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Magnetic Susceptibility of a Diamagnetic Electron Gas
The Role of Small Effective Electron Mass
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An exact formula for the "steady" bulk susceptibility of a degenerate electron gas is derived. The deviations
from the Landau-Peierls formula are studied for several situations in which the effective electron mass
is small. It is concluded that, in any case for which the Landau-Peierls susceptibility differs from the Lan-
dau susceptibility, the total susceptibility differs from the Landau-Peierls susceptibility by an amount of
the same order of magnitude.

The magnetic susceptibility of solid Bi is discussed on a model developed by H. Jones. It is found that for
several reasons, Jones model requires major modification. A particular modification is suggested as a possible
basis for a theory of the Bi susceptibility.

Some implications of our conclusions are discussed in connection with Bardeen s theory of supercon-
ductivity and the theory of the de Haas-van Alphen efFect.

l. INTRODUCTION

A LTHOUGH some metals are ferromagnetic or
strongly paramagnetic, most metals have rather

small magnetic susceptibilities of the order of 10 '.
The suceptibility of such an "ordinary" metal arises
partly from the magnetic m,oments of electrons bound
to lattice ions and partly from the moments of the con-
duction electrons, the two kinds of susceptibility being
of roughly the same order of magnitude. If the con-
duction electrons behaved as a gas of free electrons, the
second contribution would be paramagnetic and one
would expect that the sign of the susceptibility would
depend on whether the diamagnetism of the ions or the
paramagnetism of the conduction electrons predomi-
nates. Actually, certain metals, e.g., Bi, exhibit a dia-
m, agnetism which, although weak, is conspicuously
greater than any which could be accounted for as a
contribution of electrons bound to lattice ions. In such
cases it is necessary to attribute the additional dia-
magnetism to the conduction electrons. Clearly, if the
large diamagnetism results from the orbital moments
of the conduction electrons, however, the electronic
motions in the lattice potential must be quite diferent
from the motions in a free electron gas. Thus, in order
to understand the susceptibility of a diamagnetic
metal, one must know something of the way in which
the electrons move in the lattice potential of the metal.

The basic theoretical analysis of the "orbital" suscep-
tibility of conduction electrons is a result of the eQorts
of Peierls, ' who worked in the approximation of "tight
binding. "The same problem, has been worked through
by Wilson, ' who has discussed it in the approximation
of nearly free electrons, although his analysis is quite
general. The only serious assumption in these treat-
ments is that the electron-electron interaction may be
ignored except in so far as it can be represented by a
potential which has the periodicity of the lattice and

' R. Peierls, Z. Physik 80, '763 (1933).
'A. H. Wilson, The Theory of Metals (Cambridge University

Press, Cambridge, 1936).

which is the same for every electron. That assumption
will also be made in this paper. The results of their
analyses may be summarized as follows: the calculated
susceptibility splits naturally into two parts, the first
part, given by the Landau-Peierls formula, being

xi~= st ~'~—(f)&~-~"" L~*"3—')

Here tttt is the Bohr magneton, f is the Fermi energy,
tt(f) is the level density at the Fermi surface, and, for
example, n'& is the product of the electron mass by the
xy component of the reciprocal mass tensor; the angular
bracket denotes an average over the free Fermi surface,
which need not lie in a single band. The second con-
tribution to the susceptibility is much more com-
plicated, and will be discussed in detail later. At this
point, it is sufficient to remark that it gets its greatest
contribution from terms which have the general ap-
pearance of second-order energies so it may be thought
of as arising because of virtual transitions between
bands.

A number of attempts have been made to account for
the observed susceptibilities of some of the diamagnetic
metals on the basis of the theory referred to above. ' In
the applications it has usually been assumed that the
m,ajor contribution to the orbital susceptibility is given

by Eq. (1.1).On this assumption, it is easy to show that
a large diamagnetism cannot arise solely as a con-
sequence of a high level density rt(t ).For if one replaces
the angular bracket in (1.1) by unity, its value for free
electrons, one obtains for the susceptibility

xi= —st ~'~(t) (1.2)

Formula (1.2) was first derived by Landau' for the
case of a gas of free electrons. The susceptibility zL, is
just one-third. as large as the Pauli susceptibility xq,

3 See, for example, N. F. Mott and H. Jones, The Theory of the
Properties of Metals arut Alloys (Clarendon Press, Oxford, 1936),
for a discussion of some applications.

4 L. Landau, Z. Physik 64, 629 (1930).
e W. Pauli, Z. Physik 41, 81 (1926).
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given by
(1 3)

The susceptibility xg is derived from the spin magnetic
moment of the electron. A comparison of the expressions
(1.2) and (1.3) shows clearly that a free electron gas is
paramagnetic, and that a mere change in level density
does not lead to diamagnetism. Thus, if the electron gas
model is adequate for an understanding of the observed
susceptibilities of the diamagnetic metals, it must be
supposed that for some metals the angular bracket in
Eq. (1.1) has a value considerably in excess of three.

The angular bracket in Eq. (1.1) has a simple physical
interpretation. Because the electron gas is in a potential,
a magnetic Geld does not cause an electron to precess
in the manner of a free electron, but rather in a more
complicated manner. Thus in the expression (1.2) for
the susceptibility one should not use the Bohr magneton
computed from the free electron mass, since the electron
precesses as though its mass were quite diGerent from
that of a free electron. The angular bracket in Eq. (1.1)
tells how the eGect of the more complicated precession
may be taken account of properly. It consists of a
modiication of the factor ps', so that (1/m)' is replaced
by the proper combination of components of the
reciprocal eGective mass tensor. A large value of the
angular bracket is associated with a small eGective
m, ass. Thus the argument of the previous paragraph is
equivalent to the statement that a degenerate electron
gas can be diamagnetic only if the average eGective
mass of the electrons at the Fermi surface is consider-
ably smaller than the free electron mass.

The possibility that a really large diamagnetic sus-
ceptibility might arise as a consequence of the activities
of a few electrons of very small eGective mass has been
contemplated by Bardeen, ' who has envisaged a situ-
ation in which the susceptibility would be great enough
to drive out the magnetic Geld. In Bardeen's problem
the interaction of electrons with lattice vibrations splits
the group of electron states at the Fermi surface into
two groups. Bardeen treated the electrons in the ener-
getically lower groups as electrons in an ordinary con-
duction band and used the formula Eq. (1.1) to cal-
culate the magnetic susceptibility. He considered the
possibility that the n&" of Eq. (1.1) are of the order 104

corresponding to energy gaps in the electron spectrum
of 10 ' ev. It seemed to the writer that the existence of
such small energy gaps made the application of the
ordinary susceptibility formula very doubtful, and it is
in this doubt that the present work had its origin.
However, the writer has not attempted a detailed
application to Bardeen's theory, because he does not
understand in what sense Bardeen can apply ordinary
band theory in his particular problem, . Instead, there-
fore, a detailed investigation was made of another theory
which accounts for a large diamagnetism in terms of a
small number of electrons with small eGective masses,

' J. Bardeen, Phys. Rev. 80, 567 (1950); 81, 829 (1951).

to wit, the theory given by Jonesr to account for the
susceptibility of Bi. In examining Jones theory, we
have been particularly interested in estimating the
order of Inagnitude of other terms in the susceptibility
than those leading to Eq. (1.1) because it is not obvious
that such terms are really negligible when the effective
masses of some electrons are very small. In fact, we
will see immediately that these terms ought to be large
when the effective masses are small.

An electron state which has a very small eGective
mass is located at a point in wave-number space where
the curvature of the energy surface is large. Such regions
of high curvature are small and are associated with
energy gaps corresponding to planes of the reciprocal
lattice. If the eGective mass is very small, its magnitude
is directly proportional to the size of the energy gap
with which the high curvature is associated, and some
or all of the rr's which occur in Eq. (1.1) are large
with magnitudes proportional to the reciprocal energy
gap. Thus the large contributions to the Landau-
Peierls susceptibility, Eq. (1.1), come from regions on
the Fermi surface where electron states in two or more
bands are almost degenerate. Now two states which are
nearly degenerate can be appreciably admixed by what
would otherwise be a very weak perturbation, and the
second-order energy resulting from this admixing will
have a magnitude proportional to the reciprocal energy
gap. The magnetic perturbation is a weak perturbation
which can cause such an admixture of states in diGerent
bands, and the second-order energy associated with this
admixing makes a contribution to the susceptibility.
Such contributions are not included in the susceptibility
given by Eq. (1.1), and have usually been neglected in
the theoretical studies of the observed susceptibilities
of the diamagnetic metals. Wilson' has given a brief
argument to the eGect that one is justified in ignoring
these contributions under most circumstances. It will
be shown below that one should not neglect these con-
tributions in the case of the diamagnetic metals, if it is
true that most of the susceptibility is contributed by a
few states. In fact, we will show that in such a case the
Landau-Peierls formula, Eq. (1.1), does not give any
reasonable approximation to the susceptibility.

