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The Wannier function in crystals is de6ned in terms of a difterential equation and a variation procedure.
This variation procedure is also used to de6ne localized functions in molecules which can be used to build
solutions of Schrodinger's equation. Illustrations of the procedure of building solutions of Schrodinger's equa-
tion from localized functions is given for examples taken from crystalline and molecular problems. Contact is
made with Slater's work on the two-dimensional Mathieu problem. A numerical method of carrying out the
variation procedure is discussed.

I. INTRODUCTION

'N the study of energy bands in solids, it is sometimes
- ~ convenient to express the solutions of Schrodinger's
equation in terms of Kannier .functions. ' These are
functions constructed from the solutions of the periodic
potential problem which are localized about a given
atom in a crystal and are orthogonal to the same func-
tion about any other center. The purpose of this paper is
6rst: dehne the %annier function in terms of a diGeren-
tial equation, and second: 6nd a variation procedure for
6nding the Wannier function. It will be seen that these
two goals are most easily reached using the terminology
of group theory' and that when phrased in this termi-
nology the results can be generalized to de6ne localized
functions in molecules which have many of the desirable
properties of Wannier functions in crystals.

Imagine a crystal which is periodic with respect to
translations R, where the R„are expressible in the form

R„=ttiRi+st2Rs+rt, Rs, (1)

where Ri, Rs, and R& form the edges of the unit cell in
the crystal and the m's are integers. In the one-electron
approximation, Schrodinger's equation (in atomic units)'
takes the form

where ttt(k, r) is periodic with respect to the transla-
tions R„.

In this notation, %annier functions are de6ned as

at(r R„)—= (1/E&)Q(k)e —'" R Pt(k, r), (5)

we can find by multiplying both sides of Eq. (5) by
e'"''a" and summing over R„ that

0 i(k', r) = (1/&')Z(R-) e'"' ""«(r—R-) (7)

From the orthogonality of the solutions of Schrodinger's
equation and the fact that

Q (k)e ik ~ (Rm—&xi —$

it can be shown that

at(r —R„)a;(r—R )dr=St, 8 „.

where S is the number of unit cells in the macro-
crystal over which f is normalized. The factor (1/E&)
normalizes ai(r). The summation extends over all k in
the first Srillouin zone. Vsing the fact that

Q(R )e'&"'-"&'""=Sbg t,

L
—V'+ V(r)igt(k, r) =Et(k)gt(k, r). (2) It might be pointed out here that in the summation over

k in Eq. (5), we could equally well have added up the
wave functions from one band over part of the 6rst
Brillouin zone and wave functions from another band
over the rest of the first zone without destroying the
orthogonality properties of the %annier function.

Here V(r) has the property that

V(r —R„)= V(r). (3)

We specify the states ft(k, r) in terms of a pseudo-
momentum k and the band to which the wave function
belongs. The subscript i in Eq. (2) denotes the 1'"band.
The vector k specifies the translational properties of the
wave function, and as Bloch has shown, 4 allows us
write the wave function in the form:

II. A DIFFERENTIAL EQUATION FOR THE
WANNIER FUNCTION

to
Using the results of the preceding paragraphs, we can

6nd a differential equation for the Wannier function.
(4) Let us apply the Hamiltonian operator H= —P+ V to

both sides of Eq. (5):
P, (k, r) =e'"'t, (k, r),

A well-known property of energy bands is that the
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*Supported by the ONR.' G. H. Kannier, Phys. Rev. 52, 191 (1937).
~For treatments of group theory see Eyring, Walter, and Pat(r —R„)= (1/X&)P(k)e '"'""Pgt(k, r). (10)

Kimball, QNuntlm Chemistry (John Wiley and Sons, Inc. , New
York, 1947), p. 172—189; E. Wiggler, Gruppentheorie (Friedr. +sing Eq. (2) we find that
Vieweg und Sohn, Braunschweig, 1931);A. Speiser Die Theoric der
GruPpee (Julius Springer, Berlin, 1927). Bat(r —R„)= (1/E&)Q(k)a-'" a.Et(k)g t(k, r). (11)' The unit of length is the Bohr radius. The unit of energy is the
Rydb erg.

4 F. Bloch, Z. Physik 52, 555 (1928).
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Eg(k+ K,) =Lig(k), (12)

energy has the periodicity of the reciprocal lattices. By make
this we mean that

a(r) Ha(r) d r (19)

where K; are the primitive translations of the reciprocal have an extremum subject to the constraints
space and are dined by the equations

R„K;=2x && (integer).

We can, therefore, express Eg(k) as a Fourier series:

(13) a(r)Ra(r)d7. =d(R) (20)

for all R in G, or for all R in any invariant subgroup' BC

Eg(k) =Q(R;)e-'" Rg8g(R;). of G of order h. These constants d(R) should be chosen
to give the desired kind of localization to a(r). In order
to have these constraints be consistent, we must have

in terms oi VVannier functions, we 6nd that

Hag(r —R„)= (1/1V'*)g(k)e 'a'R"

yP(R )e '"'"g8g(R )g(R~)e'a' "ag(r —R~). (15)

By making use of Eq. (8) this reduces to

since
d(R)= d(R—'), .

I a(r)Ra(r')dr= a(r)R—'a(r)dr (22)

Hag(r R„)=g—(R;)8g(R;)ag(r —R„—R;). (16)

The set of Eqs. (16) for all values of R„are the desired
set of differential equations for the Wannier function. If
we multiply (16) by as(r) and integrate over all space,
we find by use of (9) that

because of the unitary nature of R. By using the method
of Lagrangian multipliers, this problem is equivalent to
taking the variation of'

a(r) LH —g'(R) 8(R)Rja(r) dr

ag(r)Hag(r R„)d7 = hs—g8g(R.).

