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Paramagnetic Relaxation in Metals*
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The paramagnetic relaxation time of electron spins in a metal is calculated. Relaxation processes due to
interaction with lattice vibrations, nuclear spins, other electrons, and impurity atoms are treated. It is
found that the most important process of those considered is due to the interaction between electron mag-
netic moments and the 6elds caused by the translational motion of other electrons. A relaxation time of
about one microsecond is calculated for this interaction at room temperature, and is approximately inversely
proportional to the absolute temperature.

I. INTRODUCTION
' 'F a metal is placed in a magnetic field, the spin

- magnetic moments of the conduction electrons tend
to line up parallel to the field. Such an alignment of
spins does not take place immediately, but is limited

by the speed of the dynamical mechanisms that produce
alignment. This relaxation process, which gives rise to
a net magnetization of the metal, depends upon the
interactions between the electron spins and other parts
of the system. In order to calculate the sects of such
interactions we shall treat the degenerate electron gas
by means of the single particle model, so that all inter-
actions are assumed to be small perturbations. The
results will depend, of course, on the validity of this
approach. A further approximation will be the use of
plane waves, exp(ik r), for the wave functions of the
single particle states, and the expression, ttt'k'/2rw, for
the kinetic energy of such a state.

In this paper we shall consider only the spin inter-
action terms which cause transitions that change the
net magnetic moment of the spin system, In other
words, we shall determine the various contributions to
what is commonly called the "spin-lattice" relaxation
time. Interactions which tend to broaden the magnetic
energy states without producing magnetic relaxation
should not be important in metals, as they are in

crystals, in view of the high velocity of the conduction
electrons and the weakness of the spin-spin interaction
studied in Sec. V.

Let us assume that a metal with g conduction
electrons per cc is placed in a constant magnetic field
3'. in the positive Z direction, which we shall call "up."
The spin state of an electron can either be up or down,
and, according to Fermi-Dirac statistics, the number of
electrons e+ or e per unit volume in k space with spin
up or down is given by

Throughout the calculations the volume of the metal is
taken to be 1 cc, P is the Bohr magneton. , and 8 is the
absolute temperature. The parameters e+ and e are
the Fermi energies of the appropriate distributions.
However, it follows from the fact that the total number
of electrons is E that

e++e = 2ep (2)

The constant eo is the Fermi energy of the electron gas
before 3C was applied. The one degree of freedom that
remains permits the description of various amounts of
bulk magnetization.

With approximations that are valid if PBC«K8 and
~9«eo, the total numbers of electrons X+ and E with
spin up and spin down are given by

N~= N/2+rlkp(ep epWP—K)/2m'It' . (3)

The constant kp is the wave number (times 2sr) at the
top of the Fermi distribution, so that ep ——It'kp'/2sn.

Equation (2) follows by setting N++N =N. Further-
more, the net magnetization at any instant is pD, where

D=E —E+.
The condition that th system of electrons with spin up,
{+},and the system of electrons with spin down, {—},
be in equilibrium is that e+= e . From (3) and (4) the
equilibrium value of D is

D p
= rrtPk pK/sr'k'.

The progress of the combined system, {+}+{—},
towards equilibrium can then be described in terms of
the process

D—+Dp.

One expects that the variation of D with time will be
in accordance with the equation

dD/dt = (Dp D)/T. —(6)

1 t 5'k'/2sstapSC —e~q This equation serves as a definition of the relaxation
I+i ( ) time T, and we shall prove that this equation has the

8sr'. «8 correct form. If there are several independent mecha-
1 0 1 1
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Urbana, Illinois. where the T; are the relaxation times to be associated
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In each case we shall find that this quantity is propor-
tional to e+—e, which, by (3), (4), and (5) is related
to Do—D:

Ds D= mks(e~ —s)/2''A'. —

Therefore, (6) is proved to hold in each case and T can
be identified from the coefficient of Do —D. Also, since
equilibrium obtains when dD/dt=0, one proves in a
dynamical way that equilibrium is complete only if the
Fermi energies are equal, which fact is, of course, a
general result of statistical mechanics.

II. INTERACTION WITH TRANSVERSE PHONONS

In this section we shall compute the relaxation caused

by the interaction between the electron magnetic
moment, —pe, where tr is the Pauli spin vector, and the
magnetic fiel R'(t) produced by the lattice vibrations
of the metal. We will assume for. the present that there
is no correlation between the translational motions of
the free electrons and the vibrational motions of the
lattice. The field R' arises from the currerit j(t) pro-
duced by the mass motion of the charged lattice points.
If s(t) is the displacement vector describing the lattice
vibrations, the current density is given by

3
=Eeds/dt. (9)

with the individual processes. Short relaxation times
are most important, whereas long ones can be neglected.

Six interactions which can induce transitions between
the spin states in a metal so as to cause such a relaxation
process are: (a) Interaction of the electron spin with
magnetic fields arising from transverse lattice vibra-
tions. (b) Interaction with electric fields arising from
longitudinal lattice vibrations. (c) Interaction with
nuclear spins. (d) Interactions with spins of other
electrons. (e) Interaction with electric currents due to
the translational motion of other electrons. (f) Inter-
action with impurities. These couplings with electron
spins are small compared to the electron lattice inter-
actions that are important, for example, in the theory
of conductivity. This fact allows us to assume that in
times which are short with respect to the action of the
above processes and long compared to the collision
time (10 " sec) of conductivity, {+}and {—} are
independent but weakly interacting systems, each of
which is in thermal equilibrium as regards its momen-
tum distribution for the lattice temperature 8. There-
fore, the distribution (1) holds throughout the relaxa-
tion process with the Fermi energies e+ and ~ as time
varying parameters.

Each of the relaxation times will be determined by
the following scheme. We shall compute the number of
spins, W+, flipped per second from {+}to {—}and
the number W, ~ flipped from {—} to {+}.The rate
of change of D is then given by

dD/dt = 2(W+, W, +). —

Similarly, the field operator for the system {—} can
be taken:

P —d i'. r

The phonon electron interaction is PR' o, so that the
perturbation operator of the electron phonon fields is

t (~l
(14)

Evaluation of this expression gives

FI=4rrlVeP(An/2pc'K)&{[(ex'), (eKq)„)—
X(bs s Ebs *dsaxi, +&r ~+Kb~ *di aKg*)

+[(eKi),+ (eK)L)„$(bq q Kds.*bsaKq

+bk' —R+Kdg' bkaKX )},
~A. Sommerfeld and H. Bethe, Bandblch der Physik (Julius

Springer, Berlin, 1933), second edition, Vol. XXIV, 2, pp. 500 6.