In subsequent sections we derive an expression for
the "steady" diamagnetic susceptibility, i.e., that part
of the susceptibility which is independent of tempera-
ture and field strength, and use this expression to study
the contribution to the susceptibility from the kinds of
conGgurations of states which are believed to occur in the
diamagnetic metals. The starting point in the derivation
is the Hamiltonian of the generalized %annier theory.
In Sec. 2 this Hamiltonian is diagonalized to order K'
by a unitary transformation. In Sec. 3 the diagonalized
Hamiltonian is used in a statistical treatment to
deduce a general expression for the steady susceptibility.
The formula found here cannot well be compared with

' H. Jones, Proc. Roy. Soc. (London) 147, 395 (1934).
4 E. N. Adams, Phys. Rev. 85, 41 (1952); 86, 427 (1952).
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Wilson's, ' since some integrals which occur in his 6nal
formulas do not occur in the Wannier theory. In Sec. 4
a discussion is given of the effective mass tensor. In
particular, we examine a special case in which the
oG-diagonal matrix elements can be expressed in terms
of the eGective mass. In Sec. 5 a calculation is made of
the contribution to the susceptibility made by the
simple configuration which occurs when the Fermi
surface just overlaps the face of a Brillouin zone. This
configuration is of interest because all terms in the
susceptibility can be calculated almost exactly. The
discussion of Sec. 5 shows that under certain circum-
stances a ulled zone can make large contributions to the
susceptibility. In Sec. 6 a discussion is given of the con-
6guration which Jones' hypothesized to exist in Bi.
While the complete calculation cannot be carried
through for this configuration, it is shown that the
terms which Jones neglected are of the same order as
those which he kept. It is argued that in general the
susceptibility contributions which are usually neglected
are of the same order as the diQerence between the
Landau susceptibility, Eq. (1.2), and the Landau-
Peierls susceptibility, Eq. (1.1). It is concluded that
Jones' theory of Bi is probably wrong; a modification
of his model is suggested, but not investigated.

2. THE HAMILTONIAN

The Hamiltonian which will be used in calculating
the susceptibility is that of the Wannier theory. ' While
the validity of this theory has been established only
approximately, the applications to be made here do not
depend on the approximations of the theory. The same
results could be obtained from the Schrodinger theory
by more tedious means. For an electron in a uniform
constant magnetic held, the Schrodinger Hamiltonian
will be written:

H= (p'/2m)+ V (xr)+-', cu8„&»{uxp"}
+~sm~'&~»~~evu~u {x",{xe& &v&}}. (2.1)

Here VJ.(x) is the periodic potential of the unperturbed
lattice, co is the Larmor frequency (eK/2mc), u& is a
unit vector in the direction of the magnetic 6eld, 8„„),
is the Levi-Civita 8 symbol which is antisymmetric on
all pairs of indices, and the curly brackets signify anti-
commutators. It is, of course, unnecessary to introduce
the explicit symmetrization, but it will prove convenient
subsequently because of the manifestly Hermitian
character of the symmetrized terms. From the Schro-
dinger Hamiltonian, the Wannier Hamiltonian can be
written down immediately. ' First a slight change of
notation from that used in reference 8 will be made. The
notational change is simply to use Latin capitals instead
of Greek letters to denote the operators for the electron
momentum and coordinate. Thus P" denotes the
Wannier operator for the p, component of electron
momentum, P & denotes that part of the operator which
is diagonal in bands, P& that part which is nondiagonal
in bands. Similarly, X& denotes the operator for the p-

ul pn en+ exp{—iX~"p"}~ (2.4)

The operator u~ is not periodic with the reciprocal
lattice periodicity, so the transformed operators are no
longer periodic functions of p. It can be seen, however,
that the diagonal parts of the transformed operators
remain periodic in p. The principal results of the trans-
formation (2.4) is to remove the constants X„&from X".

ug(x"+X„")u,—'= x". (2 3)

The transformation (2.4) considerably simpli6es the
calculation of the formula for the susceptibility. In
addition, it shows that the X„& need not appear in the
Anal formula. Because we make this transformation,
however, we cannot easily compare our final formula
with Wilson's, ' which still contains the X„& in the form
of the integral J'(~~„„*Bu~/Bp&)des The existen. ce of
the transformation (2.4) shows that Wilson's formula
could be simplied by the use of sum rules and relations
among matrix elements.

Even after the transformation (2.4) we can continue
to write the Hamiltonian in the form (2.3), but with the
understanding that the transformed X, P now occur
therein. The next step is to transform 8 by a unitary
transformation which removes all parts of H which are
nondiagonal in the bands and are of order +. The trans-
formation which does this will be called u2. Writing
us= exp{iSs/5}, we And that a possible choice of Ss is

S,= ,'ms)b p,u [{X~,-x&}

+P;;.';; 1(fi/miE;; )(2{2, , X };;
+{&'X'}~xj (2 6)

component of the electron coordinate, x&+X„"the part
which is diagonal in bands, X& the part which is non-
diagonal in bands. As previously, p& denotes the +-
component of the "crystal momentum" and x& the @-
component of what we might call the "crystal coor-
dinate. "P„&, P&, and X& are functions of the p" but not
not of the x". X„& is independent' of p" and x". The
explicit forms of X&, P& are given in reference 8. The
Wannier Hamiltonian is now obtained from the
Schrodinger Hamiltonian by the following rules of sub-
stitution:

p2/2m+ Vz(x)~E(p), x&~X~, p ~P~. (2.2)
Thus the Wannier Hamiltonian corresponding to (2.1)
1s:

8=.E(p)+-2(vb„»u&{X", P"}
+-',m~'S„»S.„{X,{Xe,S„&}}. (2.3)

The operator E(p) is diagonal in the bands and its
diagonal element in the jth band (jp~E(p) ~ pj) is just
the energy of an unperturbed state of the electron in
the jth band and with wave number P. However, the
other terms are not diagonal, so before doing any
statistical treatments it is convenient to diagonalize the

~ Hamiltonian (2.3) to the second order in co. As a pre-
liminary step we transform H by the operator:
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The transformed Hamiltonian takes the form:

u2Hu2 '=[E(p)+-'~~.,»»{x",P.")
+smco'6», )b p,u"u {x",fxp, BP„"/Bp")]
+(ohg+sa)'8», gu»{x", kgb)

+8~'k2+ o(~0')+ . (2.7)

k~, k2~", and k2 are Hermitian functions of p; nondiagonal
terms of order A&2 have been neglected.

The bracketed quantities are just the development' of
E(p"—mo»»x x" u) to order co'. If this were the complete
Hamiltonian, the electrons in a given band would move
about in a complicated way which could be described
by attributing to the electron a velocity-dependent mass
tensor. Transitions between bands wou'ld not occur as a
result of the magnetic forces, and wave packets would
move on constant energy surfaces. The complete ex-
pression for the steady susceptibility would be the
Landau-Peierls susceptibility, which is given by (1.1).

The chief concern of this paper will be with the
remainder of the susceptibility which arises from the
terms h~, h2~', and h2 in the Hamiltonian. These terms
are of a rather complicated form, even after the
maximum simplification has been made. In order to
express these terms, it is convenient to define four real
dimensionless tensor operators 1"", d&", r&", and s&",

t,,'"=(1/k) P; ..'(X,,'.»P, ,'"+P,,'."X,','»),

d '»"=—(i/h)P' (X "P' '" P'."X' '»—)

r;,'»"—= (1/k) {X»,P."),,',

s;,'»"= (i/k) [—X», P„"],,

The straight brackets denote commutators.
In terms of the operators (2.8) we may write

kg= (k/2) 8»,) u»l„"",

k2p=mb, p,u [{BX"/Bpp,P&)+{Xp,s&"+d&')

+3{Xp,s'&)+2i[X",P&]]„,

kg=a ~„5'b„„),8 p,u»u [{X",{XP,8,g+3n &"))

X (m/5') —(2m/k) {X",BP'&/Bp")

+P. '(1/E „){—d„„P"d„„'&

+33„„.»r„„""+c.c.}
+P„.'(1/sE„„){3r„„P"d„„&" s„„&Pl„„""c.c )— — .