From Eqs. (16) and (17) we can see qualitatively how
the width of the bands depends on the degree of localiza-
tion of the Wannier function and how the Wannier
functions approach the solutions of the Schrodinger one-
electron equation for the isolated atoms which make up
the crystal. Consider a crystal with an atomic like
potential situated at each lattice point. We notice from
Eq. (17) as the distance between lattice points increases
that, because of the localization of ag(r), 8g(R„) ap-
proaches zero for R„)0. This means that Eg(k)
approaches 8g(0) for all values of k. The bands become
Rat. As 8g(R„) approaches zero, Eq. (16) becomes

and setting it equal to zero. Here 8(R) are the Lagrangian
multipliers for the constraints (20). This leads to the
equation

8(R)+8(R ')
Ha(r) —P'(R)— Ra(r) =0. (23)

If we take any other member R' of the subgroup 3C, and
operate on Eq. (24) with it we get a di6'erential equation
involving R'a(r):

HR'a(r) g'(R) 8(R)R'Ra(r) =—0. (25)

Since the constraint for R is exactly the same as that
for R ' we have that 8(R) = 8(R '); therefore

IIa(r) —P'(R) 8(R)Ra(r) =0.

Hag(r —R„)=8g(0)ag(r —R„). Rewriting the summation as(18

As the distance between lattice points increases, the
Hamiltonian approaches the isolated atom Hamiltonian
over the region in which ag(r) has an appreciable value.
The Wannier function approaches an atomic function
about R„, and 8g(0) becomes the atomic level.

III. A VAMATION PROCEDURE FOR LOCALIZED
FUNCTIONS

We shall now derive a variation procedure for
localized functions in molecules and crystals.

Consider any Hamiltonian II' which is invariant under
some group of unitary operations G of order g. Let R
represent any operation in this group and consider the
following variation procedure for a function a(r). Let us

P'(R) 8(R)R'RR' 'R'a(r) (26)

5 An invariant subgroup has the property that R"=ER'E. 1 is in
3C for any E. in G and R' in BC.' In this equation and the following Z'(ft) means summation
over BC. Z{R) means summation over G.

and letting R"=R'RR' ' we have that

HLR'a(r) j—Q'(R")8(R' 'R"R')R"LR'a(r) j=0. (27)

We can see how this yields Eq. (16) for a crystal. In this
case, the subgroup is the group of translations in the
crystal. All the elements of the translation group corn-
mute with one another, therefore, R' 'R"R'= R".If we
consider R as being a translation through R„, then Eq.
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a(r)HR'a(r)dr =P(R)$(R)d(R'R). (28)

Since E'E. is also a member of the invariant subgroup K
we have a set of k simultaneous equations for B(R)
which will express these quantities in terms of the con-
straints d(R) and integrals of the form t'u(r) HRa(r)dr.
The case of the crystal corresponds to the case d(R'R) =0
unless R'R=Z, i.e., R'=R '. Therefore, Eqs. (28)
reduce to

a(r)HR'a(r)dr = 8(R'—') = h(R') (29)

We know how to combine Wannier functions to give
us a solution of Schrodinger's equation. I.et us now see
how we may combine the functions defined by Eq. (25)
to give us solutions of Schrodinger's equation.

We know that the solutions of Schrodinger's equation
of a given energy for a Hamiltonian which is invariant
under a group t must form a basis for one of the
irreducible representations of the group G. Let I' i(R')
be the m, p""matrix element in the matrix I' i(R') which
is equivalent to the operation 8' in the /'" irreducible
representation. I et g~ be %he dimension of this represen-
tation. Let us multiply each of the Eqs. (25) by I'i(R')
and sum over all R' in G.

H P(R') r,(R')„~'~(r)
=P'(R) 8(R)P(R') r i(R') Q'Ra(r). (30)

Let us now expand a(r) in terms of functions which
transform according to the irreducible representations
given by r, (R').

u(r) =Q(ij ) kgb," (31)

Here q, '~ transforms according to the j'" row of the i'"
irreducible representation. The superscript k specifies
which of the functions which transforms according to
the j'" row of the i'" irreducible representations is

specified in the summation. The cp ~, therefore, have the
property that

Rv»' "=Z(i') r'(R)s'i'v r"'. (32)

(27) becomes

Hci(r R—„)=Q(R,)hi(R, )ai(r —R„—R,). (16)

In this case, the constraints would be taken such that
d(R) = 0 except for the identity operation E, for which
the constraint would be d(E) = 1 in order to assure the
normalization of a(r). We see that for the case of crystals
this variation procedure yields functions satisfying the
same differential equation as the Wannier functions
satisfy.

