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Multiple Scattering and the Many-Body Problem Applications to Photomeson
Production in Complex Nuclei~

KENNETH M. WATSON

Physics Department, Indiana University, Bloomington, indiana
(Received October 1, 1952)

A study is made of the scattering of fast particles by atomic nuclei. A rigorous (formal) solution to the
many-body Schrodinger equation is given which has the structure of a multiply scattered wave. The relation
of this solution to the "impulse approximation" is discussed. A decomposition of the wave function into
"coherent" and "incoherent" parts is effected. This makes it possible to derive the familiar "optical models"
directly, as well as to 6nd systematic corrections to these models. The theory is applied to a discussion of
photomeson production in complex nuclei.

I. INTRODUCTION authors did not appear to be in the most convenient
form, however, for a systematic development of the
multiple scattering aspects the problem —and thus for
a derivation of the optical models mentioned above.

The purpose of the present paper is to attempt the
description of the multiple scattering of a fast particle
in a nucleus. A rigorous formal solution to the many-
body Schrodinger equation will be obtained which has
the structure to be expected of a multiply scattered
wave. The relation of this solution to the impulse ap-
proximation will be discussed.

On introducing a further approximation, which as-
sumes the number of scatterers to be large, it is possible
to make a separation of "coherent" and "incoherent"
efI'ects in the above solution to the Schrodinger equation.
This makes it simple to derive the "optical models"
mentioned above and to discuss more generally some
formal relations to be expected for the scattering cross
sections. Since the optical models are obtained almost
directly from a rigorous solution to the Schrodinger
equation, systematic corrections to these models appear
to be quite straightforward.

To make the discussion of the model more speci6c,
we shall apply it to photomeson production in complex
nuclei (which includes discussion of meson scattering
in nuclei). This will illustrate the fiexibility of the
method, since we shall also include an interaction for
meson absorption (as well as for scattering). The formal
arguments are quite general, however, in spite of their
rather specihc application in the present paper.

In Sec. II we shall introduce phenomenological inter-
actions (and evaluate some of their matrix elements)
for the photoproduction and scattering of mesons by
individual nucleons, as well as for absorption by a pair
of nucleons. It will then be shown that the solution to
he Schrodinger equation for photomeson production
nvolves solving the Schrodinger equation for meson
cattering by the nucleus.

There appears to be ample experimental evidence
hat meson scattering''" plays a significant role in

HE existence of high energy accelerators has made
it possible to study reactions in complex nuclei

induced by bombarding particles whose energies are
large compared to nuclear binding energies. For such
processes it is expected that the binding energy of the
nucleus plays only a secondary role and that the scat-
tering of the incoming particle by the nucleus can be
described in terms of its scattering by the constituent
nucleons of the nucleus individually. That is, the
dynamical treatment of the many-body problem is
thereby reduced to that of the two-body problem.

A number of models have been used to treat these
reactions. In their study of the scattering of high energy
neutrons by nuclei, Fernbach, Serber, and Taylor' have
considered the nucleus to be a continuous "optical
medium" characterized by an index of refraction and
an absorption coeKcient. The phase change of the
incident wave is calculated as if it had followed a well-
defined geometrical path through the nucleus, the total
wave being the algebraic sum of the wavelets resulting
from all such paths.

A somewhat more detailed application of this model
has been made by Byfield, Kessler, and Lederman' and
by Steinberger in the discussion of their own experi-
rnents of meson scattering by nuclei. This involved
solving the Schrodinger equation which results from
expressing the meson-nucleus interaction in terms of the
"optical parameters" mentioned above.

On the other hand, an elegant reduction of the many-
body interactions is afI'orded by the use of the "im-
pulse approximation, " which has been introduced by
Chew4 and discussed in detail by Chew and %'ick~ and
Chew and Goldberger. ' The treatment given by these

McMillan, Peterson, and White, Science 110) 579 (1949).
R. F. Mozeley, Phys. Rev. 80, 493 (1950).' R. Littauer and D. Walker, Phys. Rev. 86, 838 (1952). -

"G.Bernardini and F. Levy, Phys. Rev. 84, 610 (1951).

* Supported in part by the joint program of the Once of Naval t
Research and Atomic Energy Commission.

'Fernbach, Serber, and Taylor, Ph s. Rev. 75, 1352 (1949).
R. Serber [Phys. Rev. 72, 1114 (1947) has described the general
features common to the various models employed to discuss high
energy nuclear reactions.

2 By6eld, Kessler, and Lederman, Phys. Rev. 86, 17 (1952)
(further references are given in this work).

3 J. Steinberger (private communication).
4 G. F. Chew, Phys. Rev. 80, 196 (1950).' G. F. Chew and G, C. Wick, Phys. Rev. 85, 636 (1952).' G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).
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photomeson production. The observed variation of the
cross section with atomic mass number A is A&, which
is proportional to the cross-sectional area of the nucleus
and would seem to imply that only those mesons pro-
duced in the surface of the nucleus are able to get out.
On the other hand, those mesons which are produced
and re-absorbed in the nucleus will lead to high nuclear
excitation. One would consequently expect to see an
increase in the cross section for producing nuclear stars
by y-rays at about the threshold for meson production,
which has also been observed. " " (In a subsequent
paper by Reff" a detailed comparison of the conse-
quences of the present theory with the observed phe-
nomena wi11 be made. )

In Sec. III the scattering of a meson by the nucleus
will be discussed. As a multiple scattering type of theory,
we shall see that the model can be well described in
terms of meson scattering at a point in the nucleus,
followed by a scattering at a diGerent point, followed

by a scattering at a third point, etc. We shall neglect
speci6cally "6eld eGects" which correspond to re-
creation of an absorbed meson, so once the meson is
absorbed the multiple scattering process ends. We shall

repeatedly encounter averages of certain operators with
respect to the nuclear wave functions. These expecta-
tion values can be expressed in terms of nucleon density
in the nucleus, nucleon momentum distributions, and
correlation in nucleon positions within the nuclear
structure.

The interpretation of such expectation values with
respect to the ground state of the nucleus can be made
on very reasonable physical grounds. The interpretation
of expectation values with respect to excited nuclear
states is more ambiguous in general. However, this will

not cause difhculty for the following reason: We con-
sider the meson to be sufficiently energetic that its
velocity is of the order of c, the velocity of light. The
velocity of the heavier nucleons will be appreciably less
than this ( c/10). We imagine the meson to be pro-
duced (or scattered) at a point. The meson 1eaves this
point with a velocity of about c, while the "shock wave"
carrying nuclear excitation will proceed from this same
point at a much lower velocity. When the meson reaches
the position at which it is to be scattered again, it is
expected to have "outrun" the nuclear excitation and
will find the structure of the nuclear medium in the
vicinity of the point of subsequent scattering to be
essentially the same as in the nuclear ground state.
The expectation value of operators localized at this
second point will thus be replaced by expectation values
with respect to the ground state of the nucleus.

"R. D. Miller, Phys. Rev. 82, 260 (1951).
~ J. Keck, Phys. Rev. 85, 410 (1952)."S.Kikuchi, Phys. Rev. 86, 41 (1952).
&41. Re8 (to be published). See also, Phys. Rev. 87, 207 (1952),

for a preliminary account.