+Z- '(1/E- ){ s- "'s- .'"—
+2r„„""r„„P&+c.c.)
+P,'(1/iE„„.){r„„.P"(3s„

+Ss„„"~)—c.c.)]. (2.9)

Here E„„denotes E„—E and the subscript „on an
operator means the diagonal part of its matrix. Although

' J. M. I uttinger, Phys. Rev. 84, 814 (1951).

x-
Bx' Bc=0

(3.1)

For a Fermi gas,

F=Nt kT P; ln[—1+exp f —(E;—f)/kT)]. (3.2)

Since {'depends on 3C quadratically, and since BF/8{ = 0,
may be treated as a constant. In evaluating the

susceptibility one makes use of the fact that the ex-
pression for x may be converted into a trace which can
then be evaluated in any convenient representation. It
is easily seen because of the constancy of f and N, that
the required form of the susceptibility is

(3.3)

in which

g(H) —= —kT in[1+ exp{—(H —t )/kT}]. (3.4)

Introducing the Larmor frequency here, (3.3) can be
written as

(PB) 8

&AJ
g(H)

BM BC=0
(3 3)

Since the value of a trace is invariant against changes
of representation, we may use the transformed Hamil-
tonian (2.7) in g(H). In addition, in getting (3.5) we
have assumed a choice of representation for which the
wave functions do not depend on . It is clearly most
advantageous to take the trace using the representation
in terms of eigenfunctions of the unperturbed Hamil-

the operator h2 is complicated, it has several charac-
teristics which can be described qualitatively. In the
first place, h2 vanishes for free electrons, since each of
its terms involves o6-diagonal matrix elements of the
electron coordinate. In the second place, there are quali-
tatively diferent kinds of terms in h&. For example, the
6rst term involved 8»z8 p„u»u~ fX", {XP,8~&}} is always
positive, while some of the other terms may have
either sign according as the predominant energy de-
nominators are positive or negative. This remark is
made to emphasize the fact that h2 is not simply a
second-order energy correction, since the sign of a
second-order energy must depend on whether the
important intermediate states lie above or below the
state corrected. What such behavior means will be dis-
cussed further when we obtain a formula for the
susceptibility.

3. THE SUSCEPTIBILITY

The steady magnetic susceptibility may be defined
in terms of the free energy P by



MAGNETIC SUSCEPTIBILITY

tonian. At this point one can see why the Wannier
formalism is especially suitable for the susceptibility
calculation. Whereas with the Schrodinger Hamil-
tonian the unperturbed eigenfunctions are the com-
plicated Bloch functions, with the Wannier formalism
the unperturbed eigenfunctions are plane waves. Thus
in setting up the Wannier formalism all of the compli-
cations of the problem have been put into the Hamil-
tonian, leaving the wave functions as simple as possible.
Since we have already diagonalized g(H) in the band
indices, the trace will just involve a sum over bands of
integrals on p of the diagonal parts of g(H). Because the
eigenfunctions are plane waves these integrals are very
much like phase space integrals in classical statistical
mechanics. The density of states in p space is just
2/(2mb)', provided that the integrals over p are re-
stricted to the first Brillouin zone.

To facilitate calculating the trace, imagine that g(H)
has been developed as a formal power series in H. It
is not dificult to take the trace of the general term, and
after doing so to sum the series. Thus we need first to
calculate

(~ ) 2 -d2HK-
T(N&—

der' X=0

(pB ( 2 ('
d'ke '" *

E h ) (27r)' & e, z
haik

x

do)' 3C= 0
(3.6)

The calculation of Ts(~' will now be described. It is
found that the term in (hmi")' can give nothing. The
term in h2 leads to a contribution which will be called
Tb2&~' and is

Tb2(~' = —(pe/h) ' Tr[—'„h2BEb'/BE).

Tv&(~', the remaining trace, can be written as

(3.9)

»i'"'= —(I Bj&)'Tr[&(E" ' (~/4)& XB p

Xu"u~{x" {xP BP &/BP"))e]. (3.10)

The notation (EN ', o)e, means that the Ã factors are
to be completely symmetrized as to order, so that o

occurs once in each of the g ordinal positions. Now the
operator in the face bracket (3.10) is to be commuted

T(~) naturally breaks into two parts, one the result of
first-order terms, the other the result of second-order
terms. Call these T '~& and T&'~), respectively. Since
BH/Bco commutes with E, it is readily found that

T.(~& = —(~e/h)' Tr[(-', B„„,u~{x, P„&}+h, )~

XcV (E 1)E.~ 'j. (—3.7)

Using the fact that only terms which are real and even
in x can survive, this is found to be

T,(~' = (po/h)' Tr[(-,'(8„ iu&(x" P "})'+hi')
X B'E~/BE'j. (3.8)

through all the E's until it stands on the left. After the
factors have been ordered in this way the plane wave
eigenfunctions can be dropped and p treated merely as
an integration variable. The surviving part of Ts~&~) is:

»i(~) = —(pe/h) 'B„„),B,p~u&u

XTr[(m/4){x", (xp, BP &/Bp"))(dE~/dE)
—(h'/2) (BP P/BP") (BP„&/BP') (d'E /dE')
—(h'/3m) P "P p(BP„&/Bp") (d'E~/dE') ] (3..11)

The last term in Tu&(~' may be integrated by parts
using (1/nz) P„"d'EN/BE'=B(B'E~/BE')Bp". Finally, we

get

», ("&= (I e/—h) 'B„,),B.p,u~u

XTr[(m/4){x", (xP, BP„'/BP"))dE~/dE
—(h'/6)(BP p/Bp")(BP 7/Bp")d'E"/dE (3.12)

Now, before collecting terms, it can be shown that
adding the 6rst term of Tu2~ ' to the 6rst term of T ' '

will give something which eventually contributes no
susceptibility. The proof consists in observing that
these terms are just the ones which would have survived
if we had assumed from the outset that [p, x]=0 and
the Hamiltonian had the form E[p+(eS/c)j. Thus
these terms lead to the susceptibility which one gets on
"nonquantum" mechanics for a Hamiltonian of .the
form E[p+ (eo',/c) j. Van I.eeuwen" has given an
argument which shows that for such a Hamiltonian the
susceptibility is precisely zero, since the energy depends
only on the velocity. The argument is quite inde-
pendent of statistics and can be used here to show that
the two terms must cancel. There remains of T&~'

T(K) — (~ /Q) 2 Tr[h 2(d2EÃ/dE2)

+-',h2(dE~/dE) j+p~'-,'B„„ib.p,u&u

XTr[(BP„P/BP")(BP„~/BP")d2E /BE~j (3.13)

T'~) was a typical term in the power series development
of the trace (3.'5). It is a trivial matter to sum the series
again. While doing so, we will split the susceptibility
into several parts for convenience of subsequent dis-
cussion. In re-expressing the last term, we introduce
the usual notation:

(3.14)

and set the I =b 3, thus choosing axes so that the
Z direction is along the magnetic Geld. Then from the
last term we get

Xi=+ b pg'B„ibBp~a Tr[n„P"n„~~d'g(E)/dE'j. (3.15)

Denoting as x and y two directions perpendicular to the
field, we may write (3.15) as

y, =+[2pe'/3(2m')']P

d'p(o(„**n»—[n *&j')d'g(E )/dE ' (3.16)

"For a discussion see J. H. Van Vleck, E/ectric ued Magnetic
Susceptibilities (Oxford University Press, London, 1933), p. 94.

r
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Now if f(E) denotes the Fermi function, we have
dg(E)/dE= f(E). The integral in (3.16) can be per-
formed using the b function character of df/dE. In
order to do this, one introduces the energy as a variable
of integration to replace the component of p normal to
the energy surface. Then (3.16) becomes

x =-'.
I ~'~(f)((i*"—i"*)'& (3.18)

Here as in Eq. (1.1) the angular bracket denotes an
average over the Fermi surface which need not lie in a
single band.

Finally, from the second term in the expression (3.13)
we get a contribution

x,= —(ps'/4A. ') L2/(2n. k)'] d'Ph, (P). (3.19)
~ Vp

The integral in Eq. (3.19) goes over all occupied states,
so over the occupied regions in every zone.

The complete susceptibility is given as the sum of
x~, y2, and X3. However, in most cases the bulk of the
contribution is made by x&, since X2 and x& contain
energy denominators which make their contributions
negligible. We will subsequently investigate special
cases in which such is not the case. At this point,
however, we want merely to characterize these three
susceptibilities. x& is the susceptibility which one derives
from quantum statistical mechanics using a Hamil-
tonian E/p+ (eCt/c)]. x~ includes certain effects caused

by interaction between states in different bands, vis. ,
those which can be described in terms of an effective
mass which is velocity dependent. x& may be of either
sign since the angular bracket may be either positive
or negative. X2 is always positive. Its form suggests
that it results from something like the orbital moment
of the electron about the center of whatever unit cell
the electron is momentarily in. If we set l 1, we see
that x& is of the same order of magnitude as x&. X3
consists of two kinds of terms, vis. , terms which are
always diamagnetic, and terms which have a sign
determined by the distribution of neighboring states in
the energy spectrum. It is probable that X3 could only
be evaluated for the simplest cases, since it contains
terms corresponding to complicated "roundabout"

xi = —~~s'/(2~@)' d~~(~**~"" L~*"]—2)l
I ~.E I

~

~a~

(3.17)

Equation (3.17) just gives the Landau-Peierls suscep-
tibility, Eq. (1.1):

~ =-l~ ' (f)( * ""-L '"]'& (11)

Next we get the contributions to the susceptibility from
the 6rst term of expression (3.13), using the expression
for h, given in Eq. (2.9). By arguments analogous to
those used above it is easily found that

transitions. The condition that X3 be important is that
the energy gaps between some occupied bands be much
smaller than the Fermi energy. We will see in a later
section that small energy gaps between bands can
result in a quite large value of x3.

