228'+ (36/5) 612280.

6g 121+(18/5)g 121+(36/5)14 120+12+ Pl
+65 2"'+12612"'+(12/5) 51P'

+ (24/5) 612280+460812'+6608120, (A17)

where

'= Imd

,ZJ', —1 g, JJ'1 1{Rtg ~J'(g, ~J')8]

~&~o——ImBg'~, 611 ~~'= -,' {RLB1'~(81'~')*]. (A17b)

3P
d'I' 2—up+up=4XUuo; (A18)

Bp
d'I' 2—u'+ u'= —2li Uu' (A19)

3P

3J'"2'

dN 2——u+u = -28K U(u —3(6)iw)
de p2

12——w+w= 82liU(4w —3(6)&u);
de p2

(A20)

a=1/kR X=3IIV0R2/k' ks=ME/k' y=kr

The potential V(r) is given in Eq. (3). There are four
independent sets of solutions,

ust

'N3

to Eq. (A20). Examination of the power series repre-
sentation in the neighborhood of the origin shows that
two of the solutions always vanish at the origin, and
the other two are irregular and must be discarded be-
cause of the usual arguments on quadratic integrability
and conservation of current. The two regular solutions,

will be called a "fundamental set."Any set of solutions
arising from a linear transformation of the funda-
mental set will also satisfy all of the boundary condi-
tions of the scattering problem and hence may be used
to calculate the complex phase shifts B~~ '. It is not
difficult to give a plausible argument showing that

The identity A~—j.~—~z+i~= &z i~—Bg+j follows
from (A8), (A9). The summation has been carried out
explicitly over the 'S» 'I'o, 'I'» V'2, 'D» 'D2, 'D3, and
'Fs states. In (do/dQ)', DF interference has been
omitted. For p —p scattering, terms which contain an
even subscript do not appear and (A17) simplifies
considerably.

The radial differential equations for which "exact"
solutions were obtained in the present paper will be
considered now in more detail.

Let
U= e-'0/ys for y) yp,

=e '"0/y02 for y&yo= constant.
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there ought to be one pair of solutions,

Q1~11

%01~3' a!3& 3~9 $~!2

TAM.E III. Triplet p-p phase shifts and amplitudes at 350
Mev for singular tensor potential with short range square vm11
cutoff (SRSW case).

in which the E-state is dominant, at least asymptoti-
cally, and another pair,

Repulsive exact
Attractive exact
Repulsive Born
Attractive Born

0.218
0.018
0.088—0.088

—0.101
0.084—0.099
0.099

—0.098 0.050 ~/2 ~/2
0.085 —0.077 ~/2 ~/2—0,099 0.067 m./2 ~/2
0.099 —0.067 7I./2 1I./2

N2~S13

702~I33
uts' ——usP=—0, uss' ——assgs(y) are used, Eqs. (A22)
become

8 t"
~vasss= ——'A U(gs)'dy, 8tss= Bsp= ~/2.

5 ~o

pV

ut '(y)=~1 'gi(y)+5)g —'t(y)
J

U(ut ' 3&6us ')g&dy
0

in which the P-state is dominant. Consider the integral
equations corresponding to thecoupled differential equa- Bb s p I U( )2d Ba 2 Ba 2

g Q I U'

tions (AZO) and their boundary conditions: 5 &, 5
(A23)

+x) gt(y) ) U(».'—3l 6us. ')g tdy;

-'(y) =~.-'g (y)+l~g- (y) U(4 ..-3~6,.)g,dy
J0

+-sXgs(y) U(4us '—3g 6u,.')g,dy;

p2 y4

g+~(y) = (s~y)'~+«+, i(y); gt ~ gs ~ (A21)
&-0 3 ~0105

The constants A1 ', A 3
' are arbitrary; the subscripts n

denote the duplicity of regular solutions and take on
the values 1, 3. The asymptotic form of (A21) yields
integral expressions for the amplitudes and phase
shifts:

It is evident from the behavior of the functions gt(y)
and gs(y) that, of the four quantities now describing
the coupled state scattering (8tp, ats, asp, ass'), 5tp
might be large but the other three are small. (atP and
u»2 may be normalized to unity since only the ratios

ats'/ass' and asp/a~p are relevant. )

In general, wherever a comparison of the exact solution
with the Born approximation could be made, the latter
was found to be quite accurate for the three small quan-
tities (a&s', asP, ass'), with only 8&P showing marked
deviations. Table III gives the comparison at 350 Mev
for the SRSW case.