The assumption that there is one conduction electron
per atom has been used here.

The magnetic field arising from such currents can
be determined from the Maxwell curl equation.

curl R'= (d %)/dt+4~oe 8+4 ej)/c. (10)

However, the displacement current term is negligible
and the conduction term is small for phonon frequencies
greater than 107 per second. We may therefore use

curl R'= 4s j/c.

In writing Eq. (9) we have treated the positive ion
lattice as a uniform distribution of positive charge.
We shall also use the Debye model for the lattice
vibrations and shall treat them by the method of field
quantization. The displacement operator can then be
written'

s= (A/2poi)&ex&, '(axle'"'+aK~*e 'x') (12)

The summation sign over K and 3t has been omitted.
ex'' and eK2' are polarization vectors perpendicular to
K and exs' is parallel to K. The velocity of sound in the
metal is I and cv=NE. The density of the metal is p,
and uK~ and u~),*are destruction and creation operators,
respectively, defined so that their nonzero commutators
are 1. From (9), (11), and (12) the operator for the
perturbing magnetic field is

R'= 4miVe(An/2pc'K)'*ex'(aKqe'K'+aK&, *e 'K'). (13)

It can be shown that only transverse vibrations give
rise to magnetic fields, so that X is summed only over 1
and 2 in (13).Furthermore, eKi= —exs' and eKs= eKi'.

We will quantize the free electron field with the
following conventions. The creation and destruction
operators for particles with spin up will be indicated by
b's, whereas the corresponding operators for electrons
with spin down will be indicated by d's. The field
operator for the system {+}is then
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plus four other terms which do not contribute to the
relaxation process, and which we shall drop. The 6rst
term, for example, Qips a spin up while absorbing a
phonon. The conservation of wave number that obtains
in emission or absorption of phonons is indicated by the
symbols, 8k k K, which are 1 only if k' —k —K=0.
The above operator can be simplified by averaging the
factors (eK«),'+(eK&,)„' which enter the squares of the
matrix elements and by summing over both directions
of polarization. A factor 4/3 is obtained, so that we
can set

II= 8 pep(hu/6 pc'E) ~(8k. k Kb k *dkaK

+8k' —k+Kkk' dkaK +8k' —k—Kdk' kkaK

+8k -k+Kdk *bkaK*). (15)

Ke will now use 6rst-order perturbation theory to
calculate the number of electrons in {+}which flip
their spins down per second. Let us consider an electron
in the state k in {+}and calculate the transition
probability per second that it Qips its spin due to
phonon emissions of wave number in the interval
(E, E+dE). We will assume for the present that the
states k in {—) are unoccupied. The transition rate is
given by

wkk"-dE=(2~/h) lekk l'p, . (16)

The matrix element is that due to the first term in (15)
and the square of its magnitude is

(8prNeP)'hu(n«+1) /6pc'K

Here, e~ is the average number of phonons in the
state K. The density of final states, p~, is

pr = (mE/4~'h'k)dE.

Energy is conserved in the transitions so that we have

h'k"/2m+/X = h'k'/2m+ huK PX. (17)—
There are similar transitions due to the absorption

of phonons while the spin Qips from up to down. The
only difference is that n«+1 must be replaced by n«,
and the phonon term in (17) is of opposite sign. The
transition probabilities for the analogous cases when
spins are Qipped up instead of down are the same.

We may now proceed to calculate the total number
of spins Qipped down per second. To do this we multiply
the number of electrons in the wave-number interval
(k, k+dk) by the transition probability, Wkk"~dE or
W~~ 'dE, and then also by the appropriate Fermi
function to describe the probability that the final
electron states k' are unoccupied. We then integrate dk
from 0 to 00 and dE from E;„to E . . In order to
account for the statistical factors we make the following
dehnition:

g(k; x) = [exp(h'k'/2mk8 —x)+1)-'. (1S)

The number of electrons in {+) with k in the
interval (k, k+dk) is

(k'dk/2m')g(k; pp/«8 —PX/«).

The probability that the Anal electron state is unoccu-
pied in processes of phonon emission is

1—g(k'; p /«+PX/«)

On using (17) to eliminate k', this expression becomes

1—g(k; p /« PX—/~8+ huK/«).

Using the above results and the analogous ones for the
case of phonon absorption, the number of spin Qips
from {+)to {—) per second is

Smu /NeP~' t f p+—PXy
lf'+,

3prp ( hc ) & & «8

( p PX+—huEy
&( 1—

gl k; l (n«+1)« i

p~ —PX)
+gl k

~0

( p —PX—huE)
1—

gl k; l
n«kdkdK.

The corresponding expression for 8' + is obtained by
interchanging p+ and p and by replacing PX by —PX.

Before using (7) to obtain dD/dt, it is expedient to
expand the functions g(k; x) in a Taylor series about
the point xp ——ep/«8. We will keep terms to the first
order in the small quantities, (p+ —pp)/K8 (p pp)/K8, —
and PX/z8. In order to make the writing simpler, we
will use the following notation:

g=g(k; xp),

g'= [Bg(k; x)/Bx]„
g~«= g(k; xp+huE/«),

gy« = [Bg(k; x)/8x) =z ~k„«t„p.

The last two notations are necessary because huK/«
is not necessarily small. The integrand that occurs in
the expression for dD/dt after expansion and sub-
traction is

[(p+—p-)/«1{ [g'(1—g«)+ gg«'j(n«+1)
+[g'(1 g«)+gg «']n«—)kdk

+ (2PX/«) {Lgg«' —g'(1 —g«) j(«+1)
+[gg «' g'(1 g «) J+«-)kd—k. —-

to ~00

gg~«'kdk= g'(1 g~«)kdk. —
J,

(19)

The second term above therefore gives zero upon

It can be shown from the symmetry properties of
g(k; x) that
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integration, and we obtain

dD 32mm (NeP ) ' e~—e

J ( ggx (nx+1)
dt 3~p ( hc) «8

transverse phonons is therefore

3pmkkoc4T-
167rN'e4«8 log(d/a)

(23)

+gg x'nxjkdkdE.

The remaining integrations can be performed as indi-
cated, but it is simpler and sufficient for our purposes
to make use of the high temperature approximation,
where we can neglect the difference between nx+1
and m~, and can set

nx = «8/knE.