H'=g exp( sg—Z~)N~,

where q is the momentum of the produced meson, Zg

is the coordinate of the 1th nucleon, and X~ is a function
of q, spin and isotopic spin operators, and the photon
energy and polarization. The sum is over the A nu-
cleons in the nucleus. E~ has nonvanishing matrix ele-
ments for those charge states of the meson and nucleon
which conserve charge.

As we are considering photomeson production from
a nucleus, we shall need the Hamiltonian and eigen-
functions. of the nuclear system. Let the Hamiltonian
be H~, so the eigenfunctions fr satisfy

H&r = erPr (2)

for a state of binding energy eg. The process of photo-
meson production leads in general from an initial nu-
clear state A to a 6nal nuclear state Ii, possibly through
intermediate nuclear states I.

The wave function for a meson in a plane wave state
of momentum q is (we use as units 5=c= 1)

Xp=(27r) & exp(pal Z).

The Schrodinger equation for this state is

hA, = e,X~, (4)

where h is the kinetic energy operator of the meson and
e,—=gp ——(q'+p')'* is the kinetic energy of the meson,
whose rest mass is p.

Expressing the energy operator of the electromag-
netic held by H~, we de6ne

Hp= h+H~+Hr. —
The eigenvalues of Ho are written as E~., and, in par-
ticular, the energy of the ground state of the nucleus
plus the incident photon is called E~.

Now, if the meson were to leave the nucleus without
interaction, the Hamiltonian would be

H=Hp+H',

and the cross section for photomeson production
would be

o = (2pr)4S(H'5(Eg —Hp)H'). (6)

By the symbo1 ( . .) we mean the average with re-
spect to the ground state of the nucleus. The symbol 5
designates an average with respect to initial polariza-
tion states. If we neglect correlations between nucleon

IL FORMULATION OF THE PROBLEM

A. Preliminary DeQnitions

We seek to describe the mesonic processes in com-
plex nuclei in terms of elementary interactions be-
tween subunits of the many-body system. The 6rst of
these is the interaction of the electromagnetic 6eld
with individual nucleons to produce a meson. This we
write as
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positions and the energy of excitation of the nucleus,
use of Eq. (1) leads to

o = (2')4'(Ni+b(e, h)—Ng)

=dog,

we have

(2w) s~ exp( —iq' Z')t exp(iq Z)d'M'Z'

=—exp[ —s(q' —q) Z.7(g'ii. oiq), (10)

where

og ——A '[Z(o„++o~')+(A —Z)(o„—+o„')j.
where (q'~t a~q) is independent of Z .

The scattering interaction for a nucleus containing
A nucleons is

0~+ is the cross section for producing a m+ meson from
a free proton, a.~' that for a m' meson, etc. Z is the
number of protons in the nucleus, so Of is the effective
"average cross section" per nucleon for producing a
meson. For brevity of notation in Eq. (7), we have
summed over individual cross sections.

Equation (7) is based on the assumption that the
produced meson does not interact with the nucleus.
Finding the corrections to Eq. (7) resulting from such
interactions will be our primary concern. It is known
that the meson can be scattered as well as absorbed in
nuclear matter. The scattering will be assumed to
arise from an interaction of the meson with one nucleon
at a time (i.e., we neglect many-body interactions).
The absorption (to conserve energy and momentum)
must, however, be a many-body interaction. We assume
for reasons discussed previously'~ that it involves an
interaction. of the meson with a pair of nucleons. Al-
though these interactions could be formally derived
from a Geld theoretic approach, it seems preferable to
introduce them in a phenomenological manner, as was
the electromagnetic interaction of Eq. (1).

The scattering interaction of the meson with the
0.th nucleon we designate by

v.=(z —z. i v. i
z-z.), (8)

which is assumed to be diagonal in the nucleon co-
ordinate Z because the mass of the nucleon is con-
siderably larger than is that of a meson. Z and Z'

represent the space coordinate of the meson. From the
algebraic analysis of Chew and Goldberger' we obtain
the transition operator for the scattering arising from
V as

t '= V +V (es+ir) —7s —k —V ) 'V . (9)

Here e~ is the energy of the meson and nucleon and
k is the kinetic energy operator of the nth nucleon. The
use of "q," as a positive parameter which goes to zero
after the integrations are done, follows the convention
of Lippmann and Schwinger. "Again, because of the
large mass of the nucleon, we shall assume that in a
coordinate representation t ' takes the form"

t '=(Z' —Z. (t '(Z —Z.).
Transforming to a meson momentum representation,

» Bruechner, Serber, and Watson, Phys. Rev. 84, 258 1(951)."B.Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
'7 A discussion of this point has been given by Fernbach, Green,

and Watson, Phys. Rev. 84, 1084 (1951).

a=1

It is understood that the isotopic spin dependence of
V and t ' corresponds to the observed scattering phe-
nomena for the various charge states of the meson and
nucleon.

The interaction for absorption has been discussed
previously'~ "and is obtainable from that for producing
mesons in nucleon-nucleon collisions. We assume that
the absorbing pair of nucleons has a relative coordinate
r and a center-of-mass coordinate x. Then the ab-
sorption operator E„, corresponding to absorption by
the pth pair of nucleons is approximately"

(r', x'~R„~ Z) r, x) =R„'(r', Z—x)5(x—x')5(r). (12)

The b(r) approximates a short-range interaction and
has been discussed in detail in references 15 and 18.
E„also contains a corresponding term to produce
mesons. When the meson is absorbed in the nucleus by
two nucleons, they are expected to recoil with an energy
of about 140 Mev. We suppose that these two recoil
nucleons have a relative momentum p and a total
momentum G and that their wave function is a plane
wave. Transforming E.„', we have

(2s) ' exp( iy r')R„'(r—', Z —x) exp(iq Z)d'r'dsZ

=—exp(iq x)R„s(y, q). (13)

The absorption operator for the nucleus is the sum
of E„over all nucleon pairs:

R=QQ„. (14)

To avoid a discussion of Geld emission and absorp-
tion eGects, we shall include R in the Hamiltonian of
the system, but shall treat it as a small perturbation
so that it will indeed be a transition operator. One-
half the transition rate for absorption in the nucleus is
then (neglecting correlations between pairs)

S,=—w P„(R„8(Z~—a,)R„), (15)

where it is understood that the Grst R„absorbs and the
second R„reproduces the meson. As before" we ap-
proximate Ez Hs by e,—P'/M, where —M is the nu-

"K.Watson and K. Brueckner, Phys. Rev. 85, 1 (1951).
'9 This follows from the form given in reference 15 when p/2M

is neglected compared to unity (lV is the nucleon mass). A specific
assumption about the form of t and R is not, of course, necessary
for the general theory of the next section.
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cleonic mass. To calculate the matrix element (q'
I
60

I q),
we 6rst consider the absorption of the meson by nu-
cleons "1"and "2," so [see Eq. (12)j

Then, if the nucleus is very large, the integral in
Eq. (20) becomes a ti-function:

Then
r= Z, —Z, , x=-,'(Zi+Z, ). (16)

(Approximation I)

(q'
I
~o

I q) = (~-/»»(q' —q) (22)

&R(12)~(@A +0)R(12i&

t'P~(r', x, Z, . Z~)8(r')R~(i2i(p, q')

Xd'P8(e, —P'/M)R'(»i(p, q)(i(r) exp[—i(q' —q) xj

Xit'~(r, x, Z3 Zg)d'r'd'rd'xd'Z3 d'Zg

"(R (»i(p q')d'P~(&a —P'/~)R'(i»(p q))

As will be seen later, this approximation leads to the
model of Fernbach, Serber, and Taylor' and to that of
reference 15.