To integrate Eqs. (A20) numerically, it is convenient
to start with a power series solution near the origin
(where the potential is constant). The roots of the
indicial equations are

~ la +la COS81a )

a~ 'sin8~ '———-', X U(u~ '—3&6us )gtdy;

+3~ = 83~ COS83~ )
2 2 2

where

+1= 6,
CX2 = 2)
0!3= 1)
Of4= 1)

pt —— 4
Ps-
Ps=
P4 ———3,

Q a Lyta+nf

n=0

where

u~.' at.' sin(y —m/2+ 8,.'),
us, ' as 'sin(y —3~/2+bs ').

n=0

The fundamental set of regular solutions can therefore
be taken" to be

The weighting inhuence of the gs(y) term (which is small
throughout the region in which the nuclear potential
is large) in the various integrands suggests that the
"subdominant" amplitudes a»2, u3&2 might best be
kept small by placing A»2=2»2=0, which amounts
to choosing Bts' ——BsP=~/2 In Born a. PProximation,
for which the free particle trial functions u&p = atpgt(y),

u, = P a„y"+', us ——u& logy+ P C y"+',
0 0

w, = g b„y"+', ws ——w~ logy+ g d~y"+'
0 0

"E.T. Whittaker and G. N. Watson, A Colrse of Moderrl,

ArIulysis (The Macmillan Company, New York, 1946), Chap. X.
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The recurrence relations are

a„[(I+6)(0+5)—2)+E~a„p+Eb „=0,

b„[(m+4)(v+3)—12$+Esb„p+Ea~p ——0,

a 4(2pp+3)+C„[(ran+2)(rp+1) —2j
+ETC p+Ed„4 0, ——

b (2m+7)+d„[(I+4)(I+3) 12—j
+Esd„p+EC„=0,

where

Ep spate
-——PP/yp', E.=&3(6)'Ep,

Ej ——1~Ep,. E2——1~4'.
(Upper sign: "attractive, " lower sign: "repulsive. ")

The quantities up and dp are undetermined; the former
merely defines the normalization and the latter repre-
sents the arbitrary amount of solution n=1 that may
be mixed. in solution 0.=2.

In some cases the coupled equations were integrated
on a differential analyzer; in others, a desk calculator
was used. To check the phase shifts, the resulting radial
functions were used as trial functions in the integral
equations. For the uncoupled equations, a method re-
cently described by Kynch" was used. Its advantage
lies in the fact that the nuclear phase shift is integrated
directly, whereas in an integration of the wave function
most of the eGort is "wasted" in obtaining the cen-
trifugal phase shift. D the quantity tan '(—1'S(y'))
represents the phase shift which would obtain if the

"G. J. Kynch, Proc. Phys. Soc. (London) 65, 2, 83 (1952).

potential for y&y' were placed equal to zero, then

(—1)'+'dS/dy= V(g+Sg )' (A27)

S=-p—
45

pP 4 1 y
S4——-i Sp' ——Sp —pSp+

. 94 15 525)

2p( 1) p ( 4
Ss= ——

I Sp+—(, Sp=—
)

Sp'+2SpSp+ —Sp
21 ( 30) 11 0 35

4——S2——,S4- (A28)
15 42 525i

Within a hard core S(y) = —g&(y)/g &(y) (P-state).
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where d'u/dy' l(—l+1)u/y'+u = Vu. S(y) is either
monotonically increasing or decreasing depending on
whether the potential is repulsive or attractive. For a
square well cutoff, the power series expansion for S(y)
(P-state) is given by

S(y) =Spy'+Spy'+S4ys+ Spy".

Let V= e= constant.


