
PH YSICAL REVIEW VOLUM E 89, NUM B ER JANUAR Y i, 1953

Gauge Invariance and Classical Electrodynamics

LLOYD MOTZ
RNtkerferd Observatory, Columbia Urtiversity, Peto York, tVeto York

{Received February 25, 1952; revised manuscript received September 30, 1952)

A Lagrangian for deriving the Maxwell-Lorentz 6eld equations
is obtained by starting from a general tensor of the second rank
g», which is expressed as the sum of a symmetric and an anti-
symmetric part b»= Xg»+F» The. symmetric part is identitmd
with the metric tensor and the antisymmetric part with the elec-
tromagnetic 6eld. A relationship between this second rank tensor
and the gauge invariant Ricci-Einstein tensor is established by
means of the gauge invariant theories of Weyl and Eddington.
This relationship leads directly to the Klein-Gordon relativistic
wave equation for a point charge moving in an electromagnetic
field provided the function ) is properly chosen.

The Lagrangian density is de6ned as the quantity (—~ g»~)&,
where

~ g»t is the determinant associated with the tensor g».
This choice is made for the Lagrangian density since (—) g» t )&dr

is the simplest generalized invariant volume element. Since the
Lagrangian density is nonlinear and irrational as it stands, it is
first rationalized by means of the Dirac matrices. If the Lagrangian

that is obtained in this way is varied with respect to the vector
and scalar potentials, one obtains a set of Maxwell-Lorentz
equations for a charge-current distribution that is de6ned in
terms of the 6eld potentials. These equations are almost identical
with those recently obtained by Dirac in his new classical electro-
dynamics. It is shown from the 6eld equations that the velocity
of the charge distribution is given by the relation

v= (Aiy)c,

where A is the vector potential, @ is the scalar potential, and c is
the speed of light. This is identical with the result obtained from
the retarded potentials of a point charge. For the static case it is
shown that the field equations lead to solutions for the fields and
potentials that are 6nite everywhere, and the self-energy of the
point charge is finite. The classical radius of the electron, the
Compton wavelength and the 6ne structure constant come into
the theory quite naturally.

INTRODUCTION In the present paper, a new approach to this funda-
mental problem is suggested which enables one to
obtain a new set of field equations which are linear and
yet which lead to solutions for the field intensities which
are everywhere finite. The charge-current distribution
appears in a natural way, and for weak fields the
Lagrangian and the Maxwell-Lorentz field equations
reduce to those obtained by Dirac.

The essential departure from the Born-Infeld pro-
cedure that is taken in this paper is to replace the irra-
tional Lagrangian they adopted, namely, the square
root of a quadratic form, by a rational one that can be
obtained from a tensor of the second rank by intro-
ducing the Dirac matrices. This second-rank tensor is
not chosen arbitrarily but is determined from the con-
dition of gauge invariance as introduced by Weyl and
others. With this choice the charge-current distribution
is automatically introduced and related in a simple way
to the Gaussian curvature of the space or the mechan-
ical density of the distribution. If the symmetric part
of the second-rank tensor is properly chosen, the 'usual

condition of gauge invariance of the electromagnetic
potentials leads to the Klein-Gordon relativistic wave
equation for the charge distribution.

' 'T is generally believed that the infinity difFiculties
~ - associated with the self-energy of the electron and
the electromagnetic field are due to the fact that thus
far it has been impossible to introduce into the theory
a fundamental length of the order e'/mc' in a satis-
factory and relativistically invariant manner. Although
recent developments in the quantum electrodynamics
have produced a prescription for subtracting these
infinities in an unambiguous way so that one is left with
a result that is finite, the fundamental problem of ac-
counting for the finite mass, charge, and self-energy of
the electron still remains.

Since the introduction of a point charge (as demanded
by the condition of re1ativistic invariance) already
brings with it in6nities in the classical electromagnetic
theory, one should attempt to remove the infinity
difFiculties at this stage before passing over to a quan-
tized theory. In the past a number of attempts have
been made to achieve this result but without much
success. Most of these older theories, of which that of
Born and Infeld' is a good example, have led to non-
linear field equations which are extremely cumbersome
and difFicult to work with.

