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The analysis of multiple elastic scattering by a system of 6xed
scatterers in terms of two-body collision matrices is extended to
large bodies. The dynamical theory of particle wave propagation
in crystals is formulated and discussed from this viewpoint, as an
extension of Ewald's theory to scatterers of finite size. A theory
of wave propagation in a random medium, including disordered
crystals, is obtained as the limiting case for a crystal with infinite
unit cell. Contrary to the usual approach, this analysis considers
a definite "frozen" configuration of the medium; statistical averag-
ing over configurations may be used on the intensities obtained.

In crystals and dense liquids, radiation damping is compensated
by the reaction of surrounding scatterers. Therefore. it is found
convenient to restate the basic equations of multiple scattering in

terms of a matrix P which is essentially the Green's function for
the single scattering event, with "standing wave" rather than
"outgoing wave" boundary conditions. This has the advantage of
eliminating the spurious radiation damping terms at the outset;
one obtains nonattenuated waves in nondissipative crystals or
dense liquids by a simple expansion method.

Application is made to the following problems: the equivalent
of the I,orentz-Lorenz formula for matter waves; index of re-
fraction for an interaction of the form of a one-level Breit-Wigner
formula; attenuation of long waves in a disordered crystal con-
taining protons with random spins; double refraction eGect in a
liquid or crystal containing protons with partially oriented spin.

I. INTRODUCTION
' "N Part I of this paper, the elastic scattering by a
~- system of fixed centers of force was treated by
replacing the interaction potential by a matrix n which
describes rigorously the single scattering event. This
reformulation has three advantages over the usual per-
turbation method: erst, the iteration solution converges
for short-range forces, where Born's approximation
diverges; second, the first approximation to the present
equations tends toward the correct solution for a
system of widely separated scatterers, whereas the per-
turbation method gives only a first approximation;
third, the results are applicable where the interaction
potential is not known, but the single scattering am-
plitudes are.

The matrix n is essentially the Green's function of
the single scattering problem, with the usual boundary
condition describing outgoing (or retarded) waves. In
this Part II, an alternative formulation is developed in
which a is replaced by a matrix P which is essentially
the Green's function for boundary conditions de-
scribing half-retarded, half-advanced (standing) waves.
The new formulation which is rigorously equivalent to
the previous one is advantageous for the following
reasons: In crystals and in sufFiciently dense liquids, the
radiation damping effect on the single scatterer is com-
pensated by the reaction of surrounding scatterers.
Hence, it is logical that for the purpose of successive
approximation, one should start with a description of
the single scattering event from which radiation damp-

ing has been eliminated. In Sec. III, the theory of an
infinite crystal is developed on this basis, and applied
to the following problems: the equivalent of the
I.orentz-Lorenz formula for scalar waves; the refractive
index for long waves of a crystal consisting of absorbing
scatterers; in particular, the case of a one-level Breit-
%igner dispersion formula for the single scatterer.

In Sec. IV, a dynamical theory of liquid scattering is
* Work supported in part by the U. S. Ofhce of Naval Research.

formulated as a generalization of the crystal theory,
starting from the remark that the most general con-
figuration may be considered as the limit of a crystal
with infinite unit cell. Boundary conditions for the semi-
infinite medium are discussed, and an approximate
solution is found.

Section V discusses the extension of the theory to the
case where the scatterers are not simple centers of
force, but many-body systems such as nuclei. In this
case, the preceding results are approximately correct
if the elastic submatrix of a more general matrix n or p
is inserted. This approximation amounts to disregarding
inelastically scattered particles. The properties of P for
this general case are discussed.