On integration and using (8) we obtain

dD 16m.N'e4«8(DO D) E—,
log

dt E;„3pkkomc'

(20)

(21)

This equation is the desired result. %e have only to
discuss the determination of E;„and E, . At low
phonon frequencies the induced electric fields resulting
from the varying magnetic fields cause conduction
currents which cancel out the magnetic fields. For
such frequencies, then, there is a correlation between
the electron motion and the lattice vibrations. It can
be shown that this shielding eGect decreases the magni-
tude of (K'(' by the factor E'/(E'+E;„'). The
quantity E; depends upon the electrical conductivity
0'p and is given by E; = 4m o ou/c'. Its value for
metallic lithium is 600 cm '.

If high frequency alternating fields are used to meas-
ure the relaxation time, the metal must be in the form
of a fine powder of size small or comparable to the skin
depth in order to prevent eddy current losses and
excessive breadth of the absorption resonance due to
the diGusion of the electrons in and out of the skin.
The skin depth for Li is about 5)(10 ' cm for a fre-
quency of 107 cps, and 1/30 of this value for a frequency
of 10"cps. Particle sizes of about 10 ' cm and 10 'cm,
respectively, should be used. The minimum wavelength
possible for phonons will be about twice the linear
dimension of the particle. Assuming a spherical particle
of diameter d, and letting —,'X, equal the cube root of
the particle volume, we obtain

(4x/3)&E; =2m/d.

E; would be about 4 10' and 4 10', respectively.
The restriction imposed by this last consideration
would seem to be the more stringent in an ordinary
practical case.

The expression for the maximum phonon wave
number, as given by the Debye theory, is

(4x/3) &E = 2~/a. (22)

Here, u is the cube root of the atomic volume. The
ratio E, /E; is therefore d/a.

The relaxation time due to the interaction with

For the case of Li at room temperature, this expression
has the value 6X10 ' sec.

III. INTERACTION WITH LONGITUDINAL PHONONS

In this section we shall compute the spin lattice
relaxation caused by the interaction between electron
spins and the electric fields of the lattice vibrations.
The interaction energy of an electron spin with an
electric field is given by'

P= (P/2mc)e (E&(p). (24)

This term arises from the translational motion of the
electron through the field, and is the origin of the spin
orbit coupling in atoms, where E is taken to be the
radial ion core field.

In metals and in the free electron approximation
which we have been using, the fields that interest us
are caused by the motion of the positive ions considered
as a uniform distribution of positive charge. Electric
fields will be associated with both longitudinal and
transverse vibrations, but those due to the latter can
be shown to be negligible. For longitudinal modes,
however, the nonzero divergence of the lattice displace-
ments will result in an accumulation of positive charge
of amount

8p+ = —Xe divs.

This charge density will in turn be the source of electric
fields that will induce spin transitions by means of (24).
The above accumulation of charge is cancelled out in
part by a corresponding aggregation of conduction
electrons. We shall calculate this eGect by means of the
Fermi-Thomas statistical approximation.

Let V(r) be the self-consistent potential arising from
the accumulation of positive and negative charge. The
maximum electron wave number, k, at each point in
the lattice is given by

k'k„'/2 mep+eV.

The electron density as a function of position is then

n =
( 2m(ep+ eV))l/3ir'0'.

Since (eV(«eo, this expression can be expanded in a
power series and we can write

n = (2meo) '*(1+3eV/2 co)/3~'ka.

Hence the accumulation of electric charge due to the
electrons is

bp = —me'koV/m'k'.

Consider, now, a Fourier component of the lattice
displacement vector

OeiK r

' Reference 1, pp. 509 fL
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and of the resulting self-consistent potential

Ogix-r

The Maxwell equation which obtains is

divE=4m(8p~+bp ).
On inserting the expressions derived above, we obtain

—4m.hei EsK
~K=

E'+4me' kp/m ls'
(25)

~

H
~

'= '(PE'5'k'r/—2m'-ce)'
~
SK

~

'

&y
~
sK~ we mean:

Phonon absorption —
~
sK

~

= (Bere/2 ppp)'8K

Phonon emission —
~
sK~ = (fz(rsx+1)/2ppi)'bK

(26)

We have made use of the fact that EK and y are always
about perpendicular due to conservation of energy and
wave number. The factor —', comes from the average
over-all directions and is half the factor obtained in
Sec. II where two polarization directions were included.
To perform the rest of the calculation it is sufhcient to
compare (26) with the square of the coefficients in (15)
since all other details are identical. The ratio of the
two expressions is found to be

m%'E4/128m4e4n'

Furthermore, the Anal integration in E will be slightly
different, so that the ratio of the relaxation rates is

m'O'E~z„4/512m4e4N' log(d/a).

Therefore, on dividing (23) by this factor we obtain
the spin lattice relaxation time due to interaction with

The effect of electronic cancellation is given by the
second term in the denominator. This interaction
potential can be used, for example, to compute the
electrical resistance of a metal and does in fact give
results that agree with the more detailed theories. It
seems reasonable to assume, therefore, that this simpli-
fied model will give a fair result for the relaxation
problem at hand. It is easy to show that one does not
make a signi6cant error in neglecting spin orbit effects
due to the ion core modulations of the crystalline field.
It is sufficient to compare (As~ sx~/a)' with (26) and to
observe that they have the same magnitude. Here, he
can be taken to be the spin orbit splitting of the lowest

p state in the atomic spectrum and a to be the lattice
spacing.

If we expand (25) in a power series in E' and keep
only the erst term, we obtain for a Fourier component
of the electric 6eld.

EK = —E' a'O'Es K/me kp.

The mean square matrix element for spin Qip transitions
due to (24) will then be

H = (8~/3) PP.e„e6(r). (28)

Here e„ is a Pauli spin operator for the nucleus and
8(r) is a delta-function with r the relative coordinate of
the electron and the nucleus under consideration. If
we expand e„e in terms of the raising and lowering
operators, o~= ', (o,&io-„), we obtain

EFn c= 2ozz+0' —+2a'z —o'++onzoz. ''
The ffrst term flips an electron spin from {+)to {—)
and the nuclear spin from down to up. The transition
probability per second for such a Rip is

Wkk'= (2pr/k)(16S'PPtz/3)'~ f(0)
~

pf.