Recently Dirac' has introduced a new form of clas-
sical electrodynamics by adding to the old Lagrangian
a term which is quadratic in the field potentials and has
the eGect of destroying the gauge invariance of the
theory. Although Dirac is able to obtain the field

equations for a charge-current distribution from this

Lagrangian, the introduction of the additional term is

THE GENERALIZED VOLUME AND THE
LAGRANGIAN DENSITY

Since any tensor of the second rank can be written
as the sum of a symmetric and an antisymmetric part,
we shall take as the starting point of our theory the
asymmetric second rank tensor

8"=)g"+~"performed rather artificially.
where X is some invariant function of the space-time

'M. Born and L. Infeld, Proc. Roy. Soc. (Londo ) A144, 425 coordinates which we sha]l specify later, g„„ is to be(1934).
'P. A. M. Dirac Proc. Roy. Soc. (London) A209, 291 (1951). identified with the metric tensor, and I'„„ is an anti-
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symmetric tensor that defines the electromagnetic
field. The choice of (1) is not entirely arbitrary but is
suggested by certain features of the gauge invariant
theory developed by Weyl. We shall see, in particular,
that the function X can be chosen in such a way that
one is led directly to the Klein-Gordon wave equation.

It is interesting to note that the property of gauge
invariance is a feature not only of the electromagnetic
potentials but also of the wave functions associated
with particle fields. One might therefore expect that
any theory which creates an electromagnetic potential
by means of a gauge transformation should at the same
time create a particle field. We shall see in what follows
that this is true of the Weyl theory of gauge invariance.
The possibility of deriving particle'wave functions
from the Weyl theory of gauge invariance was first
investigated by London, ' who identifies the integral of
the four-vector obtained from Weyl's theory with the
phase of the Schrodinger wave function.

The Weyl theory of gauge invariance is based on the
notion that it is not possible to compare lengths at
diGerent places in space-time because the result of the
comparison will depend on the path taken in bringing
the two lengths together. In other words, if we consider
the square of the line element ds'=g„„dx„dx„, only the
relative values of g„„have physical significance. This
theory has been criticized because it would seem to
indicate that the natural frequency of an atom at a
point in space-time should depend on the path taken
by the atom to reach the point. This criticism can be
answered in various ways.

It may, for example, be argued that although the
frequency of an atom will depend on the path taken by
the atom, the e6ect is so small as to be entirely beyond
experimental verification for the conditions ordinarily
met with in the laboratory. In other words, the e6ect
may be of great theoretical significance and yet of no
importance experimentally. The criticism may also be
answered by stating that the comparison of lengths does
not depend on the parallel displacement of the lengths
from point to point but is a property' of the geometry at
the particular point where the lengths happen to be.
This means that at each point of space-time a particular
gauge exists which is determined only by the magnitude
of the field intensities at that point. Whenever a par-
ticle reaches some point, it automatica11y adjusts its
dimensions to the appropriate gauge regardless of the
path it traversed to reach the point. As a final argument
we note that ds is a complex quantity, in general, so
that we may say that the variation in ds as one moves
from point to point occurs in its phase and not in its
absolute magnitude. Thus the physical quantities
associated with the line element are independent of the
path taken, and only the physically meaningless phase
is altered.

If a small space-time interval at some arbitrary point

' F. London, Z. Physik 42, 375 (1927).

(x„) is transferred by parallel displacement to a neigh-
boring point (x„+dx„), its length will change from a
value 1 to a value l+d1 because of the change in gauge
in going from the first point to the second. This change
in length can be expressed by the formula

d(iogl) = «sdxs) (2)

we see that F„,*=5„, so that F„„is independent of the
gauge.

The idea behind the Weyl theory was to introduce
into the formalism of general relativity only those
tensors that are gauge invariant. Eddington calls these
quantities in-tensors. Since the one connections are
functions of the metric tensor and its derivatives, it is
clear that the physically important Riemann-ChristofI'el
tensor is not an in-tensor. It is, however, fairly easy to
generalize this tensor so that it is gauge invariant. If one
does this and contracts it, 4 one obtains the second-rank
in-tensor

Gyp =Gyp («, ~ 2«~«)gyp 2«s«p
—(«„,„—«,, „)—2S„., (6)

where G„, is the usual Einstein curvature tensor. The
comma is used to denote the ordinary derivative,
«s, v

= ~«p/~xv.

4 A. S. Eddington, The Mathematica/ Theory of Relativity (Cam-
bridge University Press, Cambridge, 1923) p. 204.

where the ~„are the components of a four-vector. We
note that these quantities have the dimensions of a
reciprocal length. In the original form of the Weyl
theory, these quantities were identified with the electro-
magnetic potentials, but we shall not do that at this
stage.

