The Angular Momenta of the Excited States of Pt^{196} [†]

ROLE M. STEEREN

Department of Physics, Purdue University, Lafayette, Indiana (Received December 15, 1952)

THE angular correlation of the Pt^{196} gamma-rays has been measured before' and was interpreted as characteristic for two quadrupole transitions between levels of angular momenta I of 2, 2, and 0. Internal conversion data' indicate electric quadrupole radiation for both transitions.

Recently, a number of parity unfavored gamma-transitions were found to be a mixture of magnetic dipole and electric quadrupole radiation. $3-5$ A similar mixed transition may be expected for the first gamma-ray of the Pt^{196} cascade, being due to a parity unfavored transition between states of the same angular momentum $(I=2)$. The accuracy of the former Pt¹⁹⁶ angular correlation measurements was not sufficient to allow a determination of the dipole admixture intensity; the Pt¹⁹⁶ gamma-gamma correlation was therefore remeasured using much improved experimental techniques and evaluation methods. ⁶

To avoid the detection of scattered radiation two techniques were employed which yielded the same angular correlation (within 1.5 percent): (1) the two NaI(Tl) crystals which were used to detect the Pt¹⁹⁶ gamma-rays of 0.330 Mev and 0.358 Mev were covered with 0.2-cm lead on the front and 1.5-cm lead on the side, or (2) pulse-height discrimination was employed making the use of any lead absorber unnecessary. The discriminator bias was set at the lower edge of the 0.330-Mev photopeak. The data for the Pt^{196} gamma-gamma angular correlation are shown in Fig. 1.

The Au¹⁹⁶ sources used were in the form of dilute solutions of AuCl₃ in order to obtain the maximum angular correlation;^{7,8} however, sources of dry AuCl₃ and Au¹⁹⁶ imbedded in gold (Au^{196}) produced by the Au¹⁹⁷(n, 2n)Au¹⁹⁶ reaction) showed the same angular correlation as above (within 3 percent).

The data, fitted by least squares to an angular correlation function $W(\theta) = 1 + a_2 \cos^2 \theta$, $+ a_4 \cos^4 \theta$, taking the finite angular resolution of the apparatus into account,⁹ give for the correlation coeffi-

FIG. 2. Decay of Au¹⁹⁶ and the angular momenta of the excited states of Pt^{196} .

cients: $a_2 = -1.02 \pm 0.05$ and $a_4 = +1.32 \pm 0.05$. The maximum anisotropy, calculated from the coincidence rate at $\theta = 90^{\circ}$, $\theta = 270^{\circ}$, and $\theta = 180^{\circ}$ after correction for the angular resolution was determined as $(a_2+a_4) = +0.28\pm0.03$. This correlation function is consistent with the assignment $2, 2, 0$ for the angular momenta of the excited states and the ground state of Pt^{196} , the first transition being a mixture of 95 percent quadrupole and 5 percent dipole radiation and the two components being out of phase $(in Lloyd's¹⁰ notation; same sign of the reduced electric and mag$ netic matrix elements in the notation of Biedenharn and Rose¹¹). The data on internal conversion are consistent with both transitions being mainly electric quadrupole (+5 percent magnetic dipole in the first transition), indicating the same parity for all three levels involved (Fig. 2).

These assignments would suggest a strong cross-over transition of 0.688-Mev energy to the ground state of Pt^{196} . The search for such a gamma-radiation with a scintillation spectrometer resulted in an upper limit for the intensity of the cross-over transition of less than 1 percent.

It is interesting to note that, in the very similar case of the Cd¹¹⁴ gamma-rays,^{4,5} the magnetic dipole (96 percent) and electric quadupole (4 percent) components are in phase, whereas the case of Pt¹⁹⁶ there is a phase difference of π .

Recently, an angular correlation of the Pt^{196} gamma-rays in agreement with these measurements has been observed by the Zurich group. 12

† Supported by the U. S. Atomic Energy Commission.

¹ R. M. Steffen and D. M. Roberts, Phys. Rev. **82**, 332 (1951).

² Steffen, Huber, and Humbel, Helv. Phys. Acta **22**, 167 (1949).

³ Aeppli, Frauenfelder, and Walt

 $\lim_{t \to 0}$ is the communication by H. Frauenfelder),
¹² E. Heer *et al.* (private communication by H. Frauenfelder).

States of S^{33} and Si^{29} from (d, p) Stripping

J. R. HoLT AND T. N. MARsHAM Nuclear Physics Research Laboratory, University of Liverpool, Liver pool, England (Received December 15, 1952)

 \mathbf{W}^{E} have used a proportional counter telescope to examine the angular distributions within the range 0' to 90' of several groups of protons from the reactions $S^{32}(d, p)S^{33}$ and $Si^{28}(d, p) Si^{29}$ with 8-Mev deuterons. By comparing these distributions with the theories of the stripping process,^{1,2} the appropriate value of the orbital angular momentum l of the captured neutron has been determined in each case. These values are given in Tables I and II, together with the excitation energies of the final states. The spins of these states have one of the values $l\pm\frac{1}{2}$. Some of the