In the case of the crystal, we were able to express the
coefFicients h(R„) in terms of integrals involving
Wannier functions and the Hamiltonian LEq. (17)j. In
the case of the general problem, we can do a similar
thing: multiply Eq. (25) by a(r) and integrate over all
space. This yields

g(R') r, (R')„,r, (R'),'.,'= r, ,s,'„s,„„, (34)
v'g'v'ri

where g; is the order of the i'" irreducible representa-
tion. Using (34) in (33) we find that

Q(R') I'i(R') Q'Ra(r)

=(/, )Z()r, ( )„,E(k).„,„„.( )

For R=E, r i(E)» is the unit matrix, and we find that

Z(R') r (R')-.R'o(r) = (a/g )Z(k) c ~ V
-'" (36)

If we define

f„,'=P(k)ci„gq (37)

substituting (37), (36), and (35) in Eq. (30) will yield

Hf-. '=Z'(R)h(R)Z(j)ri(R)»f i' (38)

f ' transforms according to the m'" row of the l'"
irreducible representations because of (32).The partners
of this function in the same basis can easily be shown to
be the functions f; „' j'=1. g&. Therefore, the func-
tions fii', . fg, ', form a basis for the P" irreducible
representation as do the other sets:

12 ) 22 ' ' gl2

figi ' ' ' ' ' ' frigg ~
l

Equation (38) therefore expresses the function f „'as a
linear combinationof theother functions f,', j=1 gi,
which transform according to the same row of the same
irreducible representation, but are in different bases.

Equations (38) can be expressed most easily in matrix
form. Regard f for j 1. =gi as a column vector.
Then Eqs. (38) become

H =Lp (R)a(R)r, (R)j
mgl

L
PLg )

(39)

To 6nd the solutions of Schrodinger's equation, let us
multiply both sides of this equation by a numerical
matrix 0

foal
0

.fmgi

=oLp'(R)s(R)r, (R)~o- o . (40)

mg~,

Using this fact in Eq. (30) we find that

Q(R')I' (R') +'Ra(r) =Q(ijk)c,; Q(j')r, (R),';
XQ(j")Q(R')I'i(R')„„r;(R'), ,'(p,'.'". (33)

We also know that
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functions P(R)I'g(R) „u(r) =f „'. Then form the
vectors

I'10. 1. A molecule whose symmetry is C3,. Heavy dots represent
the nuclei.

Clearly all we need to do to 6nd the solutions of
Schrodinger's equation is to find the matrix 0 which
diagonalizes the matrix P'(R) 8(R) I'~g(R). The Eq. (40)
will become

0 . m=1 g),

fAg g

for all m. The n'" element in these vectors are the g~
functions belonging to the energy E„.

There are a great many special cases in which we need
not diagonalize g'(R)8(R) I'q(R). For all nondegenerate
levels the matrices I'&(R) are already diagonal since the
matrices are all one-dimensional matrices. Another im-
portant case is the case in which we specify constraints
for an abelian invariant subgroup of the total group. (An
invariant subgroup in which all the elements commute. )
In this case, all the matrices I'~(R) for R belonging
to the subgroup can all be chosen to be diagonal.
P'(R) 8(R)I'~(R) where the summation extends over the
subgroup will be, therefore, diagonal. This is just the
case we are confronted with in crystals and will be
discussed in more detail later.

JIO

.fmg, '

The g& functions given by

0 f
0 ' . (42)

Eg~, fmg~

IV. EXAMPLES FROM MOLECULAR GROUPS

Consider the hydrogen molecule. The molecule is in-
variant with respect to a reQection in the plane passing
midway between the nuclei and perpendicular to the
line joining them. Let us call this operation cr. Let us
look for a function u(r) for which'

0
with constraints

u(r) Hu(r)d r =min, (42)

are the solutions to Schrodinger's equation and the
eigenvalues E; of Q'(R) 8(R)I"~(R) are the correspond-

ing energies. Clearly once we have solved for the matrix
0 we have solved the'problem for all values of m in Eq.
(39). In other words, we have found g~ sets of g~ func-
tions which are solutions of Schrodinger's equation. The

g ~ functions g (j)0,f, m = 1 g i, all have the same

energy E„and form a basis for the irreducible repre-
sentation /. The above procedure is essentially quite
simple, but its simplicity may be obscured by the details
necessary for the mathematical &usti6cation of the
procedure. It is, therefore, profitable to state in words

just how to go about 6nding solutions of Schrodinger's
equation from the solution u(r) of our variational
procedure. If we seek functions which belong to the l'"
irreducible representation and which solve the wave
equations, we form the matrix g'(R)8(R)i'~(R). This
matrix is of order g&. Diagonalize this matrix by a
unitary transformation O. The diagonal elements in this
transformed matrix are the energies E„of the g~ levels
all of which have a degeneracy g~, and each of these
energies has functions associated with it which form a
basis for the 1'" irreducible representation. To 6nd the g ~

functions which have the energy E„, form the g~'

u(r) o u(r)dr =0,

i u(r)u(r)dr=2.

Ke are, therefore, led to the equation

Hu(r) —8(E)u(r) —8((r) o u(r) =0 (4. 4)

There are two irreducible representations of this group;
the symmetric representation with matrices I'~(E) = (1),
I'~(~) = (1); and the antisymmetric representation with
matrices I'2(E) = (1), I'2(g) =(—1). We can, therefore,
form two molecular orbitals from our function u(r). The
symmetric molecular orbital is P(R)i'&(R)Ru(r) =u(r)
+&ru(r) with energy P(R) I'~(R) 8(R) = 8(E)+8(g)
The antisymmetric representation produces the molecu-

lar orbital g(R)1'~(R)Ru(r) =u(r) —g.u(r) with energy

8(E) 8(o). u(r) will be a, funct—ion localized about one
nucleus and o u(r) will be a function localized about the
other nucleus. 8(E) is the average energy of the two
states. One lies an energy 8(cr) above this average, and
the other an energy 8(o) below this average. Our