II. INTRODUCTION OF HALF-ADVANCED,
HALF-RETARDED SOLUTIONS

I et us examine more closely the convergence of the
imaginary part of the expansion (I, 66). The imaginary
part of the forward scattered amplitude in the first
approximation is 3 Imf(ke), i.e., that corresponding to

non-interfering point scatterers. Since Imp(ko) is
proportional to the total scattering cross section, this
aI.prcximation is good when the scatterers are located
at random (total cross section =XXsingle cross section),
but poor when interference is predominant. In the
latter case, the first approximation is incorrect even in
the event of vanishing single cross section, so that
higher terms of the expansion in n must outweigh the
6rst approximation. This situation is illustrated by the
example of a spherical crystal discussed in (I). For a
small phase 80,

g2/2~2k ~s )2/(2~2k )2

so that the erst imaginary term, i%6'/2m'ko is com-
pensated by the second term of the second approxima-
tion (I, 95), i.e., in'2sr'koX—; the first term of Eq.
(I, 95) represents the correct first approximation to the

' H. Ekstein, Phys. Rev. 83, 721 (1951).Further referred to as I.
90
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imaginary part of the forward scattering amplitude.
In general, several terms of the expansion in terms of n
will be needed to extricate the correct first approxima-
tion, because the diverse powers of 6 are awkwardly
distributed among the terms of the power series in 0..

This awkwardness is due to the unusual circumstance
that the parameter of expansion is complex, an unde-
sirable feature for many purposes. For instance, the
elegant method of calculating the eth order of the
iteration from the previous orders' can be used only
when the expansion parameter is real.

Physically, the complex nature of 0. is due to radiation
damping, vyhere the single scattering event is purely
elastic. In a more extended body, most of the scatterers
are symmetrically surrounded by other scatterers so
that radiation damping is largely compensated by the
reaction of the surrounding scatterers. This situation
suggests that a more suitable approximation method
could be obtained if the single scattering event were
described by the sum of the retarded and advanced
solutions of the Schrodinger equation, rather than by
the retarded solution describing outgoing waves only. '

If the Green's function cos(kor)/r is chosen for the
unperturbed Schrodinger equation, the solution of the
single scattering problem will appear as half-advanced,
half-retarded spherical wave. The .steps analogous to
Eqs. (I, 24 to 29) lead to Eq. (I, 30) which defines the
matrix P.

To relate the multiple scattering problem to P, we
rewrite Eq. (I, 43) by using the definition (I, 7),

dk'
F (k) —F~ exp[ ir (k——k')$u(k —k')F„(k')

&"—&o'

ixkp=u(k —ko) exp[ —ir„(k—ko))+ u(k —k')
~8

so that now only the principal value of the eth term
is missing from the sum over m, rather than the total
hook integral as in Eq. (I, 52).

Equation (2) is merely a restatement of the original
problem; the boundary conditions still describe out- .

going waves, since F(k) is connected with P(r) by
Eq. (I, 8). The identity of the two formulations can
easily be seen for point scatterers. Equation (I, 52) can
then be written, with the definition (I, 44),

G (k) = rro exp(ir„ko)
exp[ikoIr. —r-I g

+2or'ao Q — G (k). (3)
mgn r„—X

Since, in this case pro ——fo(ko), Po ——go(ko), Eq. (I, 19) can
be used:

G„=Poexp(ir„.ko)

exp(iko I
r„—r

I )
+2or' Q G„+2ior'koG~, (4)

and this is the form- which Eq. (2) takes for this par-
ticular case.

The reformulation of the scattering problem given in
Eq. (2) has the advantages of Born's approximation
with respect to the relation between imaginary and
real parts. For instance, the well-known theorem con-
necting the imaginary part of the forward scattering
amplitude to the total cross section is satisfied also by
first and second iteration approximations, i.e., the
cross section to the first nonvanishing order can be
calculated either by integrating the first approximation
or by determining the imaginary part of the second
approximation. To see this, we.compare the cross section

&&exp[—ir„(k—k')]F„(k')dQ

dk'
+ Q exp[ —ir„(k—k')]

m~n &g k"—kp'

r dQ= (2mo)' ' IF(k) I'dQ, f

or, using the first approximation to Eq. (2),

(5)

)&u(k —k')F„(k'). (1)

If now Eq. (I, 30) is used for comparison, the procedure
used in Eq. (I, 44 to 52) gives

F„(k)=P(k, ko) exp[ —ir„(k—k,)$

dx
+Z " —- I- -( —)lP(, ) -(.)

m~n~), a —kp

o i'& = (2m')'
I P(k, k,) I

'
I P exp[ —ir„.(k—ko)j I

'dQ,

(6)

with the imaginary part of the forward scattering
amplitude,

Img„=2m' ImF(ko, ko).