The second approximation involves using Eq. (20)
as it stands. This equation can be simpli6ed in a co-
ordinate representation, if we consider e /2X, to be
evaluated at the energy of the meson in the nuclear
inedium and remove it from under the integral below:

(Approximation II)

XP(O, x) exp[—i(q' —q) xgd'x, (17) (Z'IA, IZ)=(2~) ' exp(iq' Z')(q'I plq)

where P(O, x) is the joint probability of finding the
nucleons "1"and "2"at the same point and of finding
their center-of-mass at the point x. It is convenient
to write

P(O, x) =Poe(x)/V~. (18)

Pp is a factor describing correlation in nuclear struc-
ture and was discussed in reference (15), v(x) is the
probability density of the center-of-mass of the nu-
cleons "1"and "2"when they are at the same point.
It is normalized according to

"w(x)d'x= Vg,

the nuclear volume. Equations (18) and (19) are in
agreement with the unit normalization of the nuclear
wave functions.

To obtain (q'Iholq) we multiply Eq. (17) by the
number of absorbing nucleon pairs, S„.We now evaluate
6p by three methods, the 6rst two being a,pproxima-
tions to Eq. (17). It is apparent that (except for the
smallest nuclei) 60 will be nearly diagonal in q. Conse-
quently, for the tw o approximations we replace
R'+(p, q') by R'+(p, q) in Eq. (17). Then following
the arguments of reference 15, d p is related to the mean
free path for absorption, )„in the nucleus by

(q'I &0l q) = (2w) '~t'n(x) exp[—i(q' —q) x)d'x, (20)
2X

where e is the velocity of the pion before absorption.
If constant nuclear density were assumed, we would
have

n(x) = 1 inside nucleus,
(21)

v(x) =0 outside nucleus.

This assumption is not necessary, but is the one most
commonly chosen. For speci6c calculations in this
paper we shall assume Eq. (21).

Xexp( —iq Z)d'q'd'q

(v./2X.)n(Z) li(Z' —Z). (23)

We shall see in Sec. III that this leads to the model
used by Lederman' and by Steinberger. ' Evaluation of
Eq. (17) keeping an arbitrary q' in R'+(p, q') leads to
an expression which can be formally written as

(Approximation III)

(Z'I t4IZ) =(v /2X.)v(Z', Z). (24)

(We have assumed that the nucleus is infinitely heavy
and that its center is at the origin of the coordinate
system. )

The diagonal element of t ' [Eq. (9)] with respect
to the nuclear coordinates can be found by the same
method. Writing to=+ &t '& we obtain

(q'I tel q) =2 &(q'It-'I q)&

Xexp[—i(q' —q) Z gP(Z )d'Z . (25)

P(Z ) is the probability per unit volume of finding
nucleon "n" at the point Z . We express P(Z ) as

P(Z.) = v, (Z.)/V~ n(Z.)/V". (26)

On summing over o., we obtain a factor of A . Ap-
proximations I and II are made as for Ap. Using the
general theorem" relating the imaginary part of the
scattering amplitude in the forward direction to the
total scattering cross section, we obtain (since the total
spin of the nucleus is much less than A/2)

(~/V~)(2~)'&(qlt 'Iq)&= Vo —&(i /27's=&s, (27)

where ) q is the mean free path for a scattering in the
nucleus and Vp is

Vo= (2&/qo) Re(us)A/V~
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Re(as) is the real part of the meson scattering ampli-
tude in the forward'direction (actually the average for
the neutrons and protons in the nucleus). Then by our
three approximations for hp, we have I Eq. (27)j

(0 It&IN)=&&5(% 0) i

(Z'I «l~) =&B~p(~)5(z' —Z) ' (28)

111: (Z'it iZ)=a, ~,(Z', Z).

To anticipate the conclusions of Sec. III, we note that
Vp is the "effective well depth" of the nucleus as seen
by the meson. "It should be remarked that Vp, Xz, and

are "operators" in the charge coordinates of the
meson, their eigenvalues being the appropriate nu-
merical values of these parameters for the three charge
states of the meson.

B. Solution of the Schrodinger Equation

The Hamiltonian for the system is

P= H p+R+ V+H', (29)

where the various terms are defined by Eqs. (1), (5),
(11), and (14). The wave function of the system corre-
sponding to an initial state, p~, containing a photon
and the initial nucleus is

XA = C'fA (3o)

C is the wave matrix introduced by Mglller. " In the
Lippmann-Schwinger" formulation, the Schrodinger
equation for C can be written as (we omit the symbol
I(+)7 on C)

C =1+a '(H'+R+ V)C, (31)

it being understood that this equation operates on @~.
The quantity e is dined as

tion." Spontaneous creation of mesons by R is to be
neglected. Thus the first occurrence of R in Q (reading
from right to left) will correspond to absorption of a
meson. The next occurrence of R must then correspond
to creation of a meson. Neglect of "spontaneous crea-
tion" implies that the re-creation must occur immedi-
ately from the same pair of nucleons. This means that
an expression such as

ZR~R (35)
can be written as

Q„R„e-'R„

i Im((h))~ —zzr Q„(R„5(Eg—Hp)R„)
= —ib p. (36)

6p is defined by Eq. (15). We shall henceforth use 6
and —ib, p interchangeably in our equations.

A quantity b is de6ned as

b=a —h. (37)

LEq. (14)J. Also, following a single R interaction, there
is no meson so U vanishes. Now, 6 is the lowest order
transition operator for meson scattering arising from
R. This is a many-body e6'ect and is expected to be
negligible compared to the scattering arising from V.
(Experimental studies of meson scattering in hydrogen
and deuterium" support this hypothesis that the inter-
action is primarily between the meson and one nucleon
at a time. ) However, we cannot quite neglect terms
like 6, because this quantity contains the "shadow"
cast by true absorption. This arises from the imaginary
part of 6 that is diagonal in the nuclear coordinates.
We shall then assume that L"Im( ~ ~ )"means "imagi-
nary part of ( )"]

u= E~+zrt—H p.— (32) We note that, following an R which absorbs a meson,

Spontaneous creation of virtual mesons by R is ex-
pected to be small, so we assume that R vanishes when
operating on the state gz. (V obviously does so.) We
also treat H' as a small perturbation, since it involves
an electromagnetic interaction. Then

C =1+Qp, 'H', (33)
where

Q=1+a '(R+V)Q. (34)

0 is seen to describe the scattering of a meson in the
nucleus, so our next problem is to study the solution
to Eq. (34).