Lagrangian multipliers 8(E) and 8(o) can be expressed

7 B in this integral is a one-electron HaDIiltonian.
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in terms of integrals by use of Eqs. (43) and (44)

a(r)Ha(r)dr= h(E); a(r)Hoa(r)=8(o). (45)

The next special case we will consider is that of a
system with a symmetry C3,. Imagine a molecule con-
sisting of three identical nuclei at the corners of an
equilateral triangle (see Fig. 1). The symmetry opera-
tions of this group are o.i, oz, oz (reflections through
planes perpendicular to the plane of the molecule and to
the sides of the triangle passing through the points 1, 2,
and 3, respectively) E, the identity operation and C& and
C32 (rotations clockwise through 120' and. 240', re-
spectively). There are three irreducible representations
to this group, two of them are one-dimensional and one
of them is two-dimensional. Their matrices are given in
Table I. For arbitrary constraints the wave function
for the representation I'i will be [Eq. (38)j:
Pi ——fii' ——a(r)+ o ia(r)+ o za(r)

+o,a(r)+C,a(r)+ C,'a(r), (45)
with energy

E,= 8(E)+8(,)+8(.,)+8(,)+8(C,)+8(C, ). (46)

Similarly, for the representation I'2,

Pz ——fiiz =a(r) —o,a(r) —a za(r)
a.za(r)+—Cza(r)+Czza(r), (47)

E2 8(E)—h(oi) ———8(a z) —8(oz)+ 8(Cz)+8(Cz').

For the degenerate representation I'3 the energies will be
obtained by diagonalizing the matrix

Q(R)I', (R)8(R)= (c,;). (48)

This matrix has elements

c»= 8(E)—8(oi)+ z 8(o2)

+ z 8(oz) —z 8(cz) —
z 8(cz')

~ =(V'z)[—8( .)+8( )+8(C)—8(C') j,
c»= (v'z) L

—8(oz)+8(oz) —8(cz)+8(Cz') j
c22= h(E)+ 8(o.i)+-'[—8(o z)

—8(o.z) —8(cz)—8(Cz') ).
If we denote by 0= (o;;) the matrix which diagonalizes

(c;;), then the eigenfunctions corresponding to the two
eigenvalues of (48) will be [see Eq. (41)) oilfll +olzf»'
and o»f2iz+ oi2fzzs corresponding to the first eigenvalue,
and o2ifiiz+ozzfiz' and o2if2i'+ozzfmz' corresponding to
the second eigenvalue. Here

f,iz= a(r) —oia(r)+-,'[o.za(r)+ o za(r)
—Cza(r) —Cz'a(r),

f»'= (Qz)[—a za(r)+ oza(r)+Cza(r) —Cz'a(r) j,
f„'=(g-;)[—o,a(r)+ o,a(r) —C,a(r)+C,za(r) j, (50)

f2,'——a(r)+ o ia(r)+-', [—a za(r) —o za(r)
—Cza(r) —Cz2a(r) j.

S These matrices are given in Quuetgns Chemistry, p. 179
(reference 2).

f2i'=43[—Cza(r)+Cz'u(r) j,
f2z'= 2a(r) —Cza(r) —Cz2a(r).

(52)

For the other doubly degenerate state, fii' ——f»'=0. We
could equally well have adjusted the constraints so that
oia(r) = a(r) Th—at is, .so that a(r) is antisymmetric
with respect to 0 ~. In this case, one doubly degenerate
level would appear and the nondegenerate wave func-
tion forming a basis for F2 would appear.

V. CRYSTALLINE GROUPS

Crystalline groups contain translations as well as the
rotations, reQections, and inversions which appear in the
study of molecules. It is convenient to introduce the
notation used by Seitz, ' in his series of papers on space
groups, for the combined translations and rotations that
appear in these groups. Let us denote the operation
which consists of a rotation" 0. followed by a translation
through t by

&~l t). (53)

TABLE I. Irreducible representations of the group C3,.

1'i(R) 1 1

1g(R) 1 —1

10 10
1"~(R) 01 0 1

9 F. Seitz, Z. Krist. SS, 433 (1934); 90, 289 (1935); 91, 336
(1935);94, 100 (1936).

"Here the vrord rotation includes inversions and reQections.

Thus, we see that from the one function a(r) which is a
solution to our variation problem we are able to con-
struct two nondegenerate states and two sets of doubly
degenerate states. Ke cannot always construct so many
states from one function a(r). Suppose we had chosen
our constraints d(E) =d(o i) = 1; d(o.z) =d(o 3) =d(C3)
=d(cz2)=0. In other words, so that a(r) has the
property that oia(r)=a(r), i.e., a(r) is a symmetric
function, which is localized about the point 1, with re-
spect to the reflection r~. Under these conditions

8(E)= 8(o,) and 8(o.z) = 8(o,)=8(C,) = 8(C,'),

the last equality resulting from the fact that a~a(r)
=C3a(r)=a&a(r) =Cz'a(r) which is a consequence of
o.ia(r)=a(r). Under these conditions, using Eqs. (45),
(46), and (47):

Pi ——a(r)+ Caa(r)+ C&'a(r); Ei——2h (E)+8(C3);
4=0; E2=0. (51)