In this section we will discuss the effective mass for a
case in which it is possible to evaluate the susceptibility
completely by expressing the o6-diagonal matrix ele-
ments which occur in the expression (3.18) in terms of
the eGective mass ratio tensor. We will 6rst write down
the derivation of another expression for o.„&". Observe
that the operators P» and X" are operators for the mo-
mentum and coordinate of the electron, so they have
the commutation relation

Lp» X"]=(5/s) 8»». (4.2)

In the Wannier theory these operators have the follow-
ing matrix forms 8

P»=P. ~„„P„»+P'.. ~.;P».;,
X"=x"+P'„„c„„(5/miE„„)P"„„

(4.3)

The expressions (4.3) give the correct forms after the
transformation u& given by Eq. (2.4). Calculating the
commutator and making use of the fact that e„&"
= BP„»/Bp", one gets

n„"=e„„P'„.(1/mE„—, „)(P„„'P„.„"+P„„"P„,„»).
(4 4)

We want to discuss the size and sign of n„l"" for
several cases of interest. In the erst place, the O.l""

shouM ordinarily be smaller than unity for the valence
band of a metal. This is so because the few intermediate
states which are of lower energy and which could,
therefore, lead to larger values of o.l"" actually lie so
much lower in energy that their contributions are small.
On the other hand, there are many excited states in
higher bands, all of whose contributions have such a
sign as to lower the value of 0.1"".There can quite easily
be such states which are not much higher in energy,
so it is reasonable to expect that for some values of p
in the band the reduction of nI'" should become appre-
ciable. Thus for a valence electron band o."" is probably
of the order of unity or somewhat smaller, being perhaps
considerably smaller for a fraction of the states. If the
excited band should lie very close for some values of p,
the values of n&" in that part of the band couM be very
much smaller than unity, but of absolute value very
much greater than unity. In the case of a conduction
band which lies not too far above a valence band, we ex-

4. THE EFFECTIVE MASS

We have earlier introduced the eGective mass ratio
tensor o.&" de6,ned by

n ""=m8'E—~(p)/BP»8p".
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pect large positive values of the a&" for states in the neigh-
borhood where the bands are very close together. Where
a number of bands are close in energy, we simply expect

~

n""~ &&1, but we do not known the sign except for the
highest and lowest bands.

In order to calculate the n„"" from Eq. (4.4), one
would need to know the o6-diagonal matrix elements of
the electron momentum. Such knowledge would in
turn involve a more detailed knowledge of the wave
functions than one can ordinarily hope to attain. It is,
in fact, more likely that one could get information
about a"" directly from the energy spectrum. In this
section we will actually consider the nl"" as known, and
express the oG-diagonal elements in terms of the n&".

Of course, we can do so only in an especially simple
situation. As will be seen, however, in this situation we
can still learn something about the u"" from Eq. (4.4).
The simple case to be considered is one which arises
when, in a certain region of p space, two bands and
only two lie very close together. What we are interested
in here is a configuration for which the energy gap is

extremely small so that values
~
n~&)1 occur. In such

a case a very good approximation may be had by
entirely neglecting the inhuence of other b'ands. In Fig.
1 we describe the configuration using the unreduced
zone description of the bands, The near degenerate
states are distributed along the faces of a plane in the
momentum space, the plane being represented in cross
section by a solid line. Another solid line represents the
cross section of an energy surface which overlaps into
the second band, while a dotted line indicates how the
cross section might look in the absence of the energy
discontinuity across the zone face. The large curvature
of the energy surface near the zone face is proportional
to one of the O.l"". Because the curvature is high, the
energy separation between bands grows rapidly with p
in the direction normal to the face. Taking an origin of
momentum coordinates at the point 0 and designating
the normal direction as then x direction, one can say
that for p, about equal to p, the energy gap has
already doubled.

p„= (mAEs/in*'i)'. (4 5)

The significance of p will be discussed again later. The
dashed lines of Fig. 1 are intended to be at a distance p
from the zone face and thus to show what states in
the momentum space have large o. values. The calcu-
lation to be made next applies only to states lying
between the planes represented by the dashed lines.

AE will denote E2~, hence will be a positive number.
I.et us calculate the commutator $Xv, X") using the
form (4.3) and noting that because of the energy de-
nominators only one intermediate state is important.
All matrix elements of this commutator vanish iden-
tically because the Xs are electron coordinate operators.
The vanishing of the diagonal element of the com-
Inutator gives

I

I

BAND 2
I

L
I

Using Eq. (4.6) and the one intermediate state approxi-
mation, one gets from Eq. (4.4)

or

rrl ovv 2(p12 p21 /'iti++) y

~,v = 8„„+2(p»vp»"/mhE),

2p12 p21 (~su trl )m~+.

(4.7)

(4.8)

It will be seen later that Eqs. (4.7) and (4.8) and
several equations deducible therefrom are all that we
need to calculate the complete susceptibility when the
Fermi surface overlaps a zone face.

Some equations which follow from (4.7) will be
useful later. Adding the two Eqs. (4.7), one gets

ni""+as""=28„,. (4 9)

Equation (4.9) can be integrated near p=0 to give

P tv+ Psv —2ps (4.10)

Also one can write from (4.9),

(ns""—ni"")=2(8„,—ni""),

which integrates to

(4 11)

Finally, we will prove that if 0.&" is diagonalized only
one component can be large. In a weak potential theory
with the potential represented by a single cosine this is
obvious. However, the point here is to show that there
is no conceivable set of circumstances under which we
get more than one large 0. with only one excited state,
no matter how many Fourier components are important.
The proof follows immediately if one squares the two
sides of Eq. (4.8) for p, W v and. then uses Eq. (4.8) to
rewrite the left-hand side. One gets, for example,

(ni&")'= (1—n») (1—n"") (i1W v). (4.12)

Tp

I I
I

SANO i
I

I I

I Vamp~
I

I VP,m I

Fro. j.. Pro6le of an energy surface which just overlaps the
face of a zone. g&.=&2+3,EO, where ~SO is the energy discon-
tinuity at 0. pm=(maEO/n) i gives the separation of the dashed
lines from the plane.

Pqg"Pgq" —Pig"P2i" =0 (4.6) Equations (4.12) must hold when axes are chosen so
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that 0.&" is diagonal, so one gets

(1—"'ng) (1—np&) =0,

(1—n -)(1—n '*)=0

(1—~@~)(1—n, **)=0.

Choosing 1—n~ *&0, it follows that n~»=0.~"——i.

inside of an energy surface corresponding to an overlap
energy {~ T. he ellipsoid, because of the large value of
a2, is greatly Qattened along the x axis.

(4 1 3) In order to evaluate X2 and X3, we must evaluate
certain sums over intermediate states. As we saw in the
previous section, this becomes possible when there is
but a single important intermediate state. Introducing
the notation,

5. THE COMPLETE SUSCEPTIBILITY FOR
A SPECIAL CASE we can see from Eq. (4.9) that

(5.1)

If the Fermi surface slightly overlaps the face of a
zone boundary across which there is a small gap, the
electrons in the neighborhood of the gap will, under cer-
tain circumstances, make an unusually large contribu-
tion to the susceptibility. Equation (1.1) indicates that
this will be the case when the field is oriented per-
pendicular to the direction in which o.» is large. Clearly,
o.» is largest when p, refers to the direction normal to
the zone face. This direction we denote as the x direc-
tion. The solid curve of Fig. 1 describes a cross section
of the Fermi surface perpendicular to the magnetic
field. Figure 2 shows a ys cross section, the circles being
the intersections of the Fermi surface with the zone face.

We wish to calculate the contribution of this overlap
configuration to the magnetic susceptibility for the
case that the magnetic field direction lies in the zone
face. What we will actually calculate is the excess
above the Landau susceptibility as given by Eq. (1.2).
In order to get the excess, we merely replace 0.* by
(o.*'—1) in the susceptibility x&. Equation (4.8) shows
that (o.*'—1) is a particularly simple expression which
has a sharp maximum (as a function of p,) at the zone
face. We make one more elaboration in that together
with the contribution of the overlap configuration dis-
cussed above we will take the identical contribution
which comes from overlapping the opposite zone face.
Then we can say that for small overlap the occupied
states in the second band fill the ellipsoidal region

(~ ««1)
In terms of n we can rewrite Eq. (4.8) as

(5.2)

(5.3)

r,,'«"= (1/mi F;,')P,,'«(P; "+P,"),

s,,'«"= (1/mE;, ')P,, «(P,'" P,"). —
(5 4)

Since /, ;""vanishes, the susceptibility z2 vanishes for
our problem. We must simplify X3 which is given by
(3.18). Inserting Eq. (5.4) into h, of Eq. (2.9), one gets
for y3,

x3——(pg'/4) (2/(27ra)') b, y.ip,.by, b„,

X ad~p{ —(1/AE)(2bp +3ng~"+3m ~")

(s)

+(1/~~&')[(P ' P')(P " P—")—
+2(P2s+PP) (P2"+Pe)

+5(PP+PP) (P2"—Pi")j}

+ " nd'p{ —(1/AE)(28'. +3&x@"+3np")
(2)

+ (1/mhE') [—(P2~—Pp) (P~"—P~")

2(Pp+P p) (P2"—+P~")

We can now use Eq. (5.3) to rewrite the four expressions
(2.8) so they involve only diagonal matrix elements. In
our approximation,

+5(P2 +Pp)(P2"—P,")]} . (5.5)

Fzo. Z. Intersection of Fermi surface with plane discontinuity.