III. THE SCATTEMNG OF A MESON BY THE NUCLEUS

A. Basic Multiple Scattering Equations

We turn our attention to the solution of Eq. (34).
The quantity R is to be considered as a small perturba-

'~ From their experiments Byfield et at. (reference 2) and Stein-
berger (reference 3) 6nd that Vp~20 Mev and (1/As+1/X, )~10+n
cm '. These values are dependent upon the "optical model"
which was used —i.e., approximation II in our notation."C.Mufller, Kgl. Danske. Videnskab. Selskab, Mat. -fys. Medd
25, No. 1 (1945).

since 6 vanishes when operating on a state that does
not contain a meson.

As a first step in the solution of Eq. (34), we solve
the integral equation

Os=1+9 'VQa (39)

In the special case that R=O, Eqs. (34) and (39) are
identical. That is, 08 evaluated for 6=0 describes the
scattering of the meson in the absence of absorption.

To solve for Qz we introduce two subsidiary functions:

t.'= V.+ v.(~—v.)- v., (4o)

t =V +V (b V) 'V . —(41)

We shall wish to identify t ' and t with t p LEq. (9)$—
the scattering from a free nucleon. The identihcation
of t ' with t ' is the impulse approximation. We shall.
not discuss this in detail since it would be largely a

z2 This restriction is not necessary fK. Brueckner and K.
Watson, to be publishedg.

sz Anderson, Fermi, Nagle, and Yodh, Phys. Rev. 86, 413 (1952).
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repetition of the analysis of Chew and Goldberger'
(although our statement of the problem differs some-
what from that of these authors). The essential point
is the observation that a [Eq. (32)] and p&+i21—h —k

[Eq. (9)] differ only by the excitation imparted to the
remainder of the nucleus. This is expected to be a small
correction for high energy scatterings, such as we are
considering. That t ~t ' is demonstrated later in this
section.

The solution to Eq. (39) is

1 1
Qs= 1++— taz+taz ta2+—

(~) b b

1 1 1
+t., t., r-.„+—-. (42)

b b b

Here the index "a;"on 4; (n;=1, 2, . A) refers to the
scattering of the meson by the n;th nucleon. The sum-
mation over the 0.'s (designated by g& i) is a summa-
tion over all indices "n;" independently (from 1 to A),
except that eo tao adjacemI, indices can have the same
value. Thus, if there were only the one nucleon "n,"
Qg would reduce to

Q,=1+ (1/b)~. .

Once we identify t with t ', we see that Qz repre-
sents true multiple scattering, '4 since the meson is scat-
tered 6rst by one nucleon then by another, etc.—and
this is summed over all possible ways that such can
occur. To see that Eq. (42) is a rigorous solution to
Eq. (39), we substitute the former into the right hand
side of the latter. We obtain terms like

Relabeling the summation indices of the first term of
Eq. (43) as ap-+nz, nz~a2 ~ n —+n~z and summing
over I, we find that the second terms of Eq. (46) and
the first terms of Eq. (43) cancel in pairs. The first
terms of Eq. (46) are just those terms occurring in
Eq. (42), so Eq. (39) is indeed satisfied.

Let us return now to the basic scattering equation
(34). The solution is

Q= (1+a zE)Qs(1+b zh) (47)

To see that this satis6es Eq. (34), we substitute into
the right-hand side of (34) to obtain

Q = 1+(1/a) ( VQs+EQs
+R(1/a)RQs}(1+(1/b)A} (48)

[V(1/a)E=O since 8 absorbs the meson. $ Now

1/ = (1/b) —(1/ )~(1/b) (49)

and (1/b) VQs=Qs —1 [Eq (39)]. We also write the
term E(1/a)R in Eq. (48) as

E(1/a)R= 6 (50)

by Eq. (35). Equation (48) then reduces to

Q= (1+a zE)Qs(1+b zd, )
—(1/b) 5+ (1/a) 6+ (1/a) A(1/b) 6

(51)

by Eq. (49). Thus Eq. (47) is the required solution to
Eq. (34).

To show that t ' and t are nearly equal, we observe
that

t —t.'=' t.'(1/a) h(1/b) t . (52)

By Eq. (36) we replace 6 by —ihip. In b we use Eq.
(22) for Ap. In the numerator, we use Eq. (20). Referring
to Eq. (10) and to the definitions of Ap, we see that (if
we neglect the energy of excitation of the nucleus)

1 1 1 1 1 1 1 1
V Q Eaz fa2' ' ' fu~ —Q Vap faz fa2' ' ' Pap

b (~) b b b (~) b b b b

1 1
+Q —Vnz —taz—3 2. —4„, (43)

(~) b b b b

(—2P ) P exP[iqz. (Z —x)]= (22r) 2~
~

' dpxd'q, dpq,
2X~ J J'p~

1 1——=—Vag
b—Vai b b b—Vag

Pq+2 1 qpl(44)

exp[ —iq2. (Z —x)] 6q
X —(22r)' (53)

2X.
we find that (from Eq. (41))

p 2+ 27) qp2+ 'L

2X
1

Vg-tag ——t~g —Vag
b

on the assumption that the nucleus is large. ln terms of
the scattering amplitude uq,

t '= as/[(22r)2p, ].
holds as an identity. Thus the second term on the right-
hand side of Eq. (43) is

(54)

1 1
exp(izfz Z ) ~ q, —5—

q2 ~ exp( —pq2. Z )d'q, d'q,
where the index np is never equal to nz in the summation.
Using the identity

1 1 1 1 1 1
taz ta2 ~ ~ ta„Q Vaz—ta2—. ~ —ta„—. — — —

(~) b b b (~) b b b
(46)

Therefore

4—t.'= t '(1/a)h(1/b)t. (as/2X )t . (55)

'4 We might call t the effective scattering amp1itude" from
a bound nucleon.

This is a correction to t of about 2 to 3 percent at the
meson energies for which as and X, have been measured.
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B. Decomposition of the Scattering into Coherent Thus [using the techniques of Chew and Goldberger'
and Incoherent Parts to solve Eq. (59))

Referring to Eq. (42) we see that Qs can be written as

Q,=1+-P f.,Q, (n,),
A1

1
Qs(ni) —1+- P t sQs(ns).

5 0"240'1

Qsc= 1+ fc
&—tc

=1+(1/e) tc,

where we have introduced the new quantity
I

e=—b —tc.

(60)

(61)

These equations have the formal structure of the
multiple scattering equations introduced by Foldy" and
generalized by Lax." These authors introduced the
equations on grounds of physical plausibility and con-
sidered the coordinates of the scatterers to be adiabatic
parameters. On the other hand, Eqs. (56) represent
rigorous (formal) solutions to the many-body problem.
The adiabatic approximation is obtained from Eqs. (56)
by (1) assuming the impulse approximation and identi-
fying f with f; (2) neglecting nuclear excitation
in the energy denominators. The use of Eqs. (56) to
improve the second approximation leads to corrections
which can be expressed in terms of momentum dis-
tributions of the nucleons in the nucleus.