For the degenerate representation, we note that the
matrix (c,;) is already diagonal (c»= c» ——c»——0;
c»——28(E)—28(c&).Therefore, weonlyhave one doubly
degenerate state with energy 28(E)—28(CB) and wave
functions
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By this we mean, the transformation from one rectangu-
lar coordinate system x&, x2, x3 to another x&', x2', x3'

given by the equations

Xi = CKiiXi+CEi2Ã2+oi3$g+$i&

g2 = (t2lgl+ %2252+ O'23Ã3+12) (54)
&3 ~31&1+~32&2+&83&3+13

Here the matrix (n;;) represents the rotational part of
the operator (53) and ii, 12, to are the components of the
translation in the operator. {el0} denotes the identity
operator, {nl0}a rotation about the origin, and {Ol t} a
pure translation. The symbols (53) have the property
t using Eq. (54)g

{ lt}{alt'}={~l t'+t} (55)

O, t' is the vector arising from operating on t' with the
matrix n. From Eq. (55) we see that the inverse of

{alt} is {n 'l a—' t} We. know from the results of
Seitz that any operator R of the space group can be
written in the form {elR„}{alt}.In the case of no
glide planes or screw axis, all the t are zero and the set
of operators {al

t }form a group called the point group
of the crystal.

We set up our variation procedure as follows: We
seek a function a(r) for which

a(r)Ha(r)dr =min,

be simplified.

Q(R)I'(R)„Ra(r) =P(R )g( )
XLI'({.IR„})l'({ lt.})j„„{.lR.}{lt.} (). (60)

Using the diagonal property of I'({elR„}),we see that

LI'({elR„})I'({nlt })j „=e'~ "-r({eelt.})„„.
The wave functions corresponding to the eigenvalue
P(R„)e'"~'R"8(R„)are

P(R.)e'""""{elR-}P(~)l'({~lt-})-.{~lt-}a(r),

e= I .g„(61)
where g~ is the order of the irreducible representation.
Associated with the lattice point at the origin is the
function Q(a)1'({alt }) „{nit }a(r). This function
when translated through R„, multiplied by t.' " and
summed over R„gives the nz'" wave function associated
with the energy

Q(R„)e'"~ ""8(R„).

Before we go on to consider a special case of the
application of the variation procedure to a crystal
lattice, it will be necessary to review the results of
Seitz" "on the reduction of space groups. We observe,
firstof all, theeffectofageneraloperatorR= {nl t +R„}
on a wave function whose k value is ki

P(ki, r)=g(R„)e'~& R"{elR }a(r)

subject to the constraints

a(r){ol R„}a(r)dr=SR„,o.

If we call 8(R„) the Lagrangian multipliers corre-
sponding to the constraints (57), Eq. (38) becomes in
this case

H P(R) I (R)„,a(r) =P(R.)B(R.)
XP(j)I'({.

l R„})„,P(R)I'(R).,Ra(.). (58)

Here P(R) denotes summation over all operations in
the space group, P(R„) denotes summation over just
the pure translations in the space group, and P(j)
denotes summation over a row of the irreducible repre-
sentation. The results of Seitz" on the reduction of space
groups tells us how to find the matrices I'(R) ~ for a
space group. In particular the matrices I'({elR„})are
diagonal matrices. Equation (58) reduces to

H P(R) I'(R)„+a(r)
=LE(R-)&(R-)I'({el R-})-j&(R)I'(R)-Aa(r) (59)

Therefore, g(R) I"(R) +a(r) for all m are eigen-
functions with eigenvalue g(R„)b(R„)I'({elR })».
Since I"({elR })»has the form e'"~'"", the energy has
the form Q(R„)$(R„)e'"~'R".The eigenvectors can also

"F.Soitz, Ann. Math. 37, 17 (1936).

Applying R to this wave function yields

Rf={ lRe„}{~lt }P
= {elR }P(R )e'"&'""{nlt-}{elR„}a(r)

={elR }P(R„)e'~'R"{elnR„}{0'It~}a(r). (62)

Since aR„ is also an allowed translation, we can change
the index of summation in (62) to aR„=R„':

Xexp(iki n 'R„'){el R„'}l{nl
t }a(r)j

= {elR„}P(R„')
Xexp(inki R„'){olR„'}l{nl t.}a(r)j

=exp(inki R )P(R„')

Xexp(iaki R„'){elR„'}L{nlt }a(r)5 (63).
Ke see that the effect of any space group operation
whose rotational part is n is to transform P(ki, r) to a
wave function with wave vector nki. If nk, —k,g K,,
we see that we have generated a function which is
orthogonal to P(ki, r) and which has the same energy as
P(ki, r). (The same energy because the effect of any
operator, which commutes with the Hamiltonian on a

~Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).
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wave function, is to produce another function with the
same energy. ) The results of Seitz state that if for a
wave function with wave vector k&, nk~ —k~+ K, for all
n in the space group and any K; then the functions

4o(k~, r); 4= (n] I t-i)go, 4-= (n-I ta.}iso, (64)

form a basis for an irreducible representation of the
space group. If certain operators leave the wave vector
unchanged, then we shall manufacture by this process
different wave functions with the same value of k as k~.
Seitz's results go on to state that the wave functions
with a given value of k must form the basis for an
irreducible representation of that subgroup to the total
space group which leaves that value of k unchanged.