Let us now consider a dimensionless invariant space-
time function Swhich is so defined that (expS) describes
a new gauge system. This new gauge system is intro-
duced by altering the length of our unit at each point
in the ratio (expS). We thus introduce into the theory
a scalar field 5 in addition to the vector field ~„.

Let us now suppose that the gauge of our system
is altered in the manner described above and consider
what changes are introduced as a result of this. If the
starred quantities represent the new values after the
change of gauge, we obtain

line element: ds*= ds(expS) ';

metric tensor: g*„„=g„,(exp2S)

We also have, from (2),

«„*dx„=d(log(*) =d log(l expS)
=d(logt)+ (BS/Bx„)dx„, (4)

or
«„*=«„+(BS/Bx„)

If we now define the antisymmetric tensor f„„as
the curl of the vector x„,
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We see at once that the right-hand side of (6) is a sum
of a symmetrical and an antisymmetrical part. It is
quite natural, therefore, to identify the second-rank
tensor (except for a scale factor) *G„„with the tensor
b» introduced in (1). We shall therefore proceed by
placing

|'8 ) ( 8
fee=~ee(ax„) E ax")

(18)

thing that follows it. Multiplying through on the left
by ee and using the relation (85/Bx„)e = (8/Bx, )e we
can write (17) as

where Q is a scale factor. On equating the symmetric
and antisymmetric parts of (7) separately, we obtain

2$»—=QF„p,

G» —(K, 2,«~—«)g» 2«y—«p (KI,, y+Ky, y) =QXg», (9)

.or

G»—2«p«y (Icy, p+ Icy, p) = (K, &g 2«~K +QX)g». (10)

We shall now introduce the electromagnetic potentials
by means of the relation

(19)

where q has the dimension of a reciprocal charge. We
also substitute for 5 the quantity —ipse. If we now
multiply both sides of (18) by (e/c)' and divide through
by q, we obtain the result

We shall now choose X so that (10) will lead to the
Klein-Gordon wave equation. We first place

(20)

If we now define Il=(1/ne), where a is the fine
structure constant, we can introduce Planck's constant
by means of the relation A=(e/cg), and (20) becomes

K, —2« K"+QX=k',

so that we obtain for X the expression

X=(k'—K, +2Ic K )/Q,

and (10) becomes (inc 8 e )(k ct e q ( e--A"
/

exp) —i—x f

(13) Ei Bx„c ) Ei cIx" c ) E ch )G» —
(KIy p+ Kp Ip) 2/CIp«p = k gypp

tee 8 e )(e 8 e ) e'
~

e
—'~K = ~e C~K-

4cgi cjx„c 3 (cqg ax'

where k' is some universal constant, having the dimen-
sions of the reciprocal of a length squared.

If we multiply both sides of (13) by g» and make use
of the index raising and lowering property of the metric
tensor, we obtain

6 2IC 2K Kg=4k )

where 6 is the Gaussian curvature at a point and is
equal to 8xpo(d]/ds)'I'. The quantities po and I' are the
proper density of matter at the point and the Newtonian
gravitational constant, respectively.

We shall now show that (14) leads to the Klein-
Gordon equation. %'e first rewrite it in the form

IC" „+K"K„=pG —2k,

=k'(2k' ——,'G) exp~ —i—x ~. (21)
CI'I )

k'(2k' ——',G) =m'c' (22)

We shall see that this agrees with the result that we
shall obtain in solving for the electrostatic case with
gravitational sects neglected.

We shall return now to the determination of the
function X. From (5), (8), and (19) we obtain

It is clear that we may identify this with the Klein™
Gordon equation provided we identify the coefficient of
the exponential on the right-hand side of (21) with the
rest mass of the charge distribution by means of the
equation

and note that ~„ in this equation is defined except for a
change of gauge. It follows, therefore, that (15) must
still be valid if we replace K„by «„+85/Bx„, where S
is the dimensionless function defined in (3). Since
K" „is equal to 8«"/Bx„, we obtain from (15) the equation

QF„„=2ig(BA„/Bx„BA„/Bx„—)

If we now place Q=2ig, we obtain

A=i(k+pA A +oA )=iA. , —

(23)

(24)

8 BS BS
K+ + K+

8' t9$8$
BS

K+ =M,
~&v-

(16)

BS
+Kp K"+

8$
|,~=M ) (17)

where the bracket on the left is to operate on every-

where we have placed M equal to —,G—2k'. lt is now
easy to see that (16) is identical with

where we have placed

k= k'/n; ~=—,'i——
The constant k is a universal constant whose value is
very much larger than the electromagnetic 6eld inten-
sities usually met with in the laboratory. (This quan-
tity plays a role here similar to that of the maximum
field intensity introduced in the Born-Infeld theory. )
We see that ) is both symmetric and invariant.