The coherent scattering arises from that part of 08
which is diagonal in the nuclear coordinates, or

[Isgfc+a]y, = eP„

where [Eqs. (23), (29), and (36)j
(63)

To find the coherent part of Q [Eq. (47)$ we observe
that the E. term is incoherent and recall that only the
coherent part of 6 (i.e., —iso) is kept in any case. So

Q,—= (Q) = (1+ (1/s) fc)(1+(1/b) ~)
=1+(1/e) (fc+6). (62)

The wave function of the scattered meson is

q4(~) = Qcho(z)

[see Eq. (3)$. From Eq. (62) we see that P, satisfies the
Schrodinger equation

Qsc—= (Qs). (57)
ZV~

Vo ——(1/&st 1/h. ) .(Z)
2

Using the first of Eqs. (56) to find Qsc, we encounter

« iQs(n, )).
=—Bs(Z). (64)

Qsc= 1+(1/b)fcQsc, (59)

since u and b are "coherent quantities. " In this equa-
tion (when operating on the ground state of the nu-
cleus) b has the value

e,+irf &+id,o—
~~ L. Foldy, Phys. Rev. 6?, 107 (1945).
~' M. Lax, Revs. Modern Phys. 23) 287 (1951).

1

This represents scattering by nucleon n& of the incident
wave plus the scattered waves from all the other nu-
cleons. We expect that these previous scatterings will
also have been coherent to a good approximation, for
otherwise the scattering at particle e~ would have to
react in such a way as to return to their place in the
ground state of the nucleus the other nucleons which
had been raised to excited levels by previous inelastic
scatterings. This possibility would require very strong
correlations in nuclear structure and will be neglected
by us. Thus we can write

(58)

Now (Qs(ai)) differs from (Qs) by the removal of one
nucleon for the last scattering. If the number of nu-
cleons is large, we can replace (Qs(ai)) by (Qs). Then
Qsc satisfies the equation [fc is defined in connection
with Eq. (25)j

Equation (63) has been studied by Lederman et al.'
and by Steinberger' in connection with their own ex-
periments.

The expression'7

C= (f.)—
(fc=AC) is independent of n.

I =—t —C

(65)

(65')

represents purely inelastic scattering. We replace t

by I +C in Eqs. (56). Quantities such as CQs(ni)
occur, which we approximate by

CQs(ai) —CQs. (66)

sr Actually, C should be defined as C=Zr(I~f~(tI)Fz, where
1 I is the projection operator on the nuclear state I. This does not
modify the formal arguments which follow. The approximation
of Eq. (65) follows from the arguments of the Introduction.

This assumes that the number of scatterers is large
(as can be seen from the arguments of Appendix A).
Thus Eqs. (56) become

Qs = 1+(1/b)fcQs+ (1/b)Q I~iQs(ni);
&1

Qs(ni) = 1+(1/b)fcQs+(1/b) Q I sQs(ao). (67)
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To solve these equations, we introduce the functions. [See, for instance, Eq. (20)j.Then

F=1+(1/e)Q IajFag,
al

Pay= 1+(1/8) g IasPas&

"(q'I (1/e)(to+a) I q) exp(i«' Z)d'q'

(68)

where e is de6ned by Eq. (61).The desired solutions to
Eq. (67) are

Qs F(1+——(1/e) to),

Qs(ng) =F g(1+(1/e)tc), (69)

Q= (1+(1/o)R)Qs(1+(1/b)a)
= (1+(1/a)Z) PQc,

where Qz is given by Eq. (62).
%e note that the operator F is

(70)

F= 1+(1/e)P(I q+I~~(1/e)I s+ ~ }, (71)
(a)

as may be seen from substituting these expressions into
the right-hand side of Eqs. (67). [To satisfy the second
of these equations we must approximate t&F, by t&F,
essentially the same approximation as that made in
Eq. (66).j

Finally,

B
p p exp[i«' (Z—x)]

d'q' ' d'x exp(i«x). (74)
(2pr)'~ "1„qp+ig qp' —B—

Now,

exp[i«' (Z—x)j
d'q' = —(2pr)'(qp/A)

q +pig —qo' —B
qo

Xexp(iqh) exp
I

i BhI, —(7—5).
E q

)'
'1

where A.= x—Z, and it is assumed that the nucleus is
large enough that A is much greater than the wave-
length of the meson. By this same assumption, we find

t ( 1

e
I

q' (tc+6) q-Iexp(i«' Z)d'q'

q,= —exp(i«Z) 1—expI i BD
I
„—(7-6)

q

where use is made of the fact that 8 has a negative
imaginary part. D is the distance from the point Z to
the boundary of the nucleus" along the direction of the
vector —q. The coherent scattering is described by the
transition operator:

an expression much like that of Eq. (42), except that
all coherent eGects are in the propagation functions,
1/e. The physical interpretation of Eq. (71) is that the
wave is propagated in a refracting medium between in-
elastic scatterings. That It. is only on the left in Eq. (70)
reQects the fact that once themesonisabsorbed there will
of course be no more meson scattering. The appearance
of Qz on the right in Eq. (70) shows that the "effective
incident wave" is the coherent wave rather than the
actual wave of incoming mesons.

It is instructive to substitute Eq. (70) into the right-
hand side of Eq. (34) to verify that we have indeed
found a solution to the original equation (to within the
approximation that the number of scatterers is large).
This is done in Appendix A. In Appendix B it is shown
that Eq. (69) can be very simply obtained when the
scattering can be treated in Born approximation. -

Before returning to the photomeson phenomena, we
shall briefly discuss the scattering according to ap-
proximation I [Eqs. (22) and (29)) for to+A. We
consider first the coherent scattering:

Tc (tg+ 6)Qg. —— (77)

Using Eqs. (73) and (76),

8
(q'I &cI q) = exp[—i(«' —«).Zj

(2pr)'& v~
Xexp( iq p/qBD) d'Z—

= (—i/(2~)'qo)f(~), (78)

where 0 is the angle between «and «' and f(e) is given
by Eq. (7) of the paper by Fernbach, Serber, and
Taylor. ' The model of these authors thus follows from
the use of approximation I in the propagation function
1/e.

We can also, in the same approximation, obtain the
integral equation describing the diffusion of the meson
density in the nuclear medium. To simplify matters,
we assume isotropic scattering and neglect the diBer-
ence in the scattering by neutrons and protons, as well
as charge exchange scattering (we intend merely to
illustrate the application of our equations). Referring

Qo= 1+(1/e) (to+6). (62')

In e we keep only the diagonal part of tz+6:
(q'I «+~

I q) =»(«' —«) (72)

[B is defined in Eq. (64).$ In the numerator we can
use approximation II:

2 Eq. (76) has a direct physical interpretation. The erst term is
canceled by the "unity" term in Eq. (62'), showing that the
incident wave is "extinguished" within the nucleus. The remaining
term shows a net phase shift, from which the index of refraction is
seen to be m=1 —(qp/q')B.

8
(q'I t,+~I q)=, exp[ i(«' «) x5—d'x —(73).