If the second. iteration of Eq. (2) is used,

dx

+ pL — - (k—)7P(k, )F-()dQ, (2)
2

2 Jost, Luttinger, and Slotnick, Phys. Rev. 80, 189 (1950).
'That a many-body problem can be described by using half-

retarded, half-advanced solutions for the single scatterer to obtain
a retarded total effect, is shown by J. A. Wheeler and R. P.
Feynman, Revs. Modern Phys. 17, 157 (1945).

Xp(u, ko)P„exp[ ir„(u k—o)j—
:—PX

~ p(ko x)P(oo ko). (8)E'—kp'
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III. THE INFINITE CRYSTAL

The theory of wave propagation in an infinite periodic
medium was developed by v. Laue' for x-rays and
adapted to the case of electrons by Bethe and others. s

For scalar particles, the solution has the form

/=exp(iKe r)P c„exp(2niA„r), . (11)

where the A„are the reciprocal lattice vectors. If the
potential n is expanded into a Fourier series,

v =P V„exp(27riA„r), (12)

the introduction of Eqs. (11) and (12) into the Schro-
dinger equation leads to

L(Ke+2mA„)'—ko'$c„+(2m/k')Q V„„c„=0,(13)

where ke2= 2mE/O'. Laue's method for solving Fq.
(13) is to disregard all but a small number of c„'s
Dor which (Ko+2~A )'=ke'j and to solve the remain-
ing equations. To determine the range of validity of
this approximation, let us consider the case where
only co is retained in Grst approximation. We have

Eo'—ko'+ (2m/k') Ve ——0,

—c
2m P cp

(TWO).
k' (Ko+27rA„)'—ke2

Hence, in second approximation,

2m
K,'—k, '+

I
V,— +' 1=0.

O' E 5' (Re+2~A )'—ke')
(16)

If (14) is to be a good approximation, it is necessary that

I
V„f2

=&I v
I (»)

k' (Ko+2srA„)'—k '
i M. von Laue, Roeritgensirahlirsterfereneen (Akademische Ver-

lagsgesellschaft, Leipzig, 1941).
5 A. Sommerfeld and H. Bethe, Haunch der Physi k (J.

Springer, Berlin, 1933), XXIV, 2.

It is shown in Sec. V that the matrix P is Hermitean
when the scattering is purely elastic. Hence,

x&o
ImF. &'&(ko)=

I p(k, k ) I'
2

&&
I Z expf —ir.(k—ke)31'did (9)

and therefore
a"'= (4'/k ) Imf r"' (10)

C

in agreement with the exact theorem, whereas the
expansion in terms of 0. does not show this relation. We
may conclude, in general, that for dense media the
formulation of the scattering problem in terms of half-
advanced, half-retarded single scattering solutions is
more convenient for the purpose of approximations.

Assuming that the geometrical orientation of Ka is
such that the lower terms do not contribute much to
the sum, the validity of Eq. (16) depends on the rapidity
with which the Fourier coefficients V decrease, and on
their numerical magnitude. For high values of m, the
sum can be approximated by the integral

~-
I v(k) I'

. If the potential v represents point-scatterers, the
Fourier transform of the delta-function will become
asymptotically constant and the sum diverges. More
generally, for small scatterers, Laue's approximation
method must fail. For the extreme case of point-
scatterers, an alternative method is given by Ewald's
method which has been applied to the case of scalar
particles by Goldberger and Seitz. '

In addition to its mathematical convenience in these
cases, Ewald's method has the more general advantage
that it correlates the properties of the crystal with the
scattering properties (polarizability) of the single ion,
rather than with the potential or electronic density
which is not directly measurable. However, the theory
has been established only for point scatterers, so that a
generalization of Ewald's method for finite scatterers
seems desirable. An attempt to Gll this gap has been
made recently by Lax, but it has not been quite suc-
cessful. Following Schwinger and Lippmann, Lax de-
scribes the single scattering process by the equation

4.=4.+ T4.,
E—II

where P, is the total wave function, p, an eigenfunction
of the unperturbed Hamiltonian II' belonging to the
energy E, and T is the matrix which is denoted by f in
the present paper. Lax concludes that in a multiple
scattering problem, the foregoing equation can be
interpreted by

(scattered wave) = (E B) 'T (incident wav—e).