The integrals J~~&d'p, J~2~d'p are over the occupied
states in the 6rst and second bands, respectively.
Already in the form (5.5), it can be seen that x3 has two
di8erent kinds of terms. The first and last integrals in
each bracket have the same sign in either band while
the others'are of opposite signs in the two bands. The
terms of the second kind will contribute only if there is
a region of p space for which the states are occupied in
one band but not the other.
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We can simplify Eq. (5.5) still further. Using Eqs.
(4.9), (4.10), and (5.3), we reduce (5.5) to

Xo= (2p~'/(2ork)') I d'pn{ —(2/AE)+ (2/mhE') p '}
-+ (1)

(2)

d'pa{ —(2/hE) —(2/maE') p '} (5.6)

The total susceptibility is the sum of x3 and the surface
integrals x~.

Xg ——+(2P~'/3(2wk)o) dS„n/! V'„E!

—(2ps'/3(2ork)' dS„n/! V„E!. (5.7)

Note that in both Eqs. (5.6) and (5.7) n is a function
of p which vanishes strongly when p, is large. The strong
energy dependence of o. comes about partly because n
contains an energy denominator and partly because the
nondiagonal matrix elements fall oG away from the
zone face. It is difficult to estimate the energy depend-
ence of the matrix elements without some kind of model
of the potential so we will merely note that there is such
energy dependence; later in the section we describe the
results obtained on a specific model. In any case we can
say that when p, gets large enough n drops sharply to
zero. We can estimate the value of p, for which the
drop-oR occurs by noting that when the kinetic energy
np, '/2m equals half the gap energy (hE/2) it is no
longer energetically profitable for the electrons to try
to be in standing wave type states, so a will fall oG. The
critical value of p, we have denoted as p; it was given
in Eq. (4.5). We will do the integrals X& and Xo on the
assumption that n has the constant value exp for p, (p
and the value 0 for p,)p . This assumption cannot
introduce any large errors. However, because of the
diGerent energy dependences of the diGerent terms, we
may get relative values of various terms which are
wrong by as much as a factor 2. It will become clear
that such errors will not aGect the qualitative descrip-
tion of the dependence of the susceptibility on overlap.

We calculate the excess susceptibility due to overlap
for two cases (a) and (b). In case (a) the overlap is
small so the occupied states in the upper band occupy
a Battened ellipsoid. A central cross section of the Fermi
surface looks like the solid curve of Fig. 1. In case (b)
the overlap is so large that the Fermi surface in the
second band is more like a spherical cap sitting on a
narrow collar cut from an ellipsoid. A central cross
section looks like the solid curve of Fig. 3.

(a) The integral X&&'& is easily found to be

FIG. 3. Cross section of
energy surface for large over-
lap. The dotted line shows the
corresponding energy surface
in the absence of interaction.
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and the superscript (2) denotes the contributions from
the second band. In order to evaluate x~"', we notice
that the bulk of the integral comes from the "collar"
on the surface (1). This collar is of radius (2m{~)' and
width 2p when we take a pair of zone faces together.
Carrying out the surface integral, one gets

Thus
Xg

&'~ = -', ps'nod(AEp/2).

Xi= o I ~'~oL&(~Eo/2) &({'o)3—
(5.10)

(5.11)

Xo oP& &({o)~ot (4h/~Ep)
+(8/5)({ /~Eo)'3 (5 13)

In case (b) the overlap is very large, so the upper
band integrals must be recalculated. x~(2' now comes
from a "collar" integral also, and is found to be

Fquation (5.11) is valid for {o AEp/2 Xo is e.asily
calculated to be

Xo&' =pa'E(&Eo/2)~o[({ i/&Eo)' —(2{i/&Eo) j, (5.12)

Here
X& oP& +({o)~o

X({o):8%m(2m{ o)*(2orA) Exp

(5.8)

(5 9)

xi"' = —
o ~~'~D'(~E /2) (5.14)

X3('& is an integral over all occupied states inside the
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upper collar region.

xs"' = —p~'&(»o/2)troL(P2/»o)'+ (2i s/»o)] (5 15)

The lower band integrals are still given by Eqs. (5.10)
and (5.12). In case (b) we have

lation using the explicit form of the matrix elements ob-
tained for the well-known case of a weak cosine poten-
tial. Thus in Fig. 4 the relative magnitudes of the
various terms are correct. The formulas for this special
case show that the integrations above are not bad. We
label these formulas to correspond to those above.

xt= xt"'+xt"'-0. (5.16)
(a) x = :u-' oL&(»o!2) &—(f.)], (5.11)cp

We can now survey the trend of the various con-
tributions to x, beginning with small overlap and pro-
ceeding to large overlap. For small overlap the Landau-
Peierls susceptibility is paramagnetic as shown by Eq.
(5.11). As the number of overlapping electrons increases,
the susceptibility x& decreases monotonically until for
large overlap p& is practically zero as shown by Eq.
(5.16). Thus, surprisingly, the excess Landau-Peierls
susceptibility is always paramagnetic. The suscepti-
bility X3 is negative as overlap begins. The contribution
from the lower band becomes less negative as the overlap
proceeds since the term (i',/»p)' in Eq. (5.12) is

always greater than 1.At the same time the diamagnetic
contribution from the upper band states is steadily
growing. As the overlap becomes large, the suscep-
tibility x3 finally takes on the simpler form

xp ———yg'iV(»/2) upL1+ (2fs/DEo) ]. (5.17)

This susceptibility is diamagnetic and grows linearly
with the maximum overlap energy. In Fig. 4 the general
behavior is shown. Figure 4 is not plotted directly from
the formulas above, since the method of integration
used there permits relative errors between terms of a
factor 2 ~ As noted above such errors arise because of the
energy dependence of the matrix elements. Therefore,
we have again carried through the susceptibility calcu-

xs"& =y~'X(»o/2) no[(V2/3) (fr/»p)'
—(3 ~2/16)(f /») (5 12) p

xp"'= s~—e'&(t s)«L(3f's/»p)
+ (8/5) (t s/»p)']; (5.13)cp

(b) xl = spB «+(»o/2), (5 14)cp

xs "'= ~n'&(» p/2) rr pL(~~/3) (t s!»o)'
+ (3orv2/16) (f'~/»p)]. (5.15)cp

The asymptotic behavior for large overlap is sur-
prising, because it indicates that under certain circum-
stances one might get a very large contribution to the
susceptibility from states which lie far below the Fermi
surface. We will now see how large the effects are when
an entire zone face is overlapped. We will assume that
n satisfies

n 4Err/AE. (5.18)

Relation (5.18) is true for a weak cosine potentials if
8& is the energy corresponding to the center of the
face. Then»/2 2Ez/n, and by (5.8)

«X(»p/2) = 8orm(2'~) '(2ork) '. (5.19)

The right-hand side of (5.19) is just the density of
energy levels for a degenerate free electron gas with
states occupied for all energies below E~, so the suscep-
tibility described by Eq. (5.17) is

x,-x,«~ (6i-,/»), (5.20)

0

O~
Ã

X

-6
0

'5, /bE

FIG. 4. Susceptibility as a function of p&. Overlap begins for
fg= AK The upper dashed curve represents X1, the lower dashed
curve x3. The solid curve is the total susceptibility. All suscep-
tibilities are measured in units of xI = oIIB N(DE/2)ao.

in which x~(') is the Landau susceptibility for a free
electron gas with Fermi energy Ez. If the complete
face of a lower zone were thus overlapped, we would
attain a value t Err/2 at least, and find

x -x.(3E /~E)- x" (5.21)

Equation (5.21) describes the contribution to the total
susceptibility which would be made by a pair of zone
faces which are completely overlapped by the Fermi
surface, no matter how far below that surface. For
comparison it can be noted that the maximum value
of x& as given by Eq. (5.11) is about x~'", using the
same approximation (5.18) for a.

The calculation as given in this paper does not give
much insight into the physical process which leads to
the large contribution to y3. However, an examination
of the detailed deduction of the results in Sec. 3 shows
that 4 of the contribution comes from the 8' term in
the original Hamiltonian and ~ from the P 8, terms
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taken in second order. %bile it is not easy to say what
sign the latter contribution should have, it is clear that
the result found here is qualitatively correct for the 0,"
term which is positive for all states and hence must
lead to a diamagnetic contribution to the susceptibility
from all bands. That the order of magnitude of the
contribution arising from a filled band is correct can
be veri6'ed by noting that in the face of a zone there are
of the order of Ea ' states whose magnetic eriergies are
each of the order

(5.22)

where E is the number of electrons per unit volume on
the metal. Thus the magnetic energy of this group of
states is U- p~'X, 'nlV(E) which gives x ax~ as found
above. This large susceptibility contribution from a
6lled band corresponds to a physical situation in which
there is a large ionic susceptibility because the ion has
a low-lying excited state.