With the choice (24) of X, we shall now make use of
(1) to set up a Lagrangian function for the electromag-
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netic field. We start by writing down the expression for
the generalized volume element of our space. It has
been shown by Eddington' that the simplest such volume
element is given by the invariant,

In order to obtain g as a rational function of the field

strengths, we shall introd. uce certain auxiliary Geld

quantities in the form of fourfold row and column
matrices which we define as follows:

dV= (—i g„,i)&dr, (25)

RATIONALIZING THE GENERALIZED VOLUME

If we neglect gravitational effects, we can choose a
Galilean coordinate system and we obtain

—'A fsi fsi fsi'
fss—fsi -fss —& fss

fai fas —f4a- —

f&'+&'(fs—l'+ fss+ fsi fsl fss f'4s )
33 41 31 42 21 43

-=-S', (26)

where the f;, are components of the antisymmetric
tensor Ii„,.

If we now introduce the conventional notation for
the potentials and the Geld strengths, we obtain

where

gs =$4+ (Bs—Es)gs —(B'E)s (27)

7 ='[&+ (A' e')+ (~ -A+bl )),
E= ~y —(1/c)aA/at, B=wxA. (28)

E and B are the electromagnetic field strengths, A is
the vector potential, and p is the scalar potential. The
dot signifies diGerentiation with respect to the time.

Instead of using the form (27) for g', we shall trans-
form it to the expression

gs= (EXB)'+P,'+-,'(B —E )) —(B+Es)' (29)

'A. S. Eddington, reference 4, p. 234.

where ~g„„~ is the determinant associated with the
tensor g„., and d~=dxidxsdxsdx4.

It has been customary in the 'past to identify the
components of the antisymmetric tensor P„„with the
electromagnetic Geld strengths and to derive Maxwell's
equations from a Lagrangian of the form

s pv~p ( g) i'&

where g is the determinant of the metric tensor.
Born and Infeld do not start from this form of the

Lagrangian but instead use what is essentially the
invariant integral (25) with X taken equal to a constant.
Since a Lagrangian function of this type is an irrational
function of the Geld components, one is led to a set of
nonlinear Geld equations.

In this paper we shall also start from the generalized.
volume element (25), but with X defined by (24). If we
identify the vector field A„with the electromagnetic
potentials, then its curl [as defined by (23)) allows us
to identify the components of F„„with the electromag-
netic Geld. intensities.

++= (4A sos)A '

4,

(30)

The product of these two quantities is defined in the
usual way by means of the relation

~+= tt' '+4s'+Ca'+4'4' (31)

For the time being we shall make no assumptions about
the f's, which may either be constants or space-time
functions.

We now multiply the expression (29) on the left by
the row matrix in (30) and on the right by the column
matrix in (30). If we introduce A instead of X as defined

by (24), we obtain

e+g'e= ++((EXB)'
/2+ 1 (B2 E2))2 s (Bs+E2)2)@ (32)

We can factor this expression in a manner similar to
that used by Dirac in setting up his relativistic wave
equation. We introduce the Dirac matrices p]y +2 p3y p4
and ys=y1y2y3y4. If we let y represent the erst three
matrices, then it can be seen that (32) factors into the
two expressions

g~= —{~ (ExB)+v.[—~'+-,'(B'—E'))
+-,'its (B'+E') )4,

++8= —~+(~.(EXB)+V.[—~'+-'. (B -E'))
+sails(Bs+Es) }.

