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The Symmetry of the S Matrix
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It is proven that any Heisenberg 5 matrix is symmetric for an appropriate choice of arbitrary phases
in a representation in which the square and one component of the total angular momentum are diagonal.
The consequences of this symmetry for the complex phases of the matrix elements are discussed.

I. THE SYMMETRY OF THE 8-MATRIX
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IGNKR and Kisenbud' have shown that the
collision matrix for simple nuclear reactions is

symmetric, provided arbitrary phases in the nuclear
wave functions are chosen appropriately. This sym-
metry is a consequence of the time reversal invariance
of the quantum-mechanical formalism. The proof of
Wigner and Eisenbud applies only to reactions in which
there are two heavy fragments in the initial and final
states.

It is the purpose of this note to prove that any
'

Heisenberg S matrix' is symmetric for an appropriate
choice of arbitrary phases in a representation in which
the square and one component of the total angular
moment J are diagonal. This proof will be developed
by combining the theory of time reversal in quantum
mechanics given by Wigner' with the methods of
transformation theory.

Time reversal for a classical system can be de6ned by
stating the transformation properties of a complete set
of dynamical variables: velocities, momenta, angular
momenta, and the electromagnetic vector potential
change their sign as t—+—t. Position coordinates and
energies remain unchanged. This determines the trans-
formation property of any dynamical variable Q:
Q(t)—+Q'( —t) as t + t (e.g. , —v'=——v, x'=x). The
operator of time reversal in quantum mechanics Emust
then satisfy for every Q and every state f(t) the
requirement

(&4(t), Q&4(t))=(4(-t), QV(-t))
According to Wigner, ' this operator takes the form

&4'(t) = Uli'*(- t)

where U is a unitary operator determined by the
requirement (1). In a Schrodinger representation Q and
U will be time independent, and from (1) it follows that

U+QU=Q' (3)

of detailed balance. It can be shown to follow from the
time reversal invariance of the Hamiltonian. '

A change in representation a6'ects U in the following
manner. Let f and P' be two representations of the
same state related by the unitary transformation T:

f'= Tf, (Ef)'= TEP.

From (2) and

one finds with (4) that

O'= TU'r. '
For a system consisting of any number of particles

(including photons), we specify the states by the
quantum numbers J, M of the total angular momentum
and other quantum numbers collectively denoted by
A, 8 . Since J' is invariant under time reversal,

U+J'U= J'*.

Hence, U must be diagonal in the quantum number J.
The quantum numbers A, 8 are chosen such that
they label the eigenvalues of time reversal invariant
operators, for instance, the squares of the angular
momenta of parts of the system. U must therefore
also be diagonal in A. The M dependence of U can
be determined from the condition

U+JU= —J*.

With the help of the known matrix representation' for
J, one finds from (8), with some simple algebra,

(J'M'A'~ U~ JMA)=8~ g5s go ss jse' l &s "1+~i, (9)

where cr(J, A) is an undetermined real function of J
and A. The fact that U is unitary has, of course, also
been used in the derivation of (9). cr is, however, not
only undetermined but completely arbitrary: we may
always change the phases of the wave function by
operating with the unitary matrix,

(J'~'A'I T'I J~A) =5z s5ss sr4 ~e ' «'"& (10).
where Q is Q transposed. If Q'= Q, we call Q invariant
under time reversal. The Hamiltonian of any system
is invariant in this sense. The invariance of the S
matrix is the mathematical expression of the principle

4 F. Coester, Phys. Rev. 84, 1259 (1951).
5 It is easy to generalize this for time dependent transformations

T{t),where

' E. P. Wigner and L. Eisenbnd, Phys. Rev. 72, 29 (194/).' W. Heisenberg, Z. Physik 120, 513, 673 (1943).
3 E. P. Wigner, Gott. Nach. 31, 546 (1932).

U'(t) = T(t) UT( t). —
With this equation one can show that U is time independent in
any interaction representation in which Ho is real.' E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951),p. 48.
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If we transform U with (10) according to (6), we get

(J'M'A'~ V'~ JMA) = S,.,)~.~S,.~e'-&. »—+~i .(11)

written in the form

S= (1+i~K)-t(1 —i~K), (16)

U+SU= S. (14)

Since S is invariant under rotations of the coordinate
system, it is diagonal in J and M and independent of
M. It can therefore be written in the form (Btsg~A).
From (12) and (14) it follows that

(a[S,~A) =(A tS, ~a). (15)

This establishes the symmetry of the S matrix which
we set out to prove.