If in a metal there were a large susceptibility arising
from overlap of weak gaps, a large magnetic anisotropy
eGect could easily result. For, as a result of a 90' rota-
tion of the magnetic field direction, the susceptibility
contribution of that face could be made to go from an
original large value to zero. It is thus conceivable that
a number of weak faces oriented in a simple pattern
could rise to a rather complicated pattern of magnetic
anisotropy in a single crystal specimen. %e think it
possible that such a situation exists in Bi, which we will

discuss in detail in the next section.

6. APPLICATION TO BISMUTH

In the last section it was shown for a certain simple
configuration of the Fermi surface in which the eGective
electron masses are very small that the Landau-Peierls
formula, Kq. (1.1), does not give a good approximation
to the total susceptibility. In this section we will argue
that for any eon6guration of electron states with small
eGective masses the susceptibility contributions X2 and

X3 are as important as the Landau-Peierls suscepti-
bility. Naturally, we cannot calculate these suscepti-
bilities for any very complicated con6guration of states,
so what we will do is to discuss an example of a more
complicated configuration and show that the order of
magnitude of the terms in x3 is the same as that of the
Landau-Peierls susceptibility. The example which we
will discuss comprises two configurations which are of
general interest, ~is. , the top of a band which is almost
full and the bottom of a band which is almost empty.

The complicated situation we chose to discuss is the
Fermi surface of Bi. For several reasons Bi seemed

especially suitable for our purpose. A detailed analysis
of the Bi susceptibility had already been made by
Jones. ~ He had found that some of the electrical and

magnetic properties could be understood in a simple

manner as resulting from the anomalous behavior of

very small groups of electrons with very small. eGective

Fn. 5. Brillouin zone of bismuth .containing 6ve electrons:
E@=j.2.5 ev; Eg= j.5 ev; ED=9.2 ev; E~=7.5; Ey =10 ev.

masses. Jones had developed a specific set of hypotheses
giving a correlation of the various anomalous electric
and magnetic properties with specific sites on the Fermi
surface and had thereby reached quantitative con-
clusions concerning the values of the 0.&" which would
be required to explain the observations. Finally, Jones
had apparently been able to reach reasonable agreement
with experiment taking account of only the Landau-
Peierls part of the susceptibility. Thus Bi was very
satisfactory for our purpose since practically important
con6gurations seemed to occur in Bi, small electron
masses play an important role, and the effects which
we are concerned with had not previously been studied
for Bi.

Jones believed that the smallness of the electrical
conductivity of Bi was evidence that most of the elec-
trons in Bi occupy a nearly full Brillouin zone, so that
the free Fermi surface is very small. The Brillouin zone
which Jones suggested is shown in Fig. 5. If full, it
would contain exactly the 6ve valence electrons per
atom which are present in pure Bi. Jones supposed that
the zone is not quite full, but that there is a small
number of holes in the inner zone at A and a small
number of electrons overlapping into the outer zone at
D. The number of overlapping electrons was estimated
to be of the order of 10 per atom. "The overlapping
electrons were supposed to occupy greatly elongated
ellipsoids as indicated in Fig. 5. The large diamagnetic
susceptibility which is observed when a magnetic field
is applied along the principal axis of a single crystal of
Bi was attributed to the diamagnetic precession of the

"See reference 3 for this estimate which is diGerent from that
of the original paper reference 6. Jones' theory is discussed in some
detail in this reference.



overlapping electrons at the sites D. Jones decided that
these electrons would have to have effective mass ratios
0.'* 0.» 200formotionperpendicular to theprincipal
axis and 0." 1 for motion along the principal axis. The
1arge diamagnetic susceptibility which is observed when
a magnetic field is applied perpendicular to the principal
axis was attributed to the holes at A. Jones did not
attempt a quantitative discussion of the holes or the
susceptibility perpendicular to the principal axis.

A number of experiments give information which is
in at least qualitative agreement with Jones' model. "
The susceptibility of crystalline Bi is diamagnetic and
about 25 times the value of xI, which one calculates
assuming that the 5 valence electrons per atom con-
stitute a free electron gas having the electron density of
Bi. It is dificult to account for such a large diamag-
netism except on the assumption that some of the
valence electrons have small effective masses. Further-
more, this large diamagnetism disappears almost com-
pletely when the Bi is melted so it is hard to avoid the
conclusion that the diamagnetism is intimately asso-
ciated with the lattice structure and ih is reasonable to
suppose it to be associated with the Brillouin zone
structure. The ratio of susceptibilities parallel and
perpendicular to the principal axis can be changed by
a factor 2 by alloying with the pure Bi a small fraction
of an atomic percent of Pb, which has one less valence
electron- per atom than Bi. This observation is com-
patible with the hypothesis that the principal axis sus-
ceptibility arises from the motions of a very small
number of overlapping electrons, and that this number
is substantially reduced percentage-wise by the sub-
stitution of the sma}1 number of Pb atoms. Finally, the
field dependence of the Bi susceptibility is very spec-
tacular (the de Haas-van Alphen effect);" the suscep-
tibility oscillates in high fields and the oscillatory
behavior persists to rather high temperatures. The
reason for the oscillation was 6rst-recognized by Peierls
and has since been studied in great detail. ""Existing
theories of the e6ett are not really applicable to metals
because in the theories the electrons are treated as free.
However, these theories show that a free electron gas
could not have such an oscillation of the susceptibility
at the field strengths used unless some electrons had
extremely small masses. The totality of the evidence

strongly suggests, therefore, that the anomalous mag-
netic properties of Bi originate from some configuration
or configurations of conduction electrons which have
small eGective masses, probably as a consequence of
the structure of the Brillouin zones.

In the following paragraphs we will discuss the two
configurations which occur in Jones model of the Fermi
surface from the point of view of the "neglected" suscep-

~ de Haas-van Alphen, Leiden Comm. 212a (1930).
~3 E.H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (I ondon)

A210, 173 (1952). In this paper can be found references to much
of the work beginning with Peierls original paper.

'4 R. B. Dingle, Proc. Roy. Soc. (London) 211, 500 (1952); 212,
38 (1952).

tibilities. We will begin by discussing the hypothetical
configuration of the electrons overlapping at the sites D.
Figure 5 shows that for these electrons states all com-
ponents of the diagonal reciprocal effective mass tensor
are necessarily positive, and Jones found that agreement
with experiment is only possible if precisely two com-
ponents are large. Now it follows from Eq. (4.4) that
if 0.» is large and positive for some state, then there
exists a nearby state for which 0.» is large and negative.
For suppose there are M states which are close together
and interact strongly so that the sum is Eq. (4.4) gets
its chief contribution from these states. Summing Kq.
(4.4) over those states we find

n=l

M is always a smaH number, so it is clear that the
positive and negative contributions must approximately
cancel. The form of the right-hand side of (4.4) indicates
that the lower-lying states will have negative 0.» while
the higher-lying states will have positive 0». Finally, the
n» of the lowest state must be either smaller than one or
negative. It would. seem likely then, that on Jones'
Inodel the overlapping states at D are not in the lowest
state of the set of near degenerate states responsible for
the great size of the n&". In that case, it must be that
the lower band states on the other side of the zone face
also have large (but negative) n&", hence that there is
only a small energy gap across the zone face. We can
estimate the gap energy by noting that the free electron
kinetic energy at the D site is about 7.5 volts and the o.
corresponding to the direction normal to the zone face is
200 for the upper band states. The corresponding n in the
lower band must be also of the order 200, so we could
conclude by Eq. (5.18) that the energy discontinuity
across the zone face was of the order of 0.15 ev. An
examination of the kinetic energies at various points in
the zone of Fig. 5 shows that such a small gap would be
insufhcient to restrain the electrons within the rather
oblong Brillouin zone. A further point is that, since
more than one of the o."" was assumed to be large, at
least one additional excited band would have to be
supposed to lie within a small fraction of a volt of the
overlapping states at the sites D. Mr. Joel Mcclure and
the writer have constructed all of the reciprocal lattice
planes which are relevant to the D sites and have found
that no other planes come at all close. It would seem
most improbable, then, that the situation with regard
to the D sites could be quite as Jones has supposed.