However, since P, is an eigenfunction of 8 belonging to
the energy E, this generalization implies that the Geld

incident on one scatterer can be represented as a
superposition of plane waves of definite energy K In
general, this assumption is unwarranted; for instance,
the incident field

Ci (r rp )k/r—
I

has all energies in its Fourier spectrum.
To represent the scattering under the inhuence of a

general incident field, an operator more general than T
is required, ms. , either n of which T is a submatrix or P,
according to the boundary conditions chosen for the

M. L. Goldberger and F. Seitz, Phys. Rev. 71, 294 (1947).' M. Lax, Phys. Rev. 85, 621 (1952).
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single scattering event. ' In the following, the generali-
zation for 6nite scatterers will be formulated rigorously.

The usual theory which starts from single scattering
amplitudes meets a certain difficulty in eliminating the
eGect of radiation damping for long waves. From ele-

mentary dispersion theory' one expects sr' —1 (re re-

fractive index) to be proportional to the single scat-
tering amplitude, which, because of radiation damping,
is necessarily complex. It was pointed out already by
Lorentz on intuitive grounds that in a nonabsorbing
crystal the radiation damping of a single scatterer must
be exactly compensated by the inQuence of the other
scatterers, so that the absurdity of a single attenuated
wave in a nonabsorbing crystal can be avoided. How-

ever, a rigorous proof of this compensation has been
given only for the case of a simple lattice of electro-
magnetic point-dipoles by Ewald. "Any approximate
treatment which starts from the retarded solution for a
single scatterer, has difficulties to avoid the appearance
of the spurious imaginary terms. "

. It seems more natural, in view of the intuitive
knowledge of the cancellation of radiation damping,
to start from the half-retarded, half-advanced solutions
in constructing the total field. In this manner, spurious
imaginary parts are avoided at the outset, regardless of
the degree of approximation.

We first generalize Eq. (2) for the case where there
are E different scattering centers described by matrices
P . In an obvious way, one finds

F (k) =P (k, ko) exp[ —ir„.(k—ko)]

f AC

+ P exp[ —ir„.(k—oc)]P (k, ic)F (oc)
mgn ~g K —kp

&mkp

+ P„(k,oe) exp[ —ir„(k—oc)]F„(oc)dQ. (18)
S

infinite crystal. Equation (18) becomes

GXF„;=+'" — exp[ —i(a„+ri) (k—oc)]
g' —kp'

'$7i kp f

XP;(k, oe)F„i(oo)+ P;(k, oo)
2 ~S

Xexp[—i(r„+a,) (k—x))F (r)dQ, (19)

where the prime sign means now omission of the term
ns=e, l= j. This infinite set of integral equations can
be reduced to a 6nite set by assuming the solutions to
have the form of lattice waves, i.e.,

F;=G, exp[ —i(a„+r;)(k+Ko)], (20)

where the propagation vector Ko is to be determined.
By inserting Eq. (20) into Eq. (19) and making the
transformation a„-+a+i, one can verify that Eq. (20)
is a solution provided that it satisfies the equation

G, (k) =Q' exp[iKo (a +ri —r,)]
L ~ I, I(.