We shall now take for our Lagrangian density the
quantity g%' and write

~= —(,.(EXB)+v.[-&'+-,(B -E'))
+sails(B'+E')&+ (34)

We see that the Dirac matrices operate on + in such a
way as to replace the usual Lagrangian density by a
fourfold Lagrangian density according to the following
scheme:

2 =—S = —[(EXB).—i(EXB)„)gs—(EXB).g
—[—Asy-,'(Bs—E'))y, ——;(B'+E')fs

Zs—=Q s = —[(EXB).+i(EXB)„)Ps+(EXB),gs
—[—~'+-'(Bs—Es))4 —l(B'+Es)4

Zs =—gi's =
—[(EXB) —i(EXB)a)fs—(EXB).fi (35)

+[—~s+-'(Bs—Es))0 + l(B'+Es)4
2s=—g«= —[(EXB).+i(EXB)„)4i+ (EXB),fs

+[—As+x(B' —E'))$4+-'(Bs+E')fs.

We may consider the P-quantities as additional
degrees of freedom (additional 6elds of a nonelectro-
magnetic nature) that are introduced by the process of
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rationalization. These fields factor out when one passes
from the linear to the quadratic Lagrangian density.

Since the use of a Lagrangian density of the form
(35) will give rise to a fourfold set of field equations, it
may be argued that this will result in blackbody radia-
tion intensities four times larger than those predicted
by the Planck formula and therefore in disagreement
with observation. That this is not the case can easily
be seen from the fact that all the f's are not of the same
order of magnitude. In fact it can be shown that for
weak 6elds, that is, for 6elds that are small compared
to k or to A, the quantities Pi and f~ are small compared
to Pq and P4. From this it follows that for weak fields
the Lagrangian density defined above reduces to that
obtained by Dirac. ' To see this we rewrite (35) in the
form

{8+&'+-'(8' —E')}4i
=~L(EX8).+~(EX8)*]A

-HEXB).+!(8'+E')3.
{b+&'+-'(8' —E')}A

= —L(EX8).+~(Ex8)„]A
+C.(ExB),——,'(8+E)jy„

{8—y2 —i (82—E~)}y,
=[i(EX8)„—(Ex8),]p

—L(EXB).—l(8'+E') j~.,
{8—7'—2(B'—E')}4

= —((Ex8).yz(Ex 8)„$y,
+((EX8).+2(8'+E') jA,

and note that for small E and 8 we may place g equal
to X'. If we do this and solve for fi and f2, we obtain

y, = {ti(EXB)„—(ExB),lp.
—f(EX8),+-', (8'+E') jp3}/2y',

y = {—(EXB).+ (EXB),]y (37)

+f(EX8),——,'(8'+ E'))P4}/27~'.

If we substitute these values of Pi and $2 into the
last two equations of (36), we obtain the results

[g—x'—-', (82—E2)$y,
=P(EX8)'——,'(82+K')2gP, /2Z'

LO-7'-!(8'-E')3. (38)

=P(EX8)'——,'(8' —E')'7P, /27 '

If we now make use of the original definition of g' as
given in (29), we can substitute for the right-hand side
of (38) and obtain

LO-&'--'(8'-E')34=LB-&'-!(8'-E')3

(39)
X[g+ V+-,'(8'—E2)$y4/2V,

LS-&'--'(8'-E')3 =I S-7'-l(8'-E')3
X$g+7'+-;(8' —E')jy,/27 2.

From (39) we obtain at once the Lagrangian density
for weak fields:

For A. diGerent from zero this is the Lagrangian density
used by Dirac, and for A equal to zero it reduces to the
usual classical Lagrangian density. We see, then, that
for the case of weak fields our theory gives the same
result as that obtained with the classical theory.

If we now take (34) as our Lagrangian density, the
Lagrangian becomes

I.=, Zd7, (41)

and the variational principle becomes

Cd' =0. (42)

VXE+(1/c)aB/a&=0, V B=O; (45)

VX((74+~/6)+8+(yXE)+$

t9—(1/c) t (y i—y )+E—+(Tx 8)+$=4y pAA@, (46)
Bt

V"$(y4 —its)E+(Tx 8)g'F=4q4PAP'F.

The first set is obta, ined from (28) and the second set
from (42).