Because of the point nature of the interaction there is
no interference condition and

~
P(0)

~

is the magnitude
of the wave function at the nucleus for an electron in
the Fermi surface. The density of final states is

pg mk'/2m'fP. ——

The number of transitions of a given type will

depend upon the distribution in spin states of the
nuclei. Let M+ and M be the number of nuclei with
spin up and spin down, respectively. We have M++ M
=X, and we define

6=M~ —M, Ap ——P„1V3'./K8.

It follows that M+ ——sr(1V&h). The total number of
electron Qips per second from {+)to {—) is accord-
ingly

W~ = Wkk&(k dk/21I' )M g(k & s+/K8 pK/K8)

XL1—g(k'; s /K8+pse/K8) j (29).
' J. Korringa& Physics 16, 601 (1950).

electric 6elds.

T=96pkpm'c4N'/m'N'O'E~~4K8. (27)

The sound velocity I can be estimated from the relation

AQE, = z8~.

For the case of Li at room temperature, assuming
0~=420'K, we obtain a value of 3X10 ' sec for the
relaxation time.

IV. INTERACTION W'ITH NUCLEAR SPINS

In this section we will compute the paramagnetic
relaxation due to the interaction of electron spins with
the nuclear spins of the metal. %le shall first consider
the special case of a nucleus with spin —,

' and magnetic
moment p„, and shall generalize the calculation later
for arbitrary nuclear spin. The most important incer-
action between the nuclear and electronic spins is that
of the hyperfine coupling of an 5 state. ' Because this
interaction occurs entirely at the point of the nucleus
it will not be permissible to use the plane wave approxi-
mation for the electrons without making an error of
$0' to 10'. The perturbation can be written
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The functions g(k;2:) are those defined in (18) and transitions as an equal change in D. T is the electronic
account for the Fermi statistics. The energy conser- relaxation time and is
vation equation for the above transitions is

27k'I
h'k"/2m —PX—P X=h'k'/2m+PX+P X.

Equation (29) can then be written

T=
256~mk, NP2P„2(I+ 1)

~
y(0)]4

(33)

64mp'p„' I' ( 4~—pXq
l4(0) I'(N —~)

9~h ~ ( ~tt )
4 —PX—2P„Xq-

X 1—gi ki i
k'dk..e

Transitions of the opposite type give a similar formula.
As in Sec. II we make a power series expansion of

the functions in the integrands and compute dD/dt by
keeping on1y first-order terms in the small quantities
that occur (including 6/N and D4/N). After performing
the various operations we have

dD/dt = 2564rmkpNP'P, '
~ f(0) ~

'(D4 —D)/9h'
+256m2k42p2p 2149

t f(0) (
4(h4 —6)/92rh'. (30)

We have thus derived in a dynamical way the
conditions of complete statistical equilibrium for two
interacting spin systems in a magnetic field; that is,
dD/dt=0 when D=DO and h=A4. The calculation
can be generalized to the case of arbitrary nuclear spin
I by making the substitutions:

It is interesting to note that this relaxation time is
independent of temperature. It turns out that all other
relaxation times increase with decreasing temperature,
so that at very low temperatures this process will be
the controlling one.

We will estimate this re1axation time for the isotope
of lithium of mass seven, which has I= 2.

~
f(0) ~' can

be determined as follows. We have defined it to be the
square modulus of the metallic wave function, normal-
ized in 1 cc, at the nucleus; Kohn and Sloembergen4
have computed the electron density at the nucleus for
the conduction electrons in the metal and have com-
pared it to the corresponding density of the valence
electron for a lithium atom. They find the ratio to be
1.0. From the measured hyperfine structure splitting'
of Li and from the theoretical splitting of an S state, '
we find

~
P(0) ~2=34, which means that the density of

conduction electrons at the nucleus is greater by 34
than if the charge cloud were perfectly uniform. The
relaxation time obtained from (33) is then 2 10 ' sec.

From (32) and (33) one can derive the ratio of the
nuclear and electronic relaxation times due to their
mutual interaction.

N/2~N/(2I+1), P„~P„/2I. T /T= 8I(I+1)44/9~8. (34)
YVe must also replace the square of the matrix element
of 0„+and 0„,which is 1 for I= ~, by the quantity

G= P (I+m+1)(I—m)=-,'I(I+1)(2I+1).

Furthermore, the quantities 6 and 60 must be redefined
to mean the difference of the number of nuclei in
adjacent magnetic states, so that we now have

Dp=P NX/I(2I+1)148.

Equation (30) becomes accordingly

Since T„can be measured directly in a nuclear resonance
experiment, T could be determined from (34) without
knowledge of the electronic wave functions

V. INTERACTION WITH ELECTRON SPINS

In this section we shall begin a study of the para-
magnetic relaxation resulting from electron-electron
interactions. From the classical point of view there are
two terms in the interaction Hamiltonian which exert
forces on the spins. The first is the spin-spin interaction
which has the form'

dD/dt = (Do—D)/T+ G(A p
—d )/T„. (31) (p /r12 )t ( 442212)r12 3(el'r12)(422'r12) j. (35)

It should be noted that (6) does not hold in general for
the interaction with nuclear spins because the electronic
relaxation depends upon the nuclear spin distribution
as is shown by the second term in (31).T„is the nuclear
relaxation time and is

The second is the spin-current interaction which is the
coupling between the magnetic moment of one electron
and the magnetic field produced by the translational
motion of another. This term has the form'

II= (p4:/m«12') L(r12X y2) 121+(r21Xy1) ~2j. (36)
9''l2

T=
64m2k42p2p 2t4g

~
ip(0) ~

4
(32)

The exchange interaction does not have to be considered
because it does not cause relaxation.

This is the same relaxation time as derived by Kor-
ringa2 and is equivalent to Eq. (9) of his paper, though
in a different form. The constant G appears in (31)
because a given change in 6 requires G times as many

4 W. Kohn and ¹ Bloembergen, Phys. Rev. 82, 263 (1951).
5 J. B. M. Kellogg and S. Millman, Revs. Modern Phys. 18,

323 (1946).
6 H. Bethe, Hundblch der Physik (Julius Springer, Berlin,

1933), second edition, Vol. XXIV, 1, p. 387,' Reference 6, p. 377.



