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The left side refers to the three orthogonal susceptibilities of the
solid polycrystalline sample, the right to the single crystal sus-
ceptibility.

An apparatus of the Faraday type which satis6es the condition
of uniformity for H and grad1ff

1
over a suitable volume has been

designed' and applied to the measurement of polycrystalline
graphite. A Honda-Owen correction has been employed to de-
termine the effect of ferromagnetic impurities, using field strengths
from 8000 to 16000 oersteds. The total susceptibility Zx has
been measured for various grades running from various petroleum
base Atcheson graphites to natural and lampblack graphites. Al-
though the accuracy of the measurements is of the order of 1 per-
cent, the precision and relative values are correct to better than
0.5 percent. Small cubical samples s inch on edge were employed.
For a given type of graphite the invariance of the total suscep-
tibility was verified to 0.5 percent, and all the Atcheson graphites
examined fell in the range —20.5&(10 to —21.2X10 ' cgs. For
comparison, Guha and Roy' find for the spur of a single crystal
the value —23.5&(10 cgs. The "anisotropy ratio" for the manu-
factured graphites ranged from 1:1 to 9:1,whereas that reported
for the single crystal was of the order of 60/1. One may interpret
these results as suggesting that not more than 10 percent of the
material in the arti6cial graphites is of a nongraphitic nature.

One should expect a single determination of the susceptibility
of a powdered, and presumably randomly oriented, artificial
graphite to be one-third of —21)&10, or about —7)&10 '.
Values reported in the literature range from —3)&10 ' to —5
)&10 '. These low values are probably due to orientation of the
powder either in packing or in the magnetic 6eld, or possibly to a
ferromagnetic impurity. The present results demonstrate that
manufactured graphite yields the same susceptibility as natural
graphite, up to a minor correction for intercrystallite carbon, or
crystallites too minute to develop a crystalline field.

~ This report is based on studies conducted for the U. S. Atomic Energy
Commission.

1 J. J. Donoghue (to be published).
~ B. C. Guha and B. P. Roy, Indian J. Phys. 17, 348 (1934).
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FiG. 1. The distribution function g(~2) 2fs eu2 for the two-dimensional
hexagonal net in nearest neighbor interaction in normal vibration to the
plane of the net.

With this notation, the expression for g(gP) is
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where

E(P) =
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and the function is symmetric about co'= —,'.
Figure 1 is a plot of g(co'). There are two symmetric infinite peaks

whose asymptotic behavior is described by
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N a recent paper, ' Gurney discusses the specific heat of graphite
and shows that for low temperatures, the speci6c heat goes as

T and is consistent with the model he proposes to describe the
distribution of normal modes. In this model, the only contributing
modes at these low temperatures are those that propagated in the
plane of the hexagonal network of the carbon atoms and whose

displacements are perpendicular to these planes. It is the two-
dimensional nature of the problem that leads to the T2 law, and
the analysis of the problem is completed using a Debye frequency
distribution and a Debye temperature.

However, for this problem, a closed analytic expression can be
found for the frequency distribution by methods previously de-
scribecP for the case of nearest neighbor interactions. . The coupling
constant between nearest neighbors can be evaluated from the
comparison of the value of the distribution function, at zero fre-

quency and the low temperature behavior of the specific heat.
The distribution function is written as g(cd)d(cd), where cd is

the dimensionless frequency whose range is 0&mB&1 and is re-
lated to the maximum frequency ~=co, co. In this expression
co, =(6a)&, where a is the ratio of the force constant and the
atomic mass and is described by writing the contribution to the
acceleration of the mth atoms as —a(u —ng), where u is the
atomic coordinate and N~ is the coordinate of a nearest neighbor.

The specific heat at low temperatures is determined by g(0), whose
value is

g(0) =9/2~v3. (3)

The specific heat per mole at low temperatures can be found from
the following expression for a two-dimensional lattice:

Cv=3 606Xkg(0)Tsles (4)

where g(0) &0 and is finite and 8=kco,„/t'2k. Using the data' from
reference 1, we find a=13.34&(10" sec, and co, =8.95X10"
sec '.

The details of the calculation will be published elsewhere.

i Ronald W. Gurney, Phys. Rev. 88, 465 (1952).
2 W. A. Nierenberg, J. Chem. Phys. 19, 659 (1951).
3 It can be remarked that the first entry in reference 1, Table I, for 0'

should be 373 000, improving the T2 fit and changing the mean tt2 to 375 200.
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'EASUREMENTS of second sound velocity I& recently
obtained by the authors' permit one to calculate the normal

fluid concentration p„/p at temperatures below 1'K. This has
been done, employing the well-known relationship
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