We now define the auxiliary 6eld vectors

D=(y, —iy )E%+(yxB)@,
H= (~4+i~,)Be+(AXE)e. (47)

In terms of these vectors the Lagrangian density takes
on the simple form

THE DERIVATION OF THE FIELD EQUATIONS

The variation of 8 with respect to the electromag-
netic field leads to the equation

&~=-{~ (~EXB)+T (EX~8)
+y4(—2AbA+8 88—E BE)

+iq, (B SB+E SE)}@. (43)

If we now introduce the vector and scalar potentials
from (28) and discard quantities that vanish at the
integration limits, we 6nd

&&={—&A [yx(VXE)+VX(AXE)
+y4{—4pAA+ V X8—(1/c) BE/Bt}
+~v {VXB+(1/c)~E/~t}j—~4t T (VXB)

+q (4qyA —V E)+'q V E7}@. (44)

To obtain the 6eld equations, we set the coeKcient
of bA and that of 8P separately equal to zero. After
some trivial transformations, we obtain the equations
of the electromagnetic field in the following form:

g= -A'--,'(8'-E') (40) Z=-,'(D E—H 8)+ ~,A2e. (48)
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and the field equations become

vXE+(1/c)aB/at=0; V B=0,
vXH —(1/c)aD/at=4q, t XAe;

V D=4y4tzA$%'
(49)

SOLUTION FOR THE STATIC CASE

For the electrostatic case B vanishes and the last
equation in (49) becomes

(y4 —zyz)+V E=4y4tzAV@. (52)

From this equation we now obtain the four equations

We may note that in the Born-Infeld theory the
auxiliary Gelds that are introduced also appear defined
in terms of E and B but in a very complicated and irra-
tional form.

As an immediate consequence of our Geld equations,
we may note that the charge and current densities
appear defined in terms of the electromagnetic poten-
tials. For the charge and current densities, we obtain
the expressions

4zr p =4y4tzA%'Q, (4zr/c) pv = 4y4tz A%A, (50)

where v is the velocity of the charge distribution. If we
divide the second of these equations by the first, we
obtain

v= (A/y)c. (51)

We see that this is precisely the result obtained from
the retarded potentials of a moving point charge in the
usual theory. The retarded scalar and vector potentials
for a moving point charge in the usual theory are given
by

@=eCr+(1/c)v r3 'I ~ I-
A=(ev/c)Cr+(1/c)v r3 'I ~-.t. ,

and their ratio leads to (51).
It has been shown that for the case of weak Gelds the

Lagrangian density (34) reduces to the usual one.
Using the same procedure it is possible to show that
the field Eqs. (46) for the case of weak 6elds reduce to
the usual set of Maxwell-Lorentz equations for a charge
current distribution.

rewrite (54) in the form

(d'/«')(r4) = —2t (k—4')(rqt ) (55)

Since k is very much larger than p' for ordinary 6elds,
we neglect p' on the right-hand side of (55) to a 6rst
approximation and obtain for $ the solution

qt = (a/r) expL —(2IkI t )'rj, (56)

where
I kI stands for the absolute value of k, which is

a negative constant, and a is a constant of integration.
If we substitute this back into (55), we obtain the

equation

(d/dr) (r'dqb/dr) = —2(Atzar) expC —(2 I
k

I tz) &rJ,
or

(d/dr) (r'E,) = —2(spar) e. x, pC —(2 I
k

I tz) &r$.

If we again neglect qP with respect to k on the right-
hand side of this equation, we obtain

(d/«)(r'E) =(2IkIAt ar) expC-(2IkI p)'r3

If we integrate this from zero to some Gnite value of r,
we obtain the solution for the electrostatic Geld

E.=(%')(1—C(2lkl t )'r+1j expC —(2lkl t,)&r]}, (57)

where the constant c has been placed equa1 to —e.
We see that for large values of r Eq. (57) reduces to

the ordinary expression for the electrostatic field of a
point charge. For small values of r (57) becomes

E„=(/er')(1 —C1+(2IkItz)&r]C1 —(2IkItz)&r]}, (58)

and we see that the field takes on a finite value at the
origin, namely,

(59}

Ke shall now make use of the result for the electro-
static case to determine the total energy contained in
the electrostatic field of a point charge at rest at the
origin. Since the energy density is given by E„/Szr, we
write for the total energy in the field the integral

1 f
00

U= — E 'r'dr= (1—C(2 I kI tz)—&r+ 1)
0 2~0

(V'P) (fi—fz) = 4Atzggi, —
( ~V)(~. ~)= 4~.~~.,--
(V'd )(0i A) =4~t 4A—,
(V'4)(A A) =4At 444—,

(53)

dr
XexpC —(2IkItz)&rj}'—. (60)

r2

On carrying out the integration, we obtain

where we have replaced p' E by V'Q.
If we now add the first of these equations to the

third one and the second to the fourth one, we obtain
two identical differential equations for the potential @,