(2n-)'~ v„
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(V+6)F(1/e)H'= ((tc+6)
+L1+(fc+&)(1/e)]Q I )F )}(1/e)H'. (83)

y(Z) =— (q'I Q, I q) exp(sq' Z) d'q'

to Eqs. (68) and (69) for Qe, we have (for a large part). So
nucleus)

exp(sq' Z)(q'~Qc~q)d'q'

t ex s ' Z —Za))7
I-tf-t(Z-t) (79)

pLq (

e,+s)7 q()' —F—

0;„A
p(Z)=p (Z)+-

4n- Vg

exp( —
~

Z —Z )~ 1/X)
p(Z ))d'Z t, (81)

V~ j.

where pc is the "coherent density, " 1/X—=1/X++1/'A,
and o;„=2(2') q() &Ia)tIat) is the scattering cross sec-
tion from a single nucleon (minus the coherent scatter-
ing). This is Foldy's integral equation. " We have
approximated it iv)(Zn)) by P(Za)) in Eq. (81) for reasons
similar to those leading to Eq. (58).

IV. PHOTOMESON PHENOMENA

A. Evaluation of the Cross Sections

The wave matrix for the photomeson problem is
given by Eq. (33):

e= 1+Q(1/a)H'
=1y)1y(1/a)R]FQc(1/a)H'
=1yL1+ (1/a)RjF(1/. )H',

where I ~ is the matrix of I~~ on the energy shell and
))tat(Z~)) represents the scattered wave from the nu-
cleons other than that indicated by n~. The meson
density is given by

p(Z) = &4*4).

Substituting Eq. (79) into Eq. (80), the cross terms
approximately vanish (as they are essentially inco-
herent). Using Eq. (75), we obtain

Equation (82) is consequently split into three parts:

Tm+ Ts+ Toy

T-= |.1+(f.+~)(1/e)Ã',

Te = L1+(&c+6)(1/e) gP I,F,(1/e) H',

T,=RF(1/e) H'. (84)

Qc(—) t= 1+(fc+6)(1/e), (87)

and X, is a plane wave. Recalling the wave function ps
given by Eq. (63), we define

y (—) —Qc(—))

as another "coherent scattering" wave function. Sy
approximation II, &,( ' is related to g, by

y (—) —y

("—q" means —q). Equation (86) thus can be ex-
pressed as

(Iql T-1»)=(@.( ' &IIH'IA)) (90)

For the sake of illustration, let us assume that LEq.
(1)) the photomesons are produced into 5-states (not
unreasonable for charged mesons) and that

To find the cross section for producing a meson which
is neither absorbed nor scattered inelastically, we need
just T . For a transition to a state of nuclear excitation
I, this is

&IIT IA)=&II1+(fc+~)(1/e)II)&IIH'IA). (85)

According to the arguments advanced in the Intro-
duction (that the meson "outruns" nuclear excitation),
we can replace &I~ ~I) in Eq. (85) by &( ~), or the
average with respect to the ground state of the nucleus.
The transition operator for "elastic" photomeson pro-
duction is now

(Iql T-IA~) =
& „Q"-'«IIH'I»), (86)

where

since Qc(1/a) = (1/e) is an algebraic identity.
The transition operator is

T= (H'+R+ V)C
=H'+ (V+6)FQc(1/a) H'+RF (1/e) H', (82)

H' P b(Z —Z()F,

in a coordinate representation. Then

o =4)r(2s.)'qqpS g[(Iq( T (Ay) t'

(91)

to first order in H', remembering that (R+ V) vanishes
when operating on the initial state (which does not
contain a meson). To simplify the second term, we note
that (V+A)FQc is just the transition operator for
meson scattering in the nucleus (less the absorbing

"See, for instance, Eq. (6.37) of Lax's paper (reference 24).

=Aors d'x~y, (—)(x) ~s
P'~a y~

(92)

if we keep only the diagonal terms in the sum over l
t Eq. (91)j in Eq. (92). Uniform nuclear density is
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Then
', i[tet+at (to+a—)j=Im(tc)—5p. —(98)

Pe= P ,'i(H'(1/et)FaitIait(—1/e 1/et)IapF p(1/e)H—')
CLI, tX2

+(H'(1/e t) (F t—1)(Im(te) —Apj(F —1)(1/e) H'). (99)

The major contribution to the erst term above comes
from the terms for which ai= np (in the double summa-

assumed here. Equation (92) is more general than
is apparent from the simplifying assumptions made
)such as Eq. (91)j. If there were neither scattering nor
absorption,

~ P, & & '= 1, so Eq. (92) would agree with
Eq. (7).

(It might be emphasized that we need not of course
have summed our cross sections over meson charge
states, but could have written separate cross sections
for the three meson charge states. The equations were
written as given in order to save enumeration of the
individual cross sections. )

One-half the probability that the meson is absorbed
is obtained from

P.=~(T.t~(E, H,)T—.)
=m (II'(1/et) FfRp(E~ IIp)RF(1—/e) H'). (93)

Writing F= 1+(1/e)gaiI iFai= 1+(F 1),and ne—g-
lecting the small contribution from the cross terms
(which are essentially "incoherent" ), P, becomes

P.= (H'(1/et) b.p(1/e) H')

+(H'(1/e t) (F t 1)6p(F—1—) (1/e) H'). (94)

We have replaced mRp(Eg Hp)R by Ap —in Eq. (94).
. Similarly, one-half the probability that the meson is
scattered inelastically before getting outside the nu-
cleus is

Pe =m (TBtp(Eg—Hp) Te). — (95)

Te is given by Eq. (84). An evaluation of P, or Pe
would involve a discussion of the multiple scattering in
some detail. This might be approximated, for instance,
by the methods leading to Eq. (81).On the other hand,
the sum of P, and Pe is relatively simple. 2(P,+Pe)
is the probability that the meson is either scattered
inelastically or absorbed. For want of a better name,
we shall call 2(Pe+P,) the probability for "star pro-
duction, " since it is expected to correspond to con-
siderable nuclear excitation. To evaluate Pe+P, we
first simplify Eq. (95). Now,

m b(Eg —H'
p) = -,'i(1/a —1/u t) . (96)

Using this relation, we obtain after some algebra
Lsee Eq. (87)$:
s.Qe& 'B(Eg —Hp)Qc& ~t=-,'i{(1/e—1/et)

+(1/")Lt.t+» —(t.+~)3(1/e)), (97)

which occurs in Eq. (95). We assume that approxima-
tion I or II is valid, so Lsee Eq. (64)j

...,=2(2 )P(P,+P.). (102)

A straightforward evaluation along the lines of the
analysis leading to Eq. (78) (using approximation I for
the propagation functions, 1/e) gives

o;~„Apg(1 ——f.), . — (103)

where ot is defined in connection with Eq. (7). The
function f, was given by Eq. (6) of reference 15 and
goes to zero as A & for large nuclei. A similar analysis,
using approximation I, of the "elastic" photoproduction
leads to

o =Aogf, (104)

in agreement with Eq. (5) of reference 15. Comparison
with Eq. (92) shows that in approximation I, f, and
the av'erage of ~g, ' '(x) ~'over the nucleus, are identical.
We notice that the sum of 0 and 0,&„ is equal to Eq.
(7). This is proved more generally below.

