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The Theory of Electron Diffraction
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1t is shown that the omission of an angle-dependent phase factor in the scattering amplitude constitutes a
signi6cant error of the Born approximation, as customarily applied to electron di8raction experiments.
Some general properties of the scattering amplitude are discussed in relation to the Born approximation
and used to derive a simple estimate of the required phase. The theory, thus corrected, is found to remove
the need for assuming rather distorted structures in some molecules containing heavy atoms. The eBect
discussed is present quite generally in the interference of waves scattered by differing potentials and becomes
more prominent as the particle energy is lowered. In the Appendix a semiclassical procedure is used to treat
the analogous eBect in proton diffraction.

' 'HE Born approximation is well known to predict
exactly, in the nonrelativistic region, the intensity

of electrons scattered by a Coulomb field. Although still
a perturbation method, it has seemed in this case nearly
immune from the usually attendant inaccuracies and
has been widely and successfully used in the analysis of
electron diGraction patterns. Con6dence in the approxi-
mation as ordinarily applied to molecular structure
determinations has extended even to a number of cases
which have seemed to reveal rather improbable struc-
tures. On re-examining several of these (which are
briefly noted in Sec. I), we have found that a phase
change, heretofore neglected, which takes place on
scattering is the probable cause of the anomalies. ' It
may, in extreme cases, lead to strikingly altered con-
clusions about molecular structure. The error is one
characteristic of the Born approximation and appears
whenever it is applied to the interference of waves
scattered by potentials of diGerent strengths. The phase
shift in question, which depends signi6cantly on the
eRects of screening, is calculated approximately in Sec.

. II, and the results are then compared with experiment.

I. NATURE OF THE EFFECT

The diGraction patterns of electrons scattered by
gases consist of weak concentric rings superposed on the

intense forward maximum of Coulomb scattering
(modified by screening). Fourier analysis of the ring
structure gives the distances between the scattering
centers of the molecule. In some molecules containing
heavy atoms a curious eGect involving these distances
has been found. Uranium hexaQuoride, in which the
eGect was hrst noted, might be expected to show octa-
hedral symmetry about the uranium atom. The mole-
cule has instead appeared rather puzzlingly asymmetric:
the calculated curves showing the distribution of inter-
atomic distances' have two distinctly separated peaks
at 1.87A and 2.17A rather than a single one corre-
sponding to a unique U —F bond length. Information
from other sources, however, in no way condrms this
picture. The data on infrared spectra, molecular
entropy, and the dipole moment are all consistent with
the symmetrical structure. ' Similar apparent asym-
metries have also been found to occur in a number of
other molecules of the form MX, containing single
heavy atoms. The distances between the heavy atom
and its neighbors are apparently split into two equal

groups diGering by an amount roughly proportional to
Z~—Zz. For equal atomic numbers as in the heavy
molecule I2, nothing unusual is observed.

YVe shall not dwell upon the valence-theoretical
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attempts which have been made to explain these
results. The smoothness of the dependence on nuclear
charges indicates an inadequacy of the scattering
theory rather than any actual eGects of chemical
bonding. In demonstrating this we shall show that the
molecules in question are in fact as accurately sym-
metrical as the present di6raction techniques may
discern.

Of the various inaccuracies implicit in the conven-
tional calculations, the most obvious, perhaps, is the
use of the Born approximation for the atomic scattering
amplitudes. Other points more specifically molecular
in nature are the neglect of multiple scattering (by the
difFerent atoms) and of valence distortion of the charge
distribution. A strong dependence on the difference of
atomic numbers cannot, however, be produced by either
of the latter two effects, whereas interference between
corrections to the atomic scattering amplitudes may
easily do so. For this reason we assume that the wave
scattered by a molecule may still be represented by a
superposition of waves f,(k', k)e""/r scattered by the
individual atoms (j=1,2, 3, ) from the direction k
to the direction k'.