The other point that might also be mentioned here
concerns the symmetry properties of a given band in
reciprocal space. As can be seen from the previous
paragraph, if there is an energy associated with some
value of k in reciprocal space there must be an equal
energy associated with all points generated from k by
the operators a. Thus it is that the collection of all
energies from all bands plotted in reciprocal space has
all the symmetry properties of the reciprocal lattice.
This would allow us to define bands which have all the
symmetry properties of reciprocal space. Here, however,
we shall define a band as that collection of energies
arising from E(k) =P(R„)h(R„)e'"'R"8(R„) where
h(R„) is given by our variationa, l procedure. Let us see
under what conditions a band define'd in this manner has
all the symmetry of k space. We notice from Eq. (63) if

{nit }a(r)=ca(r) for all n where lcl =1 then E(k)
=E(nk) for all n. In the case of no glide planes or screw
axis (t =0), a(r) forms a basis of one dimension for an
irreducible representation of the point group. If we
desire to find a Wannier function which describes a band
which is completely symmetric in k space, this Wannier
function must have the property that any operation of
the point group has the effect of multiplying it by a
constant whose absolute value is one.

There is no reason to believe that our variation
procedure will not admit solutions which have other
symmetry properties than this simple one. In this case
(nl t }a(r), is also a distinct solution to our variation
problem. If we multiply Eq. (16) by (nl t },we get

&L(nl t-) a(r) 3

=&(R-)8(R-) (o I
nR-) (nl t-)a(r)

=Q(R„)8(n—'R„)(cl R„}(nlt.}a(r). (65)

The constraints are also satisfied since

(nl t-)a(r){el R-) fnl t-)a(r)dr

a(r){n 'I —n 't-)(olR-)(nit-)u(r)dr

=)I a(r){ol n—'R )a(r)dr= bR„, o. (66)

But if we have assumed {n
I
t }a(r) is not just a multiple

of a(r), then from (65) the energies associated with this
Wannier function are P(R„)8(n 'R„)e'R' ~, where

h(n 'R„)= ) a(r) f el n 'R„)Ha(r)dr

t (nl t )a(r) f ol R„}H(nl t }a(r)dr

f
a(r) f el R„)a(r)dr

Thus, the band of energies this Wannier function gener-
ates are distinct, at any point in reciprocal space, from
those of a(r) and, therefore,

)"a(r){nl t )a(r)dr=0, (67)

=P(R ')8(R„') exp(ik nR„')

=P(R„')8(R„')exp(in 'k R ')

= nE(k). (68)

Thus we see that the symmetry properties of the band
defined in terms of a Wannier function may be summed

up by saying that if for any operation of the point group
(nl0}a(r) =ca(r);

I cl =1 then nE(k) =E(k). We shall
now illustrate these general remarks with a special case.

Consider a two-dimensional cubic lattice Lsee Fig.
2(a) j. This space group ha, s no glide planes or screw
axes. The point group is the group C4„. In Fig. 2(b) we
have drawn reciprocal space. The dotted lines represent
the edges of the first Brillouin zone. The operations of
the point group are shown as well as points of special
interest in reciprocal space. 0.~~ and 0~2 are rejections
through the X and V axes, respectively. o-a& and 0 a2 are
reRections through the 45-degree lines. The other
operations of the point group are E, C4, C2, C4', the
identity and clockwise rotations through 90', 180', and
270', respectively. I et us consider a wave function whose
k vector reaches from the origin to the point u in
Fig. 2(b). Let us And nk~ for all n in the point group.
Figure 3 shows the k values generated by this process.
We notice that no two operators generate the same value
of k. Therefore, the functions

fo {oeg
I 0}Pg, ——, fo {C4'

I 0)Pg——

form a basis for an irreducible representation of the
space group. Clearly the translations have for matrices

I'((ol R„))4=8;,e'"' R"; i, j=1~ ~ ~ 8. (69)

by Eq. (9).We can, however, easily get the energy band
associated with (nl t )a(r) from that of a(r) by per-
forming the operation n on E(k), since

P(R„)8(n—'R„) exp(ik R„)



()
FIG. 2. {a)A two-dimensional lattice with square symmetry; {b) The 6rst Brillouin zone for the two-dimensional square

lattice, showing the operations of the point group and points of special interest in reciprocal space.

The matrix representing C2 is an eight-by-eight matrix.

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0I'({Cs(0})=
1 0 0 0
0 j. 0 0
0 0 i 0
0 0 0

0 0 0
0 1 0 0
0 0 T 0
0 0 0oooo
0 0 0 0
0 0 0 0
0 0 0 0

This is merely a permutation matrix which is obtained
by rotating Fig. 3 through T80 and writing in matrix
form the permutation this induces on the numbers one
through eight. We can similarly And matrices for all the
operators of the point group. Using the matrices found
in this way, let us construct our Bloch functions from
Wannier functions by the use of Eq. (61).Let us assume
that we have found a solution to our variation principle,
a,(r), which has the same symmetry properties as a

p,-like atomic orbital under the point group, i.e., a
function whose symmetry properties are like xf(~ r~).
Thus

properties of energy bands, that

jV 0)—g (8)—jV (4) —jV (~)

g (2) —g (3)—~ (6) —g (7)

Using Eqs. (61), (69), (I), and (71), we are able to
construct Table II. The entries in the table denote the
quantity g(a)l'({n~ t }) ~{nj t }u(r), i.e., thefunction
associated with each lattice point which when added up
give the Koch function tEq. (61)j. The columns give
aH the Bloch functions which have the same energy, and
the rows give all the Bloch functions with the same k
value. Thus, if we wished to construct from this table a
band which was completely symmetric and which had
the energies of a,(r) in region I of Fig. 4, we would need
to take a,(r) in regions I and VIII, a„(r) in regions II
and III, —a (r) in regions IV and V, and —u„(r) in
regions VI and VII. If we wished to describe a band

o'tu (r)=u (r),
o.era, (r) =a„(r),
C4u (r) = —a„(r),

C 'a.(r) = —u„(r),

o ~su, (r) =—a,(r),
o dsu, (r) = —a„(r),
Csa (r) = —a,(r).