B. General Relationships between the
Cross Sections

We shall continue to assume that approximation I
or II is valid. Then one-half the probability for "elastic"
meson production is

P =x(T tp(Eg Hp)T )— —
= -', i(H'(1/e —1/et) H')

+(H'(1/e t) LIm(t c)—hp)(1/e) H'), (105)

using Eq. (84) for T and Eqs. (97) and (98). Then,
using Eq. (101),

P +Pe+P.= ,'i(H'(1/e 1/et)H'). -(106)—
If only the diagonal terms in the sum over nucleons

are kept in Eq. (106), 1/e can be replaced by 1/a, as. in

tion) and will 'be the coherent (i.e., diagonal in the
nuclear coordinates) part of

,'i'—it(1/e 1/—et)Iai~tIait p(EA —Hp)I~i, (100)

since 1/e can be replaced by 1/u for essentially the same
reason that t t ' [Eq. (55)j. Fai operating to the
left on a coherent quantity can be replaced by F, for
reasons discussed in connection with Eq. (66). The
coherent part of Eq. (100) when summed over a& be-
comes (—1)Im(tc). Thus, the first term of Eq. (99) is

—(H'(1/et)F tt Im(t, ))F(1/e) H').

Replacing F by 1+(F 1) and —neglecting the "in-
coherent" cross terms, we see that the part bilinear in
(F 1) is c—anceled by the corresponding term involving
"Imto" in the second half of Eq. (99). On adding Pe
and P, the Ap term in Eq. (99) cancels the corre-
sponding term in Eq. (94) to give

Ps+Pa = (H'(1/et) $Ap —Im(tc) $(1/e) H'), (101)

in which the complex functions F do not appear.
The cross section for "star formation" is



MULTIPLE SCATTERI NG AND THE MANY-BODY PROBLEM

Eq. (100). By Eq. (96), we then obtain

P +Ps+P =rr(H'"e(E~ —Ho)H'),

or, in the notation of Eqs. (103) and (104),

atotai ~0f.

(107)

This result depends upon the use of Eq. (98) which
holds only in approximations I and II.

Corresponding to a true absorption process, there
must be elastic scattering. In the present case this is
the elastic scattering of photons by the entire nucleus.
From Eqs. (33') and (82), it is seen that the transition
operator for this is

T,=H'F (1/e) H'.

The coherent (and diagonal) part of T„ is

(109)

V. FINAL COMMENTS

We have con6ned applications of the theory largely
to a derivation of the conventional "optical models. "
Since the discussion has been rather formal, it appears
worthwhile to review the approximations involved and
to consider the possibility of improving these.

Phenomenological interactions, V and R, were intro-
duced to describe the meson scattering and absorption.
We can suppose these to have been derived from a field
theory by solving the one meson —one nucleon problem
to find V. R can be imagined to be the leading term
left over which is not diagonal in the meson occupation
numbers,

Equations (56) are rigorous (but formal) solutions to
Eq. (39). The solution for Q given by Eq. (47) is also
a rigorous solution to the Schrodinger equation.

The second. of Eqs. (56) represents a set of A coupled
integral equations. Vfhen the number of scatterers A

(T„)= (H' P(1/e) H')
=(H'(1/ )H')
= ts(H'(1/e+1/et)H')+sr(H'(1/e 1/et)H'—), (110)

Lnegiecting (P—1), as before). Comparing with Eq.
(106), we have

Im(T~) = [P +P—e+P ) (111)

in agreement with the corresponding general theorem
relating the scattering amplitude in the forward direc-
tion to the total scattering.

It should. be observed that the functions F which
describe the real complexity of multiple scattering
phenomena have not appeared in the final results of
the problems considered in this section. This is because
we have asked only the simplest questions of the
theory —i.e., we have studied just total cross sections
and coherent phenomena. Had we studied the multiple
scattering in detail (for instance, had we sought the
angular and energy distribution of the emitted mesons),
then the greater complexity of the F's would have been
called for.

is small it would appear feasible to attack these di-
rectly. On the other hand, when A is large the form
(69) for Q8 seems to be more useful. As is shown in
Appendix A the error involved in this expression for
Qq is of the order of A ' times Q8. In Appendix B it is
shown that Eq. (69) is valid for all values of A if the
individual scatterings can be treated in the Born
approximation. The fact that either of these two inde-
pendent conditions is sufhcient to insure the validity
of Eq. (69) suggests that the error in this equation may
be less than we have estimated it to be.

For a detailed study of the inelastic scattering the
diffusion equation (81) provides probably the simplest
approach, but is of limited validity in that it involves
approximation I. A straightforward approach using
Eqs. (69) and (70) is feasible if the multiplicity of the
scatterings is small, and if one can either neglect the
excitation energy of the nucleus or assume that it is
that of a plane wave state of the struck nucleon. '0

The optical model $Eq. (63)) is obtainable directly
from Eqs. (69) and (70) if the effects of correlation be-
tween nucleon positions are neglected. Lax" has shown
that a correction for these effects can be obtained by
modifying (to+3) by a numerical factor. Using Eq.
(69), such correlations arise from the coherent con-
tribution from (F—1)."The correlations may be taken
into account exactly in the optical model, as will be
shown in a subsequent publication in which a quantita-
tive study of this model will be made.

It would thus seem that the optical model has con-
. siderable validity for the analysis of meson phenomena

in complex nuclei. In this connection the term "optical
model" is somewhat ambiguous. This ambiguity arises
in connection with our approximations I, II, and III
LEq. (28)). Approximation III takes into account the
variation of the matrix elements of (to+6) for scatter-
ings oG the energy shell. The mean free path seems to
be sufficiently long, however, that this is probably not
a very important correction. On the other hand, Leder-
man et ct.' and Steinberger' have found considerable
differences between approximations I and II. In the
analysis of their data they found that approximation II
implies a mean free path for interaction which is about
twice as large as that obtained fram approximation I.
We thus are led to expect that approximation II is
fairly reliable, but that approximation I is of limited
applicability.

' E. Henley, Phys. Rev. 85, 204 (1952)."M. Lax, Phys. Rev. 85, 621 (1952)."For instance,

q" Ini Inm q —e(q"—q) (2—s)' d'q'

XJd'Zm~'Z LP(Zm, Z ) P(Z )P(Z—)3
XexpL —t'(q' —q) (Z r —Z 2))

Here the E's are nucleon probability densities. In the absence of
correlation this expression vanishes, since then P(Z~i, Z~2)
=P(Zng)P(Zas).
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APPENDIX A

Remarks Concerning the Validity of Equation (69)

We wish to substitute Eq. (69) for Qe into Eq. (39)
to see how well the latter equation is satis6ed. How-
ever, a better solution is obtained if we modify the
de6nition of t . Instead of using the definition given by
Eq. (41), we shall in what follows assume that

The last term of Eq. (A-4) becomes

ga&Vai(1/e)CFai= (1/A)gaiVu&(1/e)t'ai. (A 7)

By Eq. (76), (1/e) tc is expected to be of order unity.
The quantities Ua~ and taj can be assumed to be of the
same order of magnitude, so Eq. (A—7) is of order
A '(Qe). The same is true of the last term of Eq. (A-6).
Finally,

1
t.= V.+V. V..

e—V

1~1' 1
1+-I 1+ te I

= 1-+-te.
b& e ) e

(A-8)

The relation between the present t and the previous
t is similar to that between the definitions given in
Eqs. (40) and (41) )see also Eq. (55)).