The amplitudes f, (k', k) may be shown quite gener-
ally (see Sec. II) to be complex functions of the scat-
tering angle. It is characteristic of the Born approxi-
mation, however, that these amplitudes, given by the
familiar matrix element,

f (k' k)= — ~ '" ""U()d,
2~a' &

& f'*(0)f (0) =&
I f*(0) I I f «) I

s)2Sr'
sinsr, ;

Xcos f g;(0)—q;(0)), (2)
sr;;

are always real for atomic scattering potentials U(r)
(or more generally, for any potential unchanged by
inversion in the origin). An example close at hand is
scattering by a pure Coulomb held, for which the
expression (1) predicts exactly the absolute value of
the scattered amplitude but omits at the same time a
phase factor sensitively dependent on the angle of
scattering. 4 Abbreviating the amplitudes for the
moment, as f, (0), we take explicit account of their
phases by writing them as

I f;(0)I exp(iq, (0)). The
intensity of the scattered electrons averaged over the
random orientations of the gas molecules is then
proportional to ~VV~ gkV'4 ~ =o, —

fg *V'Pg —PgV'fg *=0,
(4a)

(4b)

which, integrated over the volume of a sphere sur-
rounding the scatterer, are immediately expressed as
the surface integrals

f;(8) are real. Then the sum of the terms contributed
by a split pair of distances r,;= ro 0—and r;; = ro+0 with
similar atoms j and j', would be approximately

2
I f'(0) I I f'(0) I

co»»i»ro/pro. (3)

(The amplitude difference, of order 0/ro, is neglected. )
This expression is of just the form that would be

given by (2) if the phase difference
I g, (0)—g, (0) were

proportional to s, and if no distance splittings at all
existed. The scattering angle at which the amplitude of
the wave corresponding to (3) first changes sign (and
vanishes) is given by

I g;(0) —g, (0) I

= m/2. In practice
it is the behavior of the diffraction pattern in the
neighborhood of this critical angle that has been
principally responsible for the interpretation in terms of
beating sine waves and its implied molecular asym-
metry. It is hoped that in future experiments the very
faint outer fringes of the diffraction pattern may be
observed at scattering angles sufficiently large to
include the second critical angle

I q, (0)—q, (0) I
=3~/2.

Since these data are lacking, the correct. prediction of
the scattering angle for which the phase difference is
w/2 is the only quantitative test now available.

Moderate deviations of.the phase shift from linearity
in s on either side of the single critical angle observed
will not very noticeably change the character of the
predicted pattern. Indeed the desire that

I g, (0) —e, (0) I

be linear in s comes from comparison with the asym-
metric model, whose fit to the experimental diRraction
pattern, although good, is not beyond improvement.
The theoretically predicted phase differences (see Sec.
II) which are monotonically increasing functions of s
(but not proportional to s) appear in fact to fit the
observed patterns more satisfactorily than the asym-
metric model. '

II. THEORY

Before specializing to the atomic case, it will be useful
to discuss several quite general properties of scattering
amplitudes. I.et us suppose P~(r), Pj,.(r) and P ~ (r)
are solutions of the Schrodinger equation for equal
energies arising from initial plane waves in the direc-
tions k, k', and —k', respectively. They then obey the
relations

where s=
I
k —k'I = (4m/X) sin(0/2), and r;; is the

distance between atoms i and j.
To see the way the phase g(0) may explain the

apparent asymmetry, let us suppose the amplitudes
4 For the exact solution see N. F. Mott and H. S. W. Massey,

Theory of Atomic Collisions (Oxford University Press, London,
1949), second edition, p. 48.
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f(k', k) = f(-k, —k'), (6)

which expresses the reversibility of the scattering
between any pair of directions. From (Sb) we find the
relation

j. k—(f(k', k) —f*(k, k') }=— f*(k",k') f(k", k)dn, „,
2z

' ' 4~J
(7)

in which the vector k" on the right is integrated over
the sphere

~

k"
~

= k. For the particular case k'= k, Eqs.
(4b) and (5b) express the conservation of the particle
current. Equation (7) then reduces to

Imf(k, k) = (k/4m)o (g)

(where o is the total scattering cross section), a relation
which illustrates how fundamental is the requirement
that the amplitude of the scattered wave be complex
rather than real.