"—ko'

Xexp[ioo (r,—a —ri)]P;(k, sc)Gi(oo)

imkp
+ P;(k, so)G, (x)dQ, (21)

8

where the prime means omission of ms=0, l= j. To
carry out the summation we use the well-known for-
mula,

g„exp(ia„k)= [(2s-)'/r]go 8(k—2irAs), (22)

where Ao are the reciprocal lattice vectors and r is the
volume of the unit cell. Hence,

exp[ i2srAs —(ri—r;)]
(2or)s XP, (k, Ko+2s.Ao)Gi(Ko+2orAs)

G;(k) =
(Ko+2s As)' —ko'

Vfe consider an infinite crystal with translation vectors
a„and scatterers of type j located with their centers
at a„+r;,where r; is located in the iirst unit cell. We
label the scatterers by the numbers e, j, specifying the
unit cell and type. Further, we omit now the 6rst term
in Eq. (18) which describes the incident wave, since
we are now interested in self-sustained waves in the

For point scatterers, the distinction between T and o, becomes
irrelevant. Hence, Lax's calculations are approximations valid
within the same range as Ewald's, i.e., for scatterers very small
as compared to the interatomic distance and to the wavelength,
or, more generally, whenever re=f.

E. Fermi, Nuclear Physics (University of Chicago Press,
Chicago, 1950).

'o P. P. Ewald, Ann. Inst. Henri Poincarh VHI, 79 (1932)."An ingenious attempt to avoid the paradox in the general case
has been made by M. Lax, Phys. Rev. SS, 621 (1952).

It is clear that Ko must be such that (Ko+2srAi)' is
diferent from ko', for every h. This remark permits a
simplification of Eq. (21). If the two contributions to
the hook-integral are separated, the surface integrals
will be

$7i kp
exp[iKo(a„+rr —r;)]

aii m, l

X exp[iso (r;—a —ri)]tl;(k, so)Gi(oo)dQ,

and if Eq. (22) is used, all terms must vanish, since the
requirement ~'=kp' implicit in the symbol S conQicts
with oo=Ko+2orA@. Therefore, the surface integrals do
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not contribute to Eq. (21), and it can be written

dx
G;(k)=g'exp[iKp (a yrI —r;))P

J ~2 kP

Xexp[isc (r, —a„—rI))p;(k, x)GI(x). (24)

To illustrate the meaning of this equation, consider
the case of point scatterers in a Sravais lattice:

tanbp cos
~
a.

~
kp

G= g' exp[ia. K,)G, (25)
kp J a. t

If g is large as compared to the lattice distance, only
the term m=0 contributes to this sum, and. we have

(1$ r

fi —
I =f(0)+

EE)

r/E 4~3 27r3 1
— — — qdIt =f(0)+ —.(31)

7 TE2

In the simplest case, i.e., a cubic Sravais lattice, one
finds that uE=10 is sufhcient to make the corrective
term one percent. One finds

{}= —(2~/a)9. 4. (32)

With e'=Kp'/kpP, Eq. (28) gives
which is obtained from Eq, (24) by letting all pI's
except pr ——p vanish, and letting p and hence G tend
toward constants. The value of P is then determined by
Eq. (I, 22). This is to be compared with

4m" 2m'P/a(kpa) '

1+(2~'P/a). 3
(33)

exp(2i8p) —1 exp(i ( a„~kp)
G= Q' exp(ia„Kp)G, (26)

(2Ir)'
G;= lim

E-+ao

exp[ —2~iA, (rI—r,)—(1/4E')
X {(Kp+2~A„)'—kp'})GIP,

(Kp+2s-Ap)' —kp'

t dx exp[—(1/4E') (x'—kp'))GJP;—P (27)
~'—k '

Vfe consider the limiting case of large wavelengths, i.e.,
ko, Eo—+0 in a Bravais lattice. Then

(2~)'P
[
(2m)' exp[—~'Aq'/E')

+P 11III.(K, -k. ) s-l ~

r dh exp( —~'/4E')
(28)

For evaluation of the sum, it is desirable to have E as
small as possible. To obtain the error due to using a
finite value of E, we consider the curly bracket as a
function of 1/E and write

p 1 ) )1IEdf
fl —

I =f(o)+, ' —A (28)
EE) &p dg

df 2n' 4'&—=——2m'g P' exp( —m'g'Ap')+ —, (29)
dg

or by theta-transformation of the sum

df 4~&
exp( —a„'/g')+ q+

'g

(30)

which is obtained from Eq. (3). The two equations,
although mathematically identical, diGer in that all
radiation damping effects are eliminated from Eq. (25).