PARAMAGNETIC RELAXATION IN METALS

u«+=(2p, o, p., p+)/2p,

u« =(0, 2tt, p, —p,)/2u.
(37)

We make use of the convention that for any vector F

Fg——F,&i,Fy. (38)

The Hamiltonian operator representing the interaction
between electron pairs will be of the form

CC Q~PCp q pqCp Cql CqCp. (39)

Here, the c„cp~, etc. are either the b's or d's as defined
in II, or the corresponding operators for negative energy
states. Because we are concerned with 6rst-order
transitions of low energy, we will not have to take the
negative energy states into account. The coefFicients of
the above terms are the matrix elements of the Mfiller
interaction':

H«&»r»«=4»roc e [( u~«* u)«(u»&*u»)

—(u, *eu«) (u, *eu») )/(R' —e'). (40)

Here R= y —p' and e is the energy of the state p minus
the energy of the state p'. In this calculation e' can
always be neglected in comparison to E2. The two
term types in H which concern us here are: dp *dq bqbp

which Rip two spins down, and bp *bq *dqd» which Qip
two spins up.

We will first treat the terms which Qip two spins
down. We must consider together all terms in (39)
which connect the same initial and 6nal states of the

' W. Heitier, The Quantum Theory of Radhatson (Oxford Uni-
versity Press, London, 1947), second edition, p. 101,

The spin-spin interaction can induce transitions in
which there is a net Qip of two spins up or down as
well as those with a net Qip of one spin up or down.
On the other hand, the spin-current interaction can
only cause single Qip transitions. For the latter type
processes both interactions must be treated simultane-
ously because interference eGects are possible. The
correct breakdown of the calculation is therefore into
single Qip relaxation and double Qip relaxation. The
relaxation time of the latter process is derived in this
section, the former in the next.

We shall not use the above expressions for the
electron-electron interaction because it is more con-
venient to use the relativistic wave equation of Dirac
and to treat the interaction by the method of Moiler.
The calculations are thereby made more compact and
the matrix elements are already provided. The Dirac
equation for a free electron is

&4=(~ p+pP)4

Here, I)l, =@ac' and p= c times the ordinary momentum
vector. The plane wave solutions of positive energy are

ip=u«+exp(ip r/Inc), f=u«exp(iy r/hc)

The coefficients of the exponential factors are spinors
and are given to the first order in p/tt by

FIG. 1. Orientation of
the electron momentum
vectors with respect to
the y, y, g axes.

We will now consider in a group all possible transi-
tions which can be specified by the magnitudes p, q,
and M, corresponding to the initial state, and the
magnitude p'. We treat all such cases together because
they will all have the same Fermi factors. The total
momentum M = p+ q is a constant during the collision.
We can then average (42) over all possible orientations
of the (7t, rI, l') axes with respect to the original (X, 7, Z)
axes; and then we must average this expression over
the angle p between the planes of the initial and 6nal
states (see Fig. 1).A lengthy computation gives for the
average value of (42),

(iH'i') = (2orl'cV)'/10tt' (43)

The number of spin flips from (+}to (—} due to
such double Qip processes is given by

W =2 (2or/II)()H'(s), prXG6 . (44)

Here, E; is the number of initial states, pt is the density

electron 6eld, since they will interfere. Thus, for the
transition dp ~dq *bqb p we must take, instead of &Hpl q pq&

the expression

&f KT,s(H«» «»+H» «,«
—H;;«,—Hi, »«).

However, Hp q«pq Hq p«qp~ and IIq prpq Efp«qlqp When
we use the above expression with four terms, we must
sum over only one-quarter of the terms in (39), so
that if we sum over all of them anyway, we need only
multiply the coefficients by an extra factor of ~~. The
matrix element can thus be taken:

H'= ,'(H; „H;-„). —

Using (37), (38), and (40) and letting S=p—q', we
obtain after some calculation the square modulus of
(41):

( horsecs)s'IrR 'R ' S+'S '
+

2tts ) ( R4 S4

R+'S '+R 'S+si
(42)

E'S'
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FIG. 2. Schematic sec-
tion of electron momen-
tum space, de6ning the
quantities p, X, and 9.

Each factor in (44) has now been evaluated. In order
to determine the relaxation we must also consider the
reverse processes which flip two spins from {—} to
{+}.We will obtain an equation like (44) with G, and
6~ replaced by |;and 6~, which diGer from the former
only in that o+ and o are interchanged and PBC is
replaced by —PX. Using (7) we obtain

dD/d&= (8~/&)(I &'I')Av pjÃ(RG f RGf). (47)

p'= p+2pPae/po sin8. (45)

The number of initial states is

X.= (4m&'dM/c'h')(2orpo sin8dhdp/c'h, ').
The number of final states for a given initial state is

Zg ——2orpo sin8dX'd p'/c'h'

The spread in final energy is given by

DEg (2po/p) sin8dp'. ——

We therefore obtain the density of final states:

pr ——( or@/col)o)d'.

In order to specify the appropriate Fermi factors,
we make the following definitions:

g(p, X; x) = {expL(po/p«)(p sin8+X cos8) —x)+1} ',

g(p, &) =g(p, &; o), (46)

g'(p, lI.) = L8g(p, X; x)/Bx) o.

We have then

G;=g(p~ lI
& (o+ oo)/K8 —PBC/K8)

Xg(p, —&; (o„oo)/« Pe/ «—)—
Using (45) we obtain similarly

Gr ——
I

1—g(p, lI.'; (o oo)/a8 Pse/«)—)—
XI.1—g(p, —&'; (o oo)/« P~/«))—, —

of final states for each initial state, 6; and GJ are the
appropriate Fermi factors for the initial and final
states. The extra factor of 2 is due to the fact that each
transition Qips two spins, and the integration is over
all differentials that are necessary to specify p~ and E;.
Only electrons near the surface of the Fermi distribu-
tion, of momentum about po, will take part in such
transitions. The phase space diagram will appear as in
Fig. 2, which will serve as a definition of the quantities
8, p, X for the initial state and the corresponding ones,
p', X', for the final. The energies of the various states
have the form

E~= oo+(po/p)(p sin8+X cos8)+PA.

The energy conservation equation, E~+E,=E~ +E;,
gives

dD/dt = 87re'~'8'(D D)/15mb—'c' (48)

We next expand G,Gy and 6;6'y in terms of the smaH
quantities (o+ oo)/K8 (o oo)/«, and PK/«. For
example,

G'=Lg(p, l)+g'(p 7)(o+ oo P—X)l—«)
XLg(» ~)+g'(» &) (&+ &o P~)/&8).