The more general form of Eq. (7) may be simplified
by assuming that the scattering potential has inversion
symmetry V(r) = V(—r). Nothing then is changed by
inverting all vectors in the origin, and it follows, in
particular, that f(k', k) = f(—k', —k). The latter rela-
tion together with the principle of reversibility (6)
shows that the scattering amplitude is symmetric:

f(k', k) = f(k, k').

Equation (7), under our assumption, then reduces to

k
Imf(k', k) =— f*(k', k")f(k", k)dQ|, , (10)

4~~

a relation we shall have frequent occa,sion to apply.
The reason for the inadequacy of the Born approxi-

mation (i.e., the first term of a power series expansion
in a= —Ze'/Av) in the present context is easily seen
from (10). For f(k', k) =O(n) we have Imf(k', k)
=O(n'), from which it follows that the phase increases
with u, g(k', k)=argf(k', k)=O(0.). Clearly then we
must either go beyond the erst term of the series or
employ a fundamentally more accurate formulation of
the scattering problem. In the present work we shall
use some assumptions based on our experience with

with dS an element of surface. If the radius of the
sphere is made suKciently large, the wave functions
assume their asymptotic values on the surface. We
may then substitute

I

Pl, (r) =exp(ik r)+ f(k„, k) exp(ikr)/r

(where k„ is a propagation vector in the direction r;
~k„~ =k) together with the analogous expressions for
the other wave functions. The asymptotic values of the
surface integrals for large sphere radii are then easily
found and furnish two important relations involving
the scattering amplitude. The first of these, coming
from (5a), is

Coulomb scattering to simplify the higher terms of the
Born series, thereby avoiding a good deal of numerical
work but allowing still a reasonable comparison with
experiment. We shall leave to a later treatment the
refinements introduced by a basically diGerent and more
accurate procedure for approximating the scattering
amplitude, calculations for which are now in progress.

At the energies at which diffraction experiments are
performed ( 40 kev), electron wavelengths are sub-
stantially smaller than the atomic radius a, (ka~10 to
20). For all save small angles (8~1/ka), therefore, the
intensity of scattering is negligibly affected by the
screening of atomic fields. For these angles the Ruther-
ford formula and, hence, the Born approximation
intensities are nearly exact. At smaller angles the
eAects of screening are partially accounted for by the
structure factor implicit in (1). We shall assume for
simplicity that the Born approximation (1) represents
the absolute value of the scattering amplitude at all
angles. The characteristic features of the simpler dif-
fraction patterns are in any case quite insensitive to the
over-all atomic scattering intensities.

The difference between screened and unscreened
Coulomb fields becomes particularly important for the
phase of the scattering amplitude. For the unscreened
field the phase of the exact solution' contains principally
the coordinate-dependent term —n log1kr(1 —cos8) },
which increases indefinitely with r, the distance from
the scatterer. This is, of course, a property peculiar to
the slow decrease of the Coulomb potential and is absent
for screened fields. A simple estimate of the phase in
the screened case may be obtained by substituting the
Born approximation amplitude fe(k', k) on the right
side of (10) and equating both sides to order n'. We
obtain

V(r) = —Ze'e "~~/r,

for which the Born approximation amplitude is

fs(k', k) = —2nka'/(~ k' —k ~'a'+1)

(12)

The angular integration of (11) is not 'difFicult to
perform, and the resulting phase, as a function of the
scattering angle 8, is

with

g(8)= —2ni 1+ iA tanh '2, (14)
4k'a' sin'(8/2) 3

sin(8/2)

t (1+(1/2k'a') )'—cos'8/2]*
(15)

k
g(k', k) = —fii (k', k")fg(k", k. )dn, , (11)

4nfe(k', k) ~.
an expression which is equivalent to the second Born
approximation.

To evaluate the- phase, we chose as an analytically
convenient model of the screened field the exponential
form
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Since 2k'u'&)1 these expressions may be reduced to

1+s'u' SQ

rl(8) = —2cr tanh '
su(4+ ssu') & (4+s'us) &

(16)

/&ed
a

2

I

6
Q4 2k4 SIA/g

Fro. 1. Graph of the dependence of the phase on scattering angle:
~ g(8)/n ~

ss 2ku sin(8/2), as given by Eq. (16).
' It may also be seen from the work ol R. Dalitz LProc. Roy.