Let us use the notation

~*'"=Z(R.) '"' ""@(R )

$,(R )= "a,(r)E4,(r —R„)dv.
(72)

FIG. 3. ky and a11 of the k vectors generated from it by the
elements of the point group for the two-dimensiona1 square

We see at once, from our discussion of the symmetry
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which was completely symmetric and had the energies
of a„(r) in region I, we would need to take a„(r) in
region I, a,(r) in region II, —a,(r) in region III, a„(r) in
region IV, —a„(r) in region V, —a,(r) in region VI,
a,(r) in region VII, and —a„(r) in region VIII.

e notice at once the similarity of these results to
those of Slater" for the perturbed two-dimensional
Mathieu problem. In his case he started out with
Wannier functions, which were an exact solution to the
two-dimensional Mathieu problem and had p,-like and
p„-like symmetry. In order to construct bands that had
the symmetry properties of reciprocal space, he was
forced to make bands whose Kannier functions were

p, -like over part of momentum space and p„-like over
the rest of momentum space. A single Wannier function
can describe the symmetric band in our case, just as a
single Wannier function could describe the symmetric
band in Slater's case. Thus, using column 1 of Table II,
we see that our symmetric band, whose energies are
those of a,(r) in region I, could. be described in terms of
the wave function

where a(k) is a function which is +2 in regions I and
VIII, 0 in regions II, III, VI, and VII, and —I in
regions IV and V, and b(k) is the same function rotated
through 90'. Expanding a(k) and b(k) in Fourier series,

a(k) =g(R.)e-'" R c(R„),

b(k) =Q(R„)e '" R.d(R~)
(74)

we 6nd that we can write f(k, r) as

P(k, r) =g(e, m)e'"'"" ~'Lc(R~)a, (r R„)—
+d(R„)a„(r—R„)j

=g(q)e'R. R, P(m)t c(R )a (r R R~)

+d(R„)a„(r—R —R,). (75)

The Wannier function describing the symmetric band

TABLE II. %annier functions associated arith the points of
reciprocal space indicated in Fig. 3.

Q g(2) P' (3) . Qg(4) Qg(6) Q' (S) Q~(7) Q~(8)

RI a,
k2 a„
k3 a„
k4 —a
k5 —a

-ay
k7 —ay
kg a,

ay
a—a
Cy—ay—a~
a—Cy

—ay—a
a,—a
ay
ag—a
Cy

—a„
ay
a,
aa
ay
a„—a~

—a~—a—Cy
a
a~
a„
ay—C

Cy

—a,
ay—ay

a,—Cy

a~
a„
Cy—a—a~—a„—a
Cg

"J.C. Slater, Phys. Rev. 87, 807 (1952).

p(k, r) =P(R„)e'"R"La(k)a, (r —R„)

+b(k)a„(r —R„)j, (73)

FIG. 4. Reciprocal space vrith various regions numbered.

(upper band in Slater's case) is thus

a'(r —R,) =P(m)/c(R )a,(r—R —R,)
+d(R )a„(r—R —R,)j. (76)

The c(R„) and d(R ) we have here are exactly analo-
gous to the c which appear in Eqs. (52) and (53) of
Slater's paper. The Wannier function forming the
symmetric band whose energies are those of a„(r) in
region I (Slater's lower band) can be described in a
similar manner.

We can gain some insight into what energies will be
associated with the a (r) Wannier function in our case
by using the results of Slater's paper. In that paper we
see that after perturbations of a general cubic nature are
applied to the unperturbed two-dimensional Mathieu
problem there are two symmetric bands, an upper one
and a lower one, which touch only at the center and
corners of the unit cell. In regions I and VIII, our
p;like Wannier function has energies that are those of
the upper band. In regions II and III they become those
of the lower band with a discontinuous change along the
45' diagonal. In regions IV and V they are those of the
upper band and in region VI and VII they are those of
the lower band. Thus we see that our Wannier function
a,(r) does indeed generate an energy surface which does
not have all the symmetry of reciprocal space. We can
also see that we may expect a general a, (r) to produce
energy surfaces with discontinuities along the 45'
diagonals.

Since the 45' diagonals in momentum space seem to be
lines of special interest, as a final example of the applica-
tion of our variation procedure let us find the Bloch
functions constructed from a, (r) for a wave function
with k vector at the point b of Fig. 2(b). In Fig. 5 we
show a'll the wave vectors which arise from k& by the
operations of the point group. We notice that the
operations E and 0 dq, leave the vector k~ invariant. The
wave functions with wave vector k~, must form a basis
for an irreducible representation of the group consisting
of E and Oe&. This group has a symmetric b& and an
antisymmetric representation b2. If we seek a representa-
tion of the space group whose wave function with k
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FIG. 5. li1 and all of the k vectors generated from it for the point 5
in reciprocal space.

value k1 forms a basis br, the matrices of the operations
of the space group are

r({e~R„})=Se'~, .R„

IO 010 0100
{C ~0}=, {C ~0}=,etc. (77)