Only first-order terms are retained, and on using the
relation

1 —g(p, ~)=g(—p, —&),
we obtain

G,Gg —6;Gg
=L(+ o )/~8)—IY-(p»)g(p —&)g(—p, —&')g( —» ~)

+g(p, &)g'(p, -~)g(- p, -~')g(- p, &')

+g(p, X)g(p, X)g'(p, X')g(- p, X')

+ (p, ~)g(p, -~)g(- p, —&')g'(p -~'))
(2PX/«—)$ '(p, X)g(p, —X)g(—p, —X')g(—p, X')

+g(p, ~)g'(p -&)g(-p, -~')g(-p, l')
g(p, &)g(-p, -&)g'(p, &') g(—p, ~')

-g(p, ~)'(p -&)g(-p, -l')g'(p -~')).
Now, each of the above terms in square brackets is

integrated over dp, dX, and dA. ', and it can be seen that
after integration the four terms in the coeKcient of
(o+—o )/~8 all give the same result. Thus the ffrst
term equals the second on the change of variable X—+-- X
in the second term; the third equals the fourth on the
substitution X'—& —X' in the fourth; and, finally, the
first term equals the third on the substitutions in the
third, ~—p, )'~—), and X—+—X', while observing
that g'(p, X) =g'( —p, —X). The coefficient of 2PX/«
then integrates to zero and we can repIace the coeKcient
of (o+ o )/K8 by 4g'(p, X)g(—p, X)g(p, lI.')g(p, —X').
Combining the above results and remembering that
M =2po cos8, (47) becomes

128pP'po'(o+ o )t'—-
)I g'(p, g)g( —p, g)g(p y')

dE 5m'c'5"~0

Xg(p, —X') cos'8 sin'8d8dpdhdX'.

The limits of integration are 0 to or/2 for 8 and —~
to ~ for the remaining variables. The integrals can be
evaluated, and on using (8) we obtain the relaxation
equation
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The relaxation time to be associated with the double
flip action of spin-spin forces is therefore

T= 15sssk'c /8sre'K 8' (49)

It is interesting to note that (49) depends only upon
the fundamental constants and the absolute tempera-
ture. The quadratic dependence of the relaxation rate
with temperature results from the Fermi statistics. An
electron in the Fermi surface can only collide with
another electron in the Fermi surface, that is with a
fraction of the electrons of about x8/e, . Similarly, of
the possible final momentum states, only a fraction of
about s%p are permitted by the exclusion principle.
Hence, two powers of x8/eq would enter an order of
magnitude calculation. For room temperature (49) has
the value 6X10 ' sec.

VI. INTERACTION WITH ELECTRON CURRENTS

In this section we shall calculate the relaxation rate
due to electron-electron collisions in which there is a
net flip of one spin up or down. Such transitions can be
due to spin-spin forces or spin-current forces, but it
will be seen that the latter interaction is several orders
of magnitude larger than the former in so far as these
processes are concerned.

There are four term types in (39) which produce a
net flip of one spin from {+}to {—}.These four types
must be grouped in pairs since they can connect the
same initial and final states. The first pair gives the
following terms:

sZ(H .q pA *d'*&q&p+H'p q pqd'*&'*&qf'p).

It is necessary to make the distinction between II p q pq

and HP~ q pq because the spin up spinor goes with the
y' in the first and with the q' in the second. For a
specific transition two terms of each type appear in

(50), and, as before, one can show that the matrix
element can be taken to be

H'= (H p~q~pq H p~q~qp)/V2.

Using (3'7), (38), and (40) one finds

H'= (sr@cse'/42is') {[si(RXM)++rsi(RXS)+
—R,E+]/R'+ [ssi(SXM)~+ si(RXS)++S,S~]/S']}.

near singularities is due to the action of spin current
forces which have an interaction energy that varies in
distance as 1/r', so that the total scattering cross
section would be infinite. ' The presence of the magnetic
field, however, removes the singularity because energy
conservation for a collision in which one spin is flipped
demands that E and S can never be smaller than

8 = lips/pp sin8.

This quantity is small, however, so that integration
over qo makes several of the terms in (51) give a large
contribution, of order of magnitude po/8, which is
from 10' to 10' larger than the remaining terms, as can
be seen only by a close examination. Equation (51)
can therefore be replaced by

( ~

H'
~

') A, =Ssr'P'[3(RX M)'/2E4+3(SX M)'/2S4
+(RXS)'/6E'+ (RXS)'/65'). (52)

Actually, (RXM) (RXS)/R4 and (SXM) (RXS)/S4
give terms of the same order of magnitude, but it can
be shown that they do not contribute to dD/dt, so that
we will not carry them along. Further computation
gives for the average of (52) over ip

(~ H'~')A =4''p'ppIi (X X', 8)/3 sin'8 cos'8 (53)

Here

P(X, Y, 8) = (9 cos48 sin8+2 cos'8 sin'8)

X[((l —V)s+8s)-&+((l + 7')'+8')-&]
+8'(9 cos'8 sin8 —cos'8 sin'8)

X [((X—V)'+ 8')—1+((7+X')'+8') —&].

We can now compute the number of spin flips per
second from {+} to {—} due to the spin-current
interaction, and it is given by (44). The extra factor of
2 is now due to the extra two term types in the Hamil-
tonian operator, which in fact give the same transition
rate as the two in (50). The factors pf, 1V;, and G; are
the same as before, whereas (~ H'~s)A, is given by (53)
and 6~ is also new:

Gs ——[1—g(p', X', (e+ ep pX)/x8—)]-
X[1—g(p', —V; (e —ep+PR)/K8)].

The energy balance equation gives for this case

We must average the square modulus of this expression
over all orientations of the (x, sl, {') axes in Fig. 1. We
obtain

so that, finally,

p' =p+ lsP3C/Pp sin8;

(~ H'~') A,/ssr'P'= [3(RXM)'/2+ (RXS)'/6
+2E'/15+ (RXM) .(RXS)]/E'+ [3(SXM)'/2

+ (RXS)'/6+2S'/15+ (SXM) (RXS)]/S'
+[(RXM) (RXS)+3(RXM) (SXM)

+ (SXM) (RXS)+7+'g'/15 —(R S)']/~'g' (51)

Equation (51) must in turn be averaged over the
angle y. Near p=0, E becomes very small; and near
q=x, S becomes very small. The presence of these

Gs ——[1—g(p, X'; (ep —ep —2')/x8)]
XL1—g(p, -7; (. —..)/.8)].