Soc. (London) A206, 509 (1951)g, who has derived the asymptotic
form (17) and shown that its occurrence as a phase is consistent
with the third Born approximation as well as the second.

VThis behavior is implicitly made use of in computing the
Coulomb scattering of identical particles when one of them is
screened (e.g. , p-p scattering). The constant phase factor by
which the Coulomb and correctly screened solutions dier is not
observed. For other potentials the interference effect involved in
the scattering of similar particles will also require a knowledge
of the angle-dependent part of the phase, omitted in the first Born
approximation.

80ur procedure here actually goes beyond the second Born
approximation, which, strictly speaking, would only consider the
terms of {2) to order a', and would thereby eliminate the con-
tribution of the phase entirely.

in which we have once again used the notation

s=
~

k' —k
~

= 2k sin(8/2).

A graph of
~
sl(8)/n~ according to Eq. (16) is given in

Fig. 1.For the forward direction, the value rl(0) = —a/2
is quite insensitive to the screening radius. For large
angles the phase is asymptotically

rl(8)~—2a log(2ku sin8/2), (17)

the value of which may in practice be appreciable, even
for the lighter elements.

The validity of the expression (16) for the phase, at
least for large angles, is somewhat stronger than its
derivation by the present perturbation procedure might
imply. This may be seen by exploiting the similarity of
the large angle scattering by screened and unscreened
Coulomb fields. ' In particular the dependence of the
asymptotic phase (17) on 8 is the same (apart from an
additive constant) as that of the exact Coulomb phase,
a fact which implies correctly that for angles 8))1/ku
the scattering amplitudes for the screened and un-
screened fields differ only by a phase factor, inde-
pendent of angle. '

In undertaking comparisons with experimental results
we shall assume that the estimate of the phase given
by (16) is sufficiently accurate to be used directly' in

the formalism of Sec. I. The accuracy of this method is
diKcult to estimate without performing numerically
more involved calculations. We may mention, however,
that the preliminary results obtained using a more
accurate method (based. on the smallness of a/ku
rather than a) are favorable. They indicate that the
accuracy of (16) for rz~i is roughly commensurate with
that of the screening model (12).

III. COMPARISON WITH EXPERIMENT

While the phase shift we have discussed will modulate
the intensities of the diBraction patterns of all heter-
atomic molecules, its eGect is most strongly felt when'

large differences in the nuclear charges prevail, In such
cases the attempt to account in the conventional way
for the observed modulation has led, as we have already
noted in Sec. I, to the assumption of curiously unsym-
metrical molecular structures. For a proper interpre-
tation in the light of the present work, the diffraction
data for each of the molecules in question will eventually
require detailed re-analysis. A simple way, however, of
checking the corrected theory is to show the way in
which the treatment based on symmetrical models with
phase shifts is able to duplicate the numerical results
previously arrived at for the apparent asymmetries. To
do this we note by comparing (2) and (3) the approxi-
mate relation

28= sr/scrip. ~

in which s„;i is the value of 2k sin(8/2) for which the
phase difference is sr/2. An approximate value of the
screening distance, adequate for the calculation is
u=O. S28Z &A. The predicted apparent "splits" (28)
that result are listed in Table I along with the cor-
responding experimental values. Their agreement, it
may be seen, is quite close. It follows that for these
molecules the diAraction patterns predicted by the
present formulation will be in good agreement with
those observed. The intensity curve calculated for UF6
at 40 kev seems to show even better agreement than the
previous work for the central and outer parts of the
pattern. ' This is a consequence of the deviation of the
phases from proportionality to s.

A large number of electron diGraction studies of
molecules containing heavy atoms are on record in
which nothing anomalous was observed, a circumstance
which no doubt helped delay the recognition of the
phase shifts. It is important, therefore, to remark that
in all the adequately reported cases, the pattern was
observed only at angles at which the phase di6'erence
is less than the critical value sr/2.

The phase given by Eq. (16) is increased by lowering
the electron energy, and its modulation of the diGraction
pattern varies more rapidly with s. The resulting energy
dependence of the pattern is a feature absent from any
treatment based on the erst Born approximation. Some
photographs of UF6, taken at 10 kev do indeed show

changes in the direction predicted, ' and will be analyzed
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in forthcoming work. It should be noted, however, that
the simple approximation we have here used for the
phase becomes less reliable as the parameter Ze /kv is
increased and requires improvement for the heavier
elements at energies less than 40 kev. The computations
for this are in progress.