0001 0010
0100. 1000

If we carry out the procedure of Kq. (61) we can, in
analogy to Table II, construct Table III. Notice all the
wave functions corresponding to a given k value are the
same, since E &"=E,"~=X,'"=E &'&. If we carry out
the procedure for the Bloch functions which are to form
a basis for b2, we must multiply the matrices of all the
reflections of (77) by —1 and once again carry out the
procedure of Eq. (61).This yields Table IV. Therefore,
we see that at the boundary of regions I and II in mo-
mentum space the wave functions become the sum and
diBerence of Bloch functions constructed from x and y
like Wannier functions, which reflect the anomalous
behavior of the energy at these points. Similar calcula-
tions to the above can easily be carried out for the other
special points. The points c and d are of some interest
because if we carry out our procedure for them we find
that we can construct two wave functions with the same
wave vector and energy, hence these are points at which
bands "stick together. "

From the discussion of the two-dimensional square
net we see we can get a band of energies associated with
a Wannier function a,(r) and another band associated
with the Wannier function a„(r) whose energies are the
same as for the band rotated through 90'. These two
bands can be cut along the 45' diagonals and combined
to form two symmetric bands with Wannier functions
like (76) associated with them. Thus, there are two
alternative ways of describing these two bands. If we
describe them in terms of x-like and y-like %'annier
functions as the atoms get further apart, these functions
have symmetry properties which allow them to become

solutions of Schrodinger's equation for one isolated
atom. If we describe them in terms of functions like (76),
since the value of c(R„) or d(R ) at any lattice point is
independent of the nuclear separation, being given by
symmetry properties, the |A'annier functions will not
reduce to a wave function about a single atom. This
method of description, however, has the advantage of
giving symmetric bands without any discontinuities
along the 45 diagonals. For large internuclear distances,
Wannier functions with x-like symmetry are clearly
advantageous since they reduce to atomic wave func-
tions. It may be, however, that at smaller internuclear
distances the Wannier functions (76) will be an equally
convenient way to describe energy bands since the
atomic correspondence may be completely lost anyway.
These alternative ways of describing energy bands will
exist for all lattices in three dimensions as well, since
none of the remarks we have made here made special use
of a two-dimensional lattice.

)t a(r)Ha(r)dr=+(e, m)c„c H„„,

H = u„(r)Hu (r)dr,

(79)

and our constraints can be written

a(r)a(r —Ry) =Q c~c~O~~ ~= 8R~, 0;

0„„&= u„(r)u„(r —R„)dr.

(80)

Using the method of Lagrangian multipliers and varying

TAszE III. Wannier functions associated with the points
of reciprocal space indicated in Fig. 5 (for a symmetric repre-
sentation).

kg
kg
hg
h4

g (4)

VI. A NUMERICAL METHOD

The variation procedure outlined in this paper can, of
course, be carried out numerically. %e shall do it here
for the calculation of Wannier functions in crystals.

Suppose we were to approximate our Wannier func-
tion for the crystal by a linear combination of functions
which form a complete orthogonal set (for instance
atomic orbitals),

a(r) =g(u)c„u„(r). (78)

Under these conditions
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the c's to make J'a(r)Ha(r)dr a minimum, and using
the orthogonality of the I's, we get the simultaneous
equations

TABLE IV. %annier functions associated with the points
of reciprocal space indicated in Fig. 5 (for an antisymmetric
representation).

I

Z(m)c I a..-h(O)8„-—Z (p)0-."g(R.)g=o,
y&0

m=1, . (81)

In order to And the solutions of these equations, we must
set the determinant of the coefIicients equal to zero.

gg(s)

kg
h2
ka
h4

a,—uv
u~+av
u~+uv—ua —uv

Qg(3)

—a~+ uv
a* av
u uv
ua+uv

iH „—5 „h(0)—P (p)$(R„)O „ i
=0. (82)

y)0

our secular equation would reduce to

ia„„—5..h(0) i
=O. (84)

The orthogonality (83) means that we must combine the
function u„(r) at the origin with other atomic functions
about the other lattice points to produce a function
u„'(r) with the necessary orthogonality. This could for
example be carried out by the method of Lowdin. "The
secular Eq. (84) could be solved directly for the average
energy of the band. We could then proceed to compute
the shape of the band by. calculating the Fourier
coeKcients of the energy

h(R„)= u(r R„)SIa(r)—dr; a(r) =Q c„u„'(r). (85)
J

Lowdin carries out a discussion of the case where only
one atomic orbital is used in this process.

'4 P. O. Lowdin, Phys. Rev. 18, 365 (1950}.

This equation merely determines a relation between the
unknown quantities h(R„)-.Equation (82), coupled with
the simultaneous Eqs. (81) and the constraints, how-
ever, is sufhcient to determine the h(R„) and the c's. We
can notice, however, that if we make our initial func-
tions orthogonal, in the sense

(83)

VII. CONCLUSION

In this paper we have been able to de6ne the Wannier
function in a crystal in terms of a differential equation
and a variation procedure. These two methods of
defining theWannier function are methods that make no
recourse to dining the Wannier function in terms of
Bloch functions. We are thus able to 6nd the Wannier
function for a crystal without ever solving Schrodinger's
equation. It is also seen that the methods used in this
paper may also be used to advantage to actually com-
pute energy bands in a solid.

Through the medium of group theory we have also
been able to define localized functions in molecules
which have many of the properties of Wannier functions
in a solid. They have orthogonality properties. They
also have the advantage that one of these localized
functions can be operated on and combined with itself
in many ways to give many solutions to Schrodinger's
equation. In this sense, these functions relate the wave
functions and energies of a great many states of the
molecule or crystal. The localized functions are similar
in many ways to the "equivalent orbitals" of Lennard-
Jones."
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