Similar alterations must be made to 6'f for the inverse
processes. The relaxation rate from (7) is

dD/d~=(g /»&I'&tH't'& p &'(GG —G'G )

9N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisiosss (Clarendon Press, Oxford, 1949), second edition, p. 40.
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dD 16P4pp4(Dp —D)
F(X, X', 8)g'(p, X)

dh 3c'57~8

Xg(—p, X)g(p, X')g(p, —X)d8dpdhdX'. (55)

The integrals can be evaluated and yield (see ap-
pendix)

dD 20e'It 'tt8(Ds "D) log—(K8e '/P&)

9m'c45
(56)

Here ~=2.718. The relaxation time due to the spin-
current interaction is therefore

9m'c4k
T=

20e k ~ 8tltog(K8e s/PX)
(57)

It is interesting to note that this relaxation time is
dependent slightly upon the field strength 3C. For a
magnetic field of 5 oersteds and a temperature of
293'K, (57) gives 8X10 r second.

VII. INTERACTION WITH IMPURITIES

In this section we shall estimate the relaxation caused

by the presence of impurity atoms in the metal. If the
impurity is paramagnetic, the electron spins in the
conduction band can interact by means of a spin-spin
interaction, as in (35), where the second electron is in
a bound state of the impurity atom. The interaction
energy will be of the order of magnitude of p'/a' within
the region of the atom, where u is of the order of the
atomic dimension. One can then show that, except for
a numerical factor, the relaxation time due to such
processes is given by

T-5'/rrt jteXP4f.

Here f is the fraction of paramagnetic impurity atoms
in the metal. If f is 10 ', (5g) gives a value of 10 s sec.

Relaxation can also be caused by the atomic electric
6elds of all impurity atoms by means of a spin orbit
interaction, (24). The magnitude of this interaction
energy will be zP'/a'", where z is the effective charge of
the impurity atom as seen by a conduction electron.
The relaxation time for such processes will therefore
have the order Of magnitude

T It'/rnkgNz'P4f.

We have had to keep (~ H'~')A„ inside the integral sign
because it depends upon X, X', and 8. However, (~ EP ~')A„

is invariant under the substitutions A—+)', )—+—),
etc., so that we can use the same methods as in V to
simplify G,GJ —6;O'J. Computation shows that this
factor in the integrand can be replaced by

2(e+—e-)g'(p &)g(—p»)g(p ~')g(p —l~')/a8.

From (8), (54), and the expressions for the various
factors we find

For an impurity content of 10 ' and an effective charge
s of say 3, an appropriate value which is sufricient to
explain the contribution of impurities to the electrical
resistance of metals, (60) gives a value of 10 ' sec.
One can conclude that such impurity processes do not
play an important role in electron paramagnetic
relaxation.

VIII. CORRECTIONS TO THE RELAXATION TIMES

The preceding calculations were based upon the free
electron model and the effects of binding to the crystal-
line lattice and the Coulomb interaction between the
electrons were neglected. We will now take account of
these sects in so far as they inQuence the spin suscepti-
bility of the conduction electrons and the density of
single particle states at the top of the Fermi distribu-
tion. We continue to assume that the single particle
model is a valid approximation.

Let po and po be the spin susceptibility and density
of states for the free electron model without interactions,
and let x and p be the corresponding quantities when
lattice, and exchange and correlation interactions are
accounted for. One-can then show that the relaxation
times must be multiplied by the factor

(x/xs) (ps/p)' "'
. (60)

The 4 in the exponent applies to the calculations in V
and VI, whereas the 2 applies to the others. The factor
x/xs occurs because a larger susceptibility, and hence
larger equilibrium value of Do, means that the same
number of electronic transitions will produce a frac-
tional relaxation smaller by that same amount. A
factor pe/p occurs for ea,ch integration over the surface
of the Fermi distribution, including the one in the
derivation of the formula for transition probability.

Since a complete treatment of exchange and correla-
tion sects has not been made to date, even in the
single particle model, the numerical values of the
factors in (60) are unknown. However, experimental
data on susceptibilities and electronic specific heats
seem to indicate that these factors are not very different
from unity.

IX. CONCLUSION

The most important relaxation process of those
considered is that due to the spin-current interaction
in VI. The relaxation time of about 1 microsecond
obtained for this process is at least two powers of ten
shorter than the remaining ones, so that these latter
processes may be neglected in comparison to the former.
On the other hand, this figure is two or three powers
of ten longer than the relaxation times characteristic of
paramagnetic salts at room temperature. "One would
therefore expect that a paramagnetic resonance in
metals could be easily observed, and that a very narrow

"C. J. Gorter, Paramagnetic Relaxation (Elsevier Publishing
Company, Inc., New York, 1947).
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line of about 100 kc or 0.1 oersted in width would be
seen. However, a number of investigators have looked
for such a resonance, by both microwave and radio-
frequency techniques, "and have failed to observe any
resonance. It is at present diIIicult to explain these
negative results. Yafet has shown that the energy of
such a resonance would not be appreciably effected by
interactions with the crystalline field. "

A possible explanation is that an interaction resulting
in a relaxation time of 10 "sec or less has been over-
looked. One might suspect that second-order processes
play a more important role than the first-order processes
considered, as is actually the case in paramagnetic salts.
However, this possibility can be ruled out by a simple
argument. If one considers the various second-order
calculations (double phonon emission and absorption,
phonon Compton eGeets, simultaneous collision of two
electrons and emission of a phonon, etc.), one observes
that the relation of the second-order calculation to the
first is similar in structure and magnitude to the
corresponding relation in the theory of electrical
resistance. Since second-order processes do not play an
important role in electrical resistance, otherwise the
linear dependence of resistance on temperature would
not result, therefore second order processes do not play
an important role in paramagnetic relaxation. The
second-order processes which involve only the electron-
electron interaction are not included in this argument,
but it is unlikely that they are important.

Note added in proof: The metallic spin res'onance has
been observed" in Li, Na, and K at microwave fre-

quencies. This recent success in finding the resonance
resulted from the use of sufficiently small particle sizes,
of the order of a micron or less, so that excessive width
of such a resonance due to alternating current skin
eGects was reduced. Line widths of about 15, 80, and
120 oersteds were observed, respectively, in Li, Na, and
K. These widths are probably caused by the modulation
of the microwave field as seen by the electrons when they
disuse toward or away from the surface. More narrow
lines would result, then, if even smaller particles or
lower frequencies are used.