V'@= —2h.tie (54)

Ke can solve this equation for the case of spherical
-symmetry by successive approximations. Using the
6rst equation in (28), we place A equal to (k—tzqP) and

e' 1 (2lklt)'U=—
2 r 2

expC —2(2IkI tz)&rg

2 00

+-expC —(2IkItz)&rg ——expC —2(2IkItz)&rg

At the upper limit the entire expression vanishes; and
we obtain the value at the lower limit by expanding the
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exponentials to the first power in r. We thus And

e'l1 2
U=lim ——+$(2j k( p)& ——

t 1—(2~ k) p)&r+
0 2 r r

becomes

~= f'(D' E+H' ~)+D' &4+7 ~[~+(0/c) j)+.
(69)

1
+-L1—2(2 (

k
~

p)'*r+

-', e'(2) u( p,)-*=~c' (62)

From (62) we see that the classical radius of the elec-
tron, e'/@ac', enters into the theory quite naturally as
the quantity 4/(2

~

k
~ p) '*.

If we compare (62) with (22) we see that these two
equations can be consistent only if

G= 2(rwc/h)'(32cP —1), (63)

where n is the fine structure constant kc/e'. With this
choice for G, we find that the constant

~
k

~

has the value

( k) =8(esc/Ii)'n'e (64)

We see from this that
~ k~ is indeed a very large con-

stant, so that we are justified in neglecting ordinary
6elds compared with it.

If we substitute (64) into (59), we note that the
electrostatic field at a point charge is just equal to
16(mc')'/e' or 2~ k~/n.

THE HAMILTQNIAN OP THE FIELD

To pass over to the Hamiltonian formalism, we
introduce the momenta y~ and p& conjugate to the
generalized coordinates A, and @, respectively, by
means of the definitions:

pg"= az/aA"& pe= az/ap

%e note that

Ii~= —(1/c)$(v —iq )E+(yX&)$+=—D/c, (66)

and that

p&
—— y4i h% /c =—p4M /c. —

%e now define the Hamiltonian density as

re=I aA/a~+ p, p z—(67)

If we make use of (48) for the Lagrangian density and
place D=D'0 and H=H'4, the Hamiltonian density

On passing to the limit r=0, we finally obtain

U =-'e'(2
~

n~ ~)'. (61)

If we now equate the total energy in the field to the
self energy nsc' of the point charge, we obtain

Since this Hamiltonian density contains no square
roots or other irrational functions of the field variables,
it should be possible to pass over to the quantum theory
in the usual manner. The presence of the Dirac matrices
in D' and H' in (69) should enable one to introduce the
necessary spin into the theory.

DISCUSSION

There are a few points in connection with the theory
developed above that are worth noting. The first point
of interest concerns the manner in which the field

equations and the Klein-Gordon equation enter into
the theory. The former are obtained from a variational
principle whereas the Klein-Gordon equation is intro-
duced by means of a gauge transformation applied to a
scalar equation. It would appear that the solution of
the problem of the motion of an electron or a point
charge involves the simultaneous solution of a set of
field equations for the electromagnetic potentials and a
set of wave equations. Since gravitational eGects have
been neglected, one may wonder whether a complete
variational principle involving variation with respect
to the gravitational as well as the electromagnetic
potentials would not give both the Geld equations and
the Klein-Gordon equation.

We have noted previously that the quantities P are
not completely specified. In the present paper, we

assumed them to be constants in dealing with the elec-

tromagnetic field equations. It is possible, however to
allow the P's to enter the theory as space-time functions
in which case the field equations would involve addi-
tional terms which depend on the derivatives of these
quantities. In considering the nature of the Lagrangian
density for weak fields, we do in fact tacitly assume
that the f's are variable quantities such that for weak

fields the first two components are small compared
with the last two components.

%e may finally note that the present theory does not
suffer from the defect of having to introduce new

arbitrary constants. The constants that do appear like

k, G, and p, can all be expressed in terms of the funda-
mental constants of nature, e, nz, h, and c.

In the summer of 1946, when the ideas developed in

this paper first originated with the author, he had the
pleasure of a number of stimulating discussions on the
subject with Professor John A. Wheeler. It is also a
pleasure to thank Peter G. Bergmann for suggesting
some of the features of the arrangement of the material
in the paper.