Even though we do not believe that Jones description
of the overlap configuration is quantitatively correct,
we want to discuss the order of magnitude of the terms
g2 and x3 which would have been expected for such a
configuration. We will show that for any configuration
like that at the D sites x~ would be a poor approximation
to the total susceptibility. In order to demonstrate that
the. terms in x2 and x3 could not be ignored, we will
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Since we want to see the order of magnitude, we will

ignore oR-diagonal components of the n&" and write

Then
p s= pp'~ pp (6.4)

h= —p .(2A.'/m'E „')[p,'(a„.'*—„**)'IP
+p '(n» —~ »)'IP„„'I'] (6.5)

For simplicity, let us set
I
~'*I-

I ~» I
-~- Yhen (6 ~)

is of the order

h 45'(p—,'+p„')n'/ mhE', (6.6)

in which hE denotes some average excitation energy
which is of the order of the excitation from the first to
second band. Now if f'2 is the energy to which an ellipsoid
in zone 2 is filled, there will be occupied in the lower
band a volume of about

V~,—(2m)&AEn —'(AE+ t i)' (6.7)

Inserting h as given by (6.6) into Eq. (3.18) and using
the volume given by Eq. (6.7), we get an estimate of the
susceptibility contribution of the term Eq. (6.2) from
the low band. This is

X~~s2[2/(2~$)3](2m))QE~2(QE+| )$(p 2+p 2/m+E2) ~

or, setting (p,'+p„'), mAE/n, AE, Es/n, we find

X Xi~'. (6.8)

We can compare the susceptibility Eq. (6.8) with the
surface integral X~ over the ellipsoid in the second zone.
This is

xi ———(pg'/3) (8m/(2~5)')m(2mt'2)'

x I
a**u»l'I n**l ~. (6.9)

Now as we saw in the last section, hE/2= f2 in (6.9)
gives the approximate maximum value which X~ will
attain for a single ellipsoid, regardless of the value of f 2,
in view of the fact that cx» approach unity for very
large f 2. Putting fz~hE/2 into (6.9), we get

1
X1 max XLO' ~ (6.10)

We see that for the kind of overlap con6guration which
Jones considered, the susceptibility X3 is of the same
order as the susceptibility X~. As it is, we considered
only those occupied states in the lower band which lay

simply select one of the terms from X3' and show that it
alone could give a susceptibiIity as large as X&. From
the expression (2.9) for we can select the term

h—=—Q„(5'/E„„)[s„„"ss„.„&"+c.c.]b„g.hp, . (6.2)

Using the definition of s;, &" given in (2.8), we can
write (6.2) as

h= —P„.(2k'/m'E„„')(P ~—P„~)(P "—P ")

XPnn' Pn'n ~v~z~pyz (63)

in a "collar" around the central point of overlapping. If
we had assumed that the gap was small all the way
across a zone face and that the lower band states were
occupied across the face, we would 6nd for X3 something
larger in powers of n than what we wrote in Eq. (6.8);
such a result emphasizes the incompatibility of the
assumption of large n and of small overlap.

We have shown that it is doubtful that for a con-
figuration of the type at the D sites one can get a useful
interpretation of the susceptibility merely on the basis
of the Landau-Peierls forinula in the-case that the gap
across the zone face is small. VVe have also shown the
assumption that the zone of Fig. 5 is about full to be
incompatible with the assumption that any small

groups of overlapping electrons at D sites would have
very small eRective masses. We will now discuss the
holes in a zone corner like A or 8. We need not go into
great detail in such a discussion since the arguments are
very much the same as we have used before. In the
6rst place, if the o&" are really large for the corner states,
it means that the energy of excitation to the next band
is very small. In an unreduced zone picture this must
mean that there is a very small gap across one or more
of the faces which make up the corner. Since a corner
is always energetically higher than the points on the
faces which form it, we would 6nd that because of the
smallness of the gap across one face the BriHouin zone
would not be "strong" enough to keep the electrons in.
This again is a special argument applying only to the
model of Bi in which high corners and small gaps are
both assumed. The argument that if the 0.&" are large X3
has terms of the same order as Xj applies to this con-
6guration also. While we can hardly discuss X2, it is a
fair assumption that it too may be appreciably large
in both con6gurations. For if two or more of the n»
are large, there must be at least two important inter-
mediate states. With two intermediate states, "rounda-
bout" transitions need not be small so X2 need not be
small.

The discussion which we have given for the special
configurations which occur in Jones' model of Bi can
easily be recast to apply to other configurations. It will

always be found that when the excitation energy from
a group of occupied states to other states is much smaller
than the Fermi energy, the Landau-Peierls formula
does not contain a good approximation to the total
susceptibility contribution from that group of states.
So goes the general conclusion. In the course of this
investigation the writer has come to doubt that Jones'
theory of Bi is even qualitatively correct. One may even
question whether a zone picture of energy bands is
appropriate in Bi, since Bi shows some tendency toward
covalent bonding. Without attempting to settle this
question the writer would like to suggest that there is a
modification of Jones' scheme which appears to oQer the
possibility of accounting in a rough way for both the
parallel and perpendicular susceptibilities. The modi6ed
model might well retain some degree of validity, even
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if there is a tendency towards forming a covalent bond
between nearest neighbors, since the electrons which
provide the diamagnetism are distinct from those which
provide the covalent bond. Suppose that we use the
Brillouin zone description of the bands, but admit
that the gaps across some of the zone faces may be
rather large. Let us suppose that the energy gaps across
the (110) faces at D amount to several volts so that
indeed there is little or no overlap at D. In such a case
any overlapping electrons at D would not have especi-
ally small masses so would not contribute any great
diamagnetism. In fact, if the density of energy levels
were quite high, such electrons might give an appreci-
able paramagnetic contribution on account of their spin
moments. The source of the observed large diamag-
netism of Bi would then have to be elsewhere, and we
suggest that the probable source is a group of regions,
one of which we have labeled C in Fig. 5. The details of
the Bi zone structure indicate that if the overlap at D
is not too great there will be appreciable overlap at C.
A number of "strong" planes at about the Fermi radius
intersect the energetically high corners of the zone
shown in Fig. 5 and eQectively prevent any electrons
from getting near the corners. With the corners of the
zone thus cut o6 there is not room in the zone for 6ve
electrons per atom so overlap must occur somewhere.
Assuming that the (110) faces are strong enough to
restrict the amount of overlap at D, then the overlap
could only occur at C. Let us suppose that it happens so,
and consider what the energy level structure might be
like in the neighborhood of C. The top faces of the zone
are formed by the (221) planes. One of these planes
would be expected to have a gap across it which is
smaller than that across the (110) planes but still
substantial. The gap would not be small enough in
itself to explain any very small effective masses. How-
ever, there is another feature of the zone structure
which could provide the required complexity of energy
levels at the C sites. The strong (211) planes intersect
in lines which pass obliquely through the zone faces
formed by the (221) planes, and the point at which the
line passes through the (221) face is very close to the
point where we mould have expected overlap to occur
most easi1y. It would not be strange if there are electron
states of very small mass in the neighborhood of the
intersection point. Thus it would appear that the C
sites are naturally endowed with the kind of energy
structure which could contribute to a large diamag-
netism.

No attempt has been made to work out the conse-
quences of such a model in detail, but some of them can
be foreseen without calculation. One of the most
striking is that the angle which the (221) faces make
with the principal axis is favorable for explaining the
observed anisotropy effect of the diamagnetism, without
bringing in two separate sites as sources of large dia-
magnetism. In this respect the model proposed here is
even simpler than Jones' original model. On the other

hand, other results of the present work make it clear
that the diamagnetism could not be simply charac-
terized by a set of effective mass values and a number
of overlapping electrons, since off-diagonal matrix
elements would play an important role. It would prob-
ably be quite difficult to establish the proposed model
on a quantitative basis just because of the complications
which come into the calculation of the susceptibility
when the eGective mass is very small. There would be
analogous anomalies in a calculation of the electrical
properties, so it is not clear whether or not the electrical
properties would follow naturally from the model. At
the moment all we claim for the model is that it is not
palpably absurd, it involves only the most natural
hypothesis about the energy structure, and it probably
leads to magnetic anomalies of the kind observed for Bi.

V. SUMMARY AND CONCLUSlONS*

In this paper we have derived an expression for the
orbital magneI;ic susceptibility of an electron gas which
moves in a periodic potential. The derivation makes use
of the Wannier formalism. The final formula for the
susceptibility is somewhat simpler than previous for-
mulas, because the Wannier formalism contains im-
plicitly certain sum rules which were not previously
noticed.

Using our formulas for the susceptibility we have
studied the question as to whether the Landau-Peierls
formula, Eq. (1.1), gives a good approximation to the
total orbital susceptibility. What we have found is that
if any portion of the Landau-Peierls susceptibility is
the result of electrons with small effective masses, then
the total orbital suceptibility diGers from the Landau-
Peierls susceptibility by an amount of the same order
as that portion. More precisely, if the energy gaps
between bands are appreciably smaller than the Fermi
energy, the total susceptibility differs from the Landau-
Peierls susceptibility by an amount which is of the
same order of magnitude as the difference between the
Landau-Peierls susceptibility and the Landau sus-
ceptibility, Eq. (1.2).

We have treated in detail the case of a weak plane
in the reciprocal lattice and shown that such a plane
can give large contributions to the orbital diamagnetism
when it is overlapped by the Fermi surface. The large
diamagnetism resulting from such a plane was shown
to be not identical with the Landau-Peierls diamag-
netism' in fact, for large overlap this diamagnetism was
much larger than the Landau-Peierls diamagnetism. If
one or more such planes formed the boundary of a flied
zone, the zone could make a large contribution to the
susceptibility, even though there is no Fermi surface
in the zone. This part of the susceptibility could be
expected to be anisotropic in a manner determined by
the arrangement of the weak planes. It was pointed out
that the occurrence of such a susceptibility would cor-

* See also "Note added in proof" at end of this section.
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respond to some electrons being weakly bound to the
lattice ions forming larger ions with very low-lying
excited states.