The author wishes to thank Professor Charles Kittel
for proposing this problem and for helpful suggestions.

APPENDIX

We wish to compute the following integral occurring
in (55):

F(X, lt', 8)g'(p, X)g(—p, X)g(p, X')g(p, —lt') d8d pads'.

Consider first the contribution of the first term of
F(X, lt', 8). We make the substitutions

y= (pp cos8/2p~8)(lt+lt'), x= pps sin8/plr8,

y'= (ps cos8/2pa8) (lt —)t'), n= pK cot8/2lt8.

Hence,

dpdXd X' = (2p~8/ps stn8) (plt8/ps cos8)'dxdydy'.

The first term is, therefore,

(9 cos'8+2 cos8 sin'8)dxdydy'd8(pz8) ' t.
L(y'+~') '+(y"+~') '3

E po ) & (e*+"+"'+1)(e " '+1)(e '+"+"'+1)(e + —'+1)(e* "+"'+1)

Because of the symmetry in y and y', we can consider
only one of the terms in square brackets and then
multiply by 2. We make the further substitutions

r=x+y', s=x—y'

so that

We obtain

dx&Y = gd'Yds.

(9 cos'8+2 cos8 sin'8) drdsdyd8

The integration in s gives

2y/(~" —1).

The integral in r gives
e22(e22 1 2y')/(e22 1)2

We obtain, therefore

(plr8) '
t.

( ps ) ~ (y'+n')l(e"+&+1)(e " &+1)(e" "+1)(e'+"+1)(e '+"+1)

(p~8 ) ' p I'
I

" (9 cos'8+2 cos8 sin'8) xe*(e*—1—x)dxd8

& p. ) ~. (x'+4n2) &(e* 1)'—
"Unpublished research.
'~ V. Yafet, Phys. Rev. 85, 478 (1952).
"Griswold, Kip, and Kittel, Phys. Rev. 88, 951 (1952}, and private communication.
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The integration in x can be manipulated to give

$8 dS

~ o (xs+4cr')-'*(e —1)s

If one takes advantage of the smallness of u, this
integral can be shown to have the value log(e/n),
where &=2.718 . .. We have then

p
'7r/2

(plr8/pp)' (9 cos'8
0

+2 cos8 sin'8) log(2elr8 tan8/PX)d8.

This integration can be carried out and gives finally

(20/3) (px8/ps)' log(x8e' "/Pse)

We will now compute the contribution of the second
term in F(X, X', 8). We make the same substitution

and analysis as™beforeand obtain similarly

(pPK) '
I

I'
I

(9 cos'8 cot'8 —cos'8)x'e*dxd8

( ps ) Js Js (g'+4(rs)t(e* —1)'

If we integrate in x, observing as before the smallness
of 0. for most all 0, this expression is

(pz8/Po) s (9 cos'8 —cos8 sin'8) d8.
Jo

We obtain on further integration in 0

(17/3) (px8/ps)'= (20/3) (px8/ps)' loge' ".
On inserting the sum of the two terms we have evalu-
ated into (55), we obtain (56).
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Induced Conductivity in Luminescent Powders. II. AC Impedance Measurements*

HARTMUT KALLMAN) BERNARD KRAMER7 AND ARNOLD PERLMUTTER

Physics DePartment, 1Yew York University, 8'ashington Sglare, Sew York, Eezv York

(Received September 24, 1952)

Alternating current measurements of the impedance changes induced by ultraviolet, infrared, x-ray, and
gamma-ray irradiation in (Zn: Cd)S luminescent, powders are reported. These resul'ts are in agreement with
previously reported dc measurements, and indicate that the observed impedance changes are primarily
due to the change of the electron density in the conductivity band. Whereas the capacity changes show a
monotonic increase, the Q values (X/2t) show a pronounced minimum with increasing intensity. A model
consisting of radiation sensitive and nonsensitive powder portions is proposed, and theoretical calculations
based on such a model are shown to be in agreement with most of the experimental results. This ac measure-
ment technique can be used to measure small exciting intensities (down to almost 1/1000 erg/sec cm').

I. INTRODUCTION
' 'N a previous investigation' of the conductivity
~ ~ induced in luminescent type materials (in powder
form) by ultraviolet radiation it was found that a
non-ohmic relationship between the induced current
and the applied field existed at all voltages except when
the highest field strengths were used. Similar non-ohmic
relationships were found in later experiments in which
x-rays were used as the exciting radiation. With light
excitation the'powders are not uniformly excited and
this nonuniform excitation is certainly responsible for
at least part of the non-ohmic relationship observed.
The x-rays used for these experiments penetrated these
thin layers relatively uniformly; nevertheless, similar
strong non-ohmic relationships were observed and this
indicates that this non-ohmic characteristic is inherent
to the powder structure. Since conductivity experiments
with single crystals" irradiated with x-rays showed an

*This work was supported by the Signal Corps Engineering
Laboratories, Fort Monmouth, New Jersey.' H. Kallmann and B. Kramer, Phys. Rev. 87, 91 (1952).

~ H. Kallmann and R. Warminsky, Ann. Physik 4, 57 (1948)
and 4, 69 (1948); see also J. Fassbender, Ann. Physik 6, 33 (1950)
and R. Warminsky, Ph.D. thesis, Berlin Tech. Univ. (1948)
(unpublished) .

ohmic relationship, this supports the idea that the non-
ohmic characteristics are inherent to the grain structure.

With these results in mind it is assumed here, as a
working hypothesis, that the powder has to be con-
sidered as an inhomogeneous system. Some parts of the
powder sample (grain boundaries and air spaces)
remain highly resistive even under strong excitation,
while other. parts, especially the interior of the grains,
become highly conductive under excitation, much more
than observed from dc measurements of the total
resistance. To test this idea it was decided to duplicate
many of the conductivity measurements with powders
under ultraviolet, infrared, and high energy particle
radiation using an alternating current 6eld of low field
strength instead of a dc field and measuring the effective
resistive and reactive components of the impedance,
hoping, in this way, to detect the true conductivity of
the single grains.

Somewhat similar ac measurements have been re-
ported by Garlick and Gibson, 4 who have thoroughly

3 H. Kallmann, Signal Corps Engineering Report E-1036 (Fort
Monmouth, New Jersey) (unpublished).

4 G. F. J. Garlick and A. F. Gibson, Proc. Roy. Soc. (London)
A188, 485 (1947).