In crystal diffraction an eGect may be observable
even for lighter atoms, for which the phase shift is small.
This will happen, for example, if the contributions to
the scattered amplitude by two classes of atoms are
nearly equal in magnitude and opposite in phase, so
that a small phase shift can give rise to a large relative
change in the intensity. We have examined the pub-
lished intensity anomalies of fluorite, cuprous chloride'
and. zinc oxide. ' The 6rst two appear well explained in

this way; zinc oxide is not. In conclusion we may note
that it would be most interesting to observe the modu-
lation of the diGraction pattern for a diatomic molecule.
Little room would be left for belief in a structural
anomaly.

APPENDIX

Note on Proton Diffraction

It may be of interest to consider the rather diGerent
situation which arises in the diGraction of proton beams.
The energies of protons with wavelengths suitable for
diffraction work are lower (~0.5 to 15 kev) than the

-corresponding electron energies. Their velocities, of
course, are smaller still, and we must consequently deal
with quite large values of the parameter n=Zes/ks. For
2-kev protons, for example, and Z=30 we have 0,~100.
It is clear that the approximation used in treating
electron scattering will hardly avail us here. Since the
proton wavelengths are furthermore substantially
smaller than atomic dimensions (ka~160 in the above
example), the scattering may instead be treated by a
simple semiclassical procedure. We assume, in the
spirit of the familiar optical analogy, that the phase of
the wave function at any point is 1/h, times the classical
action integral J'p dr taken along the dynamical path
leading to the point. Since the required integration
unfortunately cannot be performed analytically for the
exponentially screened field (12), we employ instead
the somewhat simpler model in which all of the shielding

' L. H. Germer, Phys. Rev. 56, 58 (1939).
'0 H. J. Yearian, Phys. Rev. 4&, 631 (1935).

TAaLE I.Comparison of apparent distance splittings observed with
those predicted.

Molecule 01stance
Apparent split (A)

Observed Calculated

UF6
Os04
W(CO) s

WF6
WCl6
IFS
Mo(CO) 6

MoF6

F
Os —0
W—C
W. 0
W—F
W—ClI-F
Mo —C
MQ ~ 0
Mo —F

0 30b, c

0.23d
. 0.24d
0.23
0 23c

0.18'
0 13d, g

0.13
0 14e

0.28
0.24
0.24
0.23
0.22
0.18
0.15
0.13
0.12
0.12

a For 40-kev electrons, employing the relativistic value of n.
b S. H. Bauer, reference 2.
e O. Bastiansen, unpublished work in these laboratories.
d W. F. Sheehan, Jr., thesis, California Institute of Technology, un-

published (1952).
e From re-examination of photographs described by R. A. Spurr, thesis,

California Institute of Technology, unpublished (1942).
f Results of M. T. Rogers, thesis, California Institute of Technology

(1941), adjusted to a symmetrical (2-,': 2-,') split. The actual I-F distances
may well not all be equal.

& Mo —C and Mo. ~ .0 splits assumed equal.

charge is assumed localized on a sphere of radius a:
t'1 1)

V(r) =Ze'( —— [, r(a,
(r a] (A.1)

in which

y =1+(2n/ka), n) 0,
s= 2k sin(8/2).

The phase (A.2) vanishes for forward scattering, as it
must in a semiclassical treatment, , since such particles
'are completely uninfluenced by the potential. Near the
forward direction then (sa«2ny ') the phase assumes
the simple form

g(()) = —2ka sin(8/2). (A.3)

Since this is independent of nuclear charge it will not
affect the diffraction pattern Lsee Eq. (2)). For larger
scattering angles, however, the eGect of the phase will
once again be felt. The scattering in the region between
the two extremes of 0. small and large will be treated in
a forthcoming paper.

The integration along the trajectories then yields

tv'v
r)(8) =— log 1 fsa+ (s'a'+4n'y —') &j ~ (A.2)

l2