We have examined Jones' theory of the Bi diamag-
netisrn and concluded that his hypothesis concerning
the location of the Fermi surface is incompatible
with his assumptions concerning the effective masses.
We have suggested a modification of Jones' hypothesis
which we believe to be more in accord with the detailed
structure of the Brillouin zones and the evidences of
strong binding in Bi. It was indicated how the modi6ed
model may give a simpler explanation of the over-all
features of the Bi susceptibility.

In conclusion, we would like to briefly discuss two
theories on which we believe our discussion has some
bearing but to which we cannot make a detailed appli-
cation. The first in Bardeen's theory' of superconduc-
tivity which was referred to earlier. Bardeen has dis-
cussed a case in which the n's were supposed to be so
large that the diamagnetism, Eq. (1.1) would be more
than sufficient to drive out the field. While we cannot
discuss Bardeen's theory itself, it should be clear from
the examples discussed in this paper that (Eq. (1.1)
is unreliable when the electron effective mass is very
small. Another feature of Bardeen's theory which we
can comment on in this connection is his "self-con-
sistent 6eld" argument showing that electrons with
small effective mass can keep the magnetic 6eld out
of a metal because the penetration depth is con-
siderably smaller than the electron wave function.
In making this argument, Bardeen set up a Hamil-
tonian which was the same as the ordinary free
electron Hamiltonian except that the effective mass
occurred in the place of the free electron mass. The
approximation involved in writing such a Hamiltoniari
is known, "and the terms neglected are just the terms
which give the additional contributions to the suscepti-
bility which are the subject of this paper. As we have
seen when the effective mass is very small, the neglected
terms are just as important as those which are kept.
Thus we can conclude that Bardeen's calculation con-
cerning the penetration of the magnetic 6eld is based
on an incomplete Hamiltonian, and that the terms
which have been omitted are so large as to bring into
question the outcome of a calculation made with the
correct Hamiltonian.

There is another matter to which our results cannot
be applied and yet about which they indicate something
significant, namely the interpretation of the de Haas-
van Alphen effect in the diamagnetic metals. At
attainable 6eld strengths the effect cannot be observed
except in those substances for which there exist elec-
trons of very small electron mass. Dingle" has done a
careful analysis of a number of factors which cause the
magnetic susceptibility of a real material to differ from
the ideal crystal-bulk susceptibility considered here.
He has included, for example, the eRects of finite level
width and of finite crystal size, and has done the cal-

culation so as to get the complete temperature de-
pendence and 6eld dependence of the susceptibility. The
apparent purpose of his work is to lay the foundation
for a study of the de Haas-van Alphen eGeet in a real
metal. Dingle worked in the approximation that the
electrons are completely free, and in this approximation
obtained the result quoted above that electrons of very
small mass must be responsible for the observed de Haas-
van Alphen effects. The part of his work which has as
yet been published indicates that he considers the
effective mass approximation adequate even for very
re6ned calculations. The results of our work, on the
other hand, make it certain that the effective mass
approximation shouM be completely inadequate for an
interpretation of observed de Haas-van Alphen effects.
We have shown that if the effective masses are small
there is an important additional term in the steady
susceptibility arising from the term in the Hamiltonian
which is neglected in the effective mass approximation.
There will be similar contributions to each term in the
development of the susceptibility in powers of the held,
these contributions corresponding to higher order cor-
rection effects of the "neglected" term in the Hamil-
tonian (2.7) which explicitly involves the magnetic field
rather than the vector potential. Accordingly, we must
conclude that the effective mass approximation is not
adequate for interpreting the de Haas-van Alphen
effect in real metals. It unfortunately appears that an
adequate calculation which takes into account multiple
transitions between bands is almost outside the range
of possibility.

The writer expresses his appreciation of enlightening
discussions with a number of persons in the Institute
for the Study of Metals and in particular the assistance
of Mr. Joel McClure in constructing the Fermi surface
of Bi.

1Vote added ie proof. —After a number of conversa-
tions on the subject of this paper, I think it well to
restate explicitly just what is claimed to be the validity
of these conclusions. In the 6rst place it is not claimed
that the example which is carried through to the end is
necessarily directly analogous to the situation obtain-
ing in any of the diamagnetic metals. This example
is given to show that in the one case for which the off
diagonal terms can be readily computed, they are really
as big as the Landau-Peierls term. The calculation
cannot readily be made for more interesting con6gura-
tions, but the estimates given show that sizes of matrix
elements and numbers of states of large matrix element
are such as to make it probable that in these cases, too,
the off diagonal terms are really as large as the Landau-
Peierls term. I think these last arguments extremely
suggestive of the conclusions but it cannot be claimed
that they quite prove the conclusions. However, irre-
spective of the detailed arguments presented, it can be
seen that the key fact in the case of interest is that
there exist oR diagonal terms which, before integration
over k, are large like the inverse cube of the energy gap.
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For ordinary energy gaps such terms are negligible
but for very small energy gaps they become dominant,
unless, of course, they cancel one another. I have looked
for and failed to find a reason for such a cancellation.

Finally, it is certainly not concluded that observed

diamagnetic susceptibilities are not to be interpreted
in terms of effective masses. However, it is concluded
that the relation of an empirically determined eRective
mass to the reciprocal curvature of an energy surface
will not be simple when the mass is very small;
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The Proton-Proton Reaction and Energy Production in the Sun*

E. A. FRrEMAN, $ Poiyteckrtsc Institute of Brooklyrt, Brooklyrt, New York

AND

I.. MOTz, Rutherfurd Observatory, Columbia University, iVeR Fork, Xev Fork

{Received September 9, 1952)

The proton-proton capture cross section is recalculated using the recently computed deuteron wave
functions of Feshbach and Schwinger and the most recent value of the Fermi G factor. The energy production
of the p-p cycle is redetermined and applied to the sun, using the luminosity calculations of Epstein. It is
shown that the p-p cycle outweighs the carbon cycle by a considerable factor under the assumed conditions
of temperature and density.

I. INTRODUCTION
'N view of recent results which affect the conclusions

~ ~ of Bethe and Critchfield' on the proton-proton
reaction,

H'+ H' —+H'+ P++ o,

this process. is recalculated and its astrophysical
implications discussed for the sun. Epstein' showed
recently that the energy production in the sun arising
from the p-p cycle outweighs that arising from the
carbon cycle by at least a factor of 12. This calculation
utilized the new determination of the cross sections for
the carbon cycle by Hall and Fowler' extrapolated from
their measurements at 100 kev. In the present calcu-
lation the most recent value of the Fermi constant as
well as new deuteron wave functions were used in the
calculation of the cross section. The energy production
per process also differs from that described in reference
1 because the He' reaction replaces the sequence used
there.

II. THE CROSS SECTION FOR THE P —P REACTION4

The cross section for the process, expressed as a
function of the relative velocity v, is

~(~) = (G/s) I~ I'f(~), (&)

where M is the nuclear matrix element,

M=~ +fI'@;dr,

*This paper is based on a Ph.D. thesis submitted to the
Graduate School of the Polytechnic Institute of Brooklyn. A pre-
liminary report of this work was presented at the May, 1951,
meeting of the American Physical Society.

t Now at the James Forrestal Research Center, Princeton
University, Princeton, New Jersey.

' H. A. Bethe and C. Critchfield, Phys. Rev. 54, 248 (1938).' I. Epstein, Astrophys. J. 112, 207 (1950).' R. N. Hall and W. A. Fowler, Phys. Rev. 77, 197 (1950).
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and F is the Gamow-Teller interaction operator,

p= (3) (3)

The proton space wave functions are those given by
Vost, Wheeler, and Breit' for a square well and are
given in concise form in reference 1 ~ We can represent
them as

where we have used Rosenfeld's' notation to represent
the spin and isotopic spin wave functions.

The deuteron wave functions used are those com-
puted by Feshbach and Schwinger' for "Yukawa well"
interactions of different ranges for both the central and
tensor portions of the interaction potential. These
eigenfunctions can be represented by

Nr mr
@e——(4sr) ' +(2) ksts (o.)ma (r) p. (&)

r r

oo 2

I
M

I

'=Ssr )I Po(r)u(r)rdr
0

(6)

' Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).
'L.' Rosenfeld, Nuclear Forces (Interscience Publishers, Inc. ,

New York, 1949).' H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951).We
wish to thank Professor Feshbach for a prepublication copy of
his paper.

Using the well-known property of the tensor operator
8», namely, that its average over all angles vanishes,
it is seen that there is no D wave contribution to the
matrix element. The spin summation is then easily
performed using the Hermitian character of the G-T
operator, since the sum over the final states of

I
I'I' is

just the expectation value in the original state. The
contribution to the cross section from the sum is simply
a factor of two. The square of the matrix element can
then be written