The expression (69) for Qe is modified in that we
suppose t now to be defined by Eq. (A—1).The physical
interpretatiop of this is that the scattering amplitude
is evaluated for the energy of the particle in the scat-
tering medium.

If then the result of substituting Eq. (69) into the
right-hand side of Eq. (30) is designated by (Qe) i, we
have

(Qe) i =—1+(1/b) VQs

Now,

Combining our results, we see that

(Qe)i ——Qe+(1/3) times the order of (Qe). (A—9)

Our modified form of Eq. (69) is thus seen to be a
solution to the Schrodinger equation if A is large. In
Appendix B it is shown that this solution (with a
minor modification) holds independently of A if the
Born approximation is valid —i.e., if t ~V .

APPENDIX B

The Born Approximation

The multiple scattering analysis is considerably
simpli6ed when the individual scattering processes can
be treated in the Born approximation. For simplicity
we assume on y scattering without absorption, so the
Hamiltonian is

1 1
V-Iai ——g Vao—Iui+ Vai-Iai.

e aors al e

As before,
V=+.V..

Let the coherent part of V, that is (V), be called Ve.
Thenwe obtain

1
Vaj—Iag= Vag—taj —Val—C

e e e

V=K & +Ve, (8-3)

where e is the "incoherent part" of V (i.e., is not
diagonal with respect to the nuclear states). Then

(A-4)
1

= tag —Vag —Vag —C)
e

using Eq (45) wit.h b replaced by e. (This is the reason
for the de6nition (A—1) of t )We note tha.t

V+ Q Vno(1/e)IaiFai QVaiFai 0(A-—5)——
a0, al (anal)

Q= 1+(1/u) VQ (B-4)

is the integral equation for the scattering, where u is
the same as previously.

Now define

f =v (1/d )v,
F-=Re*-fe,
F—F +f

These arise from the erst part of the second term of
Eq. (A-2), the first term of Eq. (A—3), and the second.
of Eq. (A—4).

Inserting the tui term of Eq. (A—4) back into Eq.
(A—2) and writing ta, =Iui+C, we obtain Then

d =u —Ii —Vg.

d= a—Il —U~.

Qai(1/b) taiFui = (1/b) to+ (1/e) gaiIaiFai
+(1 A/)(1 b/—1/e)g iI iF z (A—6)

/

Q= 1+(1/d) U+ (Q (a)(1/dai) Lanai+ oui(1/da2) wa2+ ' ' '

+e 2(1/d i)va2 . (1/da„)va„+ -.j}(1/d)V. (B-6)
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Here we use the same summation convention as was
used for Eq. (42).

This is a rigorous formal solution to Eq. (B—4), as
can be seen from substitution into the right-hand side
of that equation. When we can apply the Born ap-
proximation to treat V as the inelastic scattering
amplitude (i.e., set v =I ) from the nth nucleon, we

can also replace f in the energy denominators by

f zrr—(e "o(E~ II—e)u ). (B—/)

Then Vs+I' coincides with the tc used in the text
Lexcept that Im(tq) is corrected by a factor of (1—A ')],
and the equivalence of Eq. (B—6) to Eq. (69) readily
follows.

PH YSI CAL REVIEW VOLUME 89, NUM BER 3

A Quasi-Relativistic Theory of Gravitation

MARvIN G. MooRx
Mathematics Department, Bradley University, Peoria, ILlinois

(Received August 31, 1951)

FEBRUARY 1, 19S3

Rays of gravitons, as well as rays of photons in a gravitational Geld, have transverse vibrations, and a
light ray has its velocity decreased by the presence of a gravitational ray. The decrease is twice as much
when they are traveling in the same direction as when they are perpendicular (and, therefore, share one
dimension of vibration rather than two). Introduction of a harmonic function for the square of the velocity
of light leads to Schwarzschild's equation for, Grst, a light ray, and then, by way of its electromagnetic
Geld, for a particle of matter. If the sun is moving through the ether, the action of the Geld is relativistic,
except that the angle between the light ray and the gravitational ray is measured with respect to the ether.
The acceptance of Miller's ether drift data would lead, then, to perturbations of the planets, including the
major part of that observed in the nodes of Venus.

1. INTRODUCTION

~

~

~

E introduce here a theory of the interaction of
gravitons and photons which leads to results

very similar to those of the general theory of relativity.
If we take the gravitational Geld of the sun to be
stationary, the departure from Einstein's equations is
especially small, and, in particular, his three well-known
results must follow. Our theory leads naturally to the
view, however, that motion of the Geld. through space
has significance for gravitational phenomena and gives
new results dependent on the direction and magnitude
of such motion.

Since ether drift is to play an important role in our
theory, we consider past experiments which have given
indications of the magnitude and direction of such a
drift.

It is not generally realized that the fringe shifts of
the Michelson-Morley experiment were not believed
by all experimenters to be negligibly small, and that
Morley and Miller, and then Miller alone, continued
the work carefully and repeatedly over a period of 30
years. The results were still small, but the variation in
the direction of the eGect as the earth moved in its
orbit led Miller Gnally to reach the definite conclusion
that the solar system is moving through the ether with
a velocity of 208 km/sec toward a point in the southern
sky with right ascension 4 hr, 54 min and declination
—70' 33' '

' D. C. Miller, Revs. Modern Phys. 5, 203 (1933). Miller
includes accounts of several similar experiments by others,
including Joos and Kennedy. See also N. Rosen, Phys. Rev. 57,
154 (1940), where the idea is presented that motion with respect
to the stars may be responsible for the Miller effect.

It is possible that Miller's results may prove to be
spurious, especially in view of their apparent contra-
diction of those of other experimenters, particularly
Joos and Kennedy. It is also possible, however, that
the differences in design (and perhaps in method) made
Miller's interferometers better able to detect his effect.
Miller himself has suggested that others might have
obtained positive results if they had sought to analyze
their small fringe-shifts in terms of direction in the
detailed manner in which he did his own. The question
of the admissibility of Miller's evidence is considered

by informed opinion to be still open, and, in view of
the unsettled situation, our use of it in the present
paper must be considered to be highly speculative.

It may be well to recall here that the special theory
of relativity has discarded. the ether, or privileged frame
of reference, not because of any lack of compatibility,
but only because such an ether is without value to the
special theory. '

2. THE STATIONARY GRAVITATIONAL FIELD '

For simplicity, we consider the sun to be concentrated
at a point which is stationary in the ether. We further
suppose that the gravitons of its Geld, moving in rays
directed out from and in toward the sun, decrease the
velocity of photons through an interaction of the
transverse vibrations which we Gnd it convenient to
associate with the two types of elementary particles.
We suppose further that the velocity of a plane-polar-

s See R. B. Lindsay, Sci. Monthly 67, 50 (1948). Also R. B.
Lindsay and H. Margenau, Foundations of Physics (John Wiley
and Sons, Inc. , New York, 1936), p. 354, where reference is made
to work by Page and Sparrow connected with the Miller effect,