II. THE PHASES OF REACTION MATRIX ELEMENTS

If we substitute in (14) and (15) for 5 any invariant
Hermitian operator, the matrix elements must be real.
This is important in those cases where perturbation
theory is applicable. ' Whenever perturbation theory is
applicable, the matrix elements are real. In general,
the phases of the elements of S are not determined by
(15), but for reactions involving the formation of a
compound nucleus further conclusions can be drawn.

For resonance reactions elements of a certain 6nite
submatrix of E=S—1 are large compared to all other
elements. The picture of the compound nucleus suggests
that all large elements belong to the same J.Neglecting
small terms, we have a 6nite unitary and symmetric
matrix (8 ~5~ A) to consider. s Any such matrix can be

' G. Racah, Phys. Rev. 62, 438 (1942).' S. P. Lloyd has shown LPhys. Rev. 81, 161 (19S1)g that the
relative phase of the matrix elements for multipole emission is
either 0 or ~. This result is a special case of our theorem.' We drop the subscript J here for the sake of simplicity.

P is arbitrary; we may therefore choose n conveniently
in the 6rst place. The choice

(J'M'A'I fJI JMA)=~~ ~~~ ~~ ~~-e""+"' (12)

makes U real and has the following advantage: Con-
sider two systems, respectively, described by the quan-
tum numbers JiMiAt and JsMsAs, 'Ji+Js= J. The
matrix U for the combined system in a JMJ&J2A&A2
representation can be obtained by taking the outer
product of the U's for the separate systems and trans-
forming according to (6) with the Clebsch-Gordan
coefficient (JiJsMtMs~ J'M). We assume (12) for the
individual systems. Since the conventional Clebsch-
Gordan coefFicients are real and satisfy the symmetry
relation'

(JtJs—Mi —Msi J—M)
= (—1)~'+~' ~(JiJsMtMst JM)) (13)

we again find (12) for the combined system if A is
understood to stand for JIJ2A~A2. No additional phase
transformation is needed.

The time reversal invariance of the S matrix is,
according to (3), expressed in the form

2Ã'EK

(~ILIA) =-
1+is-x

(20)

where ~ is the nonvanishing eigenvalue of E. Since
T~~ is real, this means that the matrix elements for all
reactions which go through the same compound nucleus
have the same phase. To what extent the basic assump-
tion is valid must be decided ultimately by experiment.
A resonance in the cross section is not sufhcient to
guarantee its validity. It rests at present mainly on
its plausibility.

' For a de6nition of the density matrix and discussion of its
formal properties see for instance R. C. Tolman, The Prilciples
of Statistica/ Mechanics (Clarendon Press, Oxford, 1938),Chap. IX."This follows directly in a representation in which both p0 and
pj are diagonal; if py and p0 do not commute, they can both be
diagonal if A, 8 and C, D refer respectively to di8erent coordinate
systems in Hilbert space. Equation (19) itself is then obtained
by appropriate change of the representation. See also L. Wolfen-
stein and J. Ashkin, Phys. Rev. 85, 947 (1952).

~ T. D. Newton, Can. I. Phys. 30, $3 (1952). See in particular
assumption (A), p. 57.

where E is a real symmetric matrix. E and consequently
5 can be diagonalized by a real unitary matrix Tz&.
If Eq are the eigenvalues of E, we have

Rg —— 2s—.iEi,/(1+ i~Ki,) (1'/)

Assuming that ~Ei ~))1 at resonance for some values
of ), one finds

(a~Z~A)= —2 P„'2„,r„„(18)
where Pq' indicates summation over those values of )
for which ~E~(&&1.

More can be said if the picture of the compound
nucleus is further exploited. We describe the initial
ensemble of particles capable of forming a compound nu-
cleus of spin J by the density matrix" (AJM

~
ps

~

&JM').
The ensemble of decay products of the compound
nucleus is described by (CJM

~ pr ~
DJM'). Since

(1j2s.) ~
(8 ~E~A) ~' is the probability per unit time for

the transition A~8, po and p~ are related by"

(CJM
~ p, ~DJM')

= cons t Q ps (C I
&

I
A )(A JM

I ps l
»M') (~ I

&+
I
D) . (19)

The picture of the compound nucleus suggests that p~
should be independent of the way in which the com-
pound nucleus is formed. That means it should be
independent" of pf). This requirement is satisfied if and
only if E is proportional to a projection operator I'
which projects all states into a one-dimensional sub-
space. That means E. has only one nonvanishing
eigenvalue. gq' in (18) reduces then to one term. The
reality of (B~E~A) in (18) is, however, independent
of the assumption just discussed. On the other hand,
oG resonance the compound nucleus assumption formu-
lated above gives us