Rigorous solutions can be obtained only for point-
scatterers, by evaluating the right-hand side of Eq. (23)
through a limiting process which lets the P and G tend
toward constants. Following Ewald, "we may choose

(2~)' a-N
[k'—kp')c;(k) = g exp[i(Kp —k) r,)

h, l

&&P;(k, K,)G,(K,), (34)
where

K„=Kp+2IrA~,

G (k) =c (k) [k'—kp') exp[i(k —Kp) R;) (36)

In this approximation, a further simplification is pos-
sible, by summing over the index j:

(2~)' ~
[k'—kp')C(k) = Q P(k, Kp)C(Ky, ),

h

(37)

the equivalent of the Lorentz-Lorenz formula for
matter waves. Since, for small cross section, 2''P is the
scattering length, it is clear that the corrective term in
the denominator is noticeable only when the scattering
length is of the order of the distance between scatterers.
This does not happen for any slow-neutron scattering
process, so that the Lorentz correction is unimportant
for this case.

The experience obtained with the electromagnetic
Lorentz correction leads to the belief that Eq. (33)
remains substantially correct for a more general dense
assembly of scatterers, even when they are not rigor-
ously point scatterers. Hence, it is plausible that in a
phenomenological theory of meson scattering by heavy
nuclei, if the nucleus is considered as a refracting sphere,
Eq. (33) should be used in estimating the refracting
index, using for P the observed scattering amplitude of
the single nucleon. The main eGect of the correction will
be to smooth out the maxima of P in the heavy nucleus
as compared to the single nucleon.

Returning to the general case, we seek to solve Eq.
(23) by approximation. In general, a few terms of the
sum will have small denominators, vis. , those for which
the Laue-Bragg condition,

(Kp+2m A„)'=kpP,

is approximately realized. If lV large terms are retained,
the remaining equation can be written
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where

and
C(k)=Z e (k)

p(k, oo) =P; exp/i(so —k) .r;gP;(k, sp).

(38)

(2or)o N

LEs' —kp'$Cs= g P(Ks, K )C . (41)

Equation (41) is similar to Laue's equations, if all but
S terms are omitted -in the sum. P takes the place of
the structure factor V„sand P; the place of the atomic
form factor. However, Eq. (41) is more general in two
respects: (1) the value of P depends on the unknown
Ep, (2) P is not merely a function of the difference of
its two arguments: this would be true only if P was
identified with the two-body interaction potential,
which is an inadequate approximation for nuclear
interactions. "

Comparison with Eq. (13) suggests the following
simple interpretation: in Laue s equations, substitute
P(Ks, K ) as "pseudopotential, " and proceed by
Laue's approximation method. This rule has a par-
ticularly simple form when the scatterers are very
small: P becomes a constant and can be considered as
having been derived from an effective potential 8(r—a )
in coordinate representation with an appropriate con-
stant coeKcient.

However, this simple rule does not hold for higher
approximations. In particular, when P and, hence, G
are constants, the second approximation would diverge
if one used only the reinterpreted Laue equation.
However, Eq. (23) shows that the contributions for

~

E ~))kp are small: indeed, when the denominator has
become a smooth function, sum and integral are equal.

Thus, we can formulate a heuristic rule similar to
that found in (I), but not deducible from it: for small
scatterers, substitute P as pseudopotential in Laue's
equation, and proceed by Laue's approximation method,
cutting oG all integrals and sums at some point
iA [»k,.

This situation provides an explanation for a curious
coincidence found by Goldberger and Seitz. ' Besides a
correct calculation of neutron refraction and diGraction,
based on Ewald's method, they present another deriva-
tion which uses delta-functions as effective potentials to
describe the nuclei. They point out the inadequacy of

To solve Eq. (34), only the values at k=Ks are re-
quired. Hence, with the notation

C(Ks) =Cs, (40)
we have

this method, but 6nd that it gives the same result as
the correct method.

This coincidence is now explained by the mutual
cancellation of two omissions: they first disregard, in
effect, the integral in Eq. (23), calculate the first ap-
proximation by Eq. (41) and omit the second approxi-
mation which, with their formalism, would have been
infinite. It can be seen now that the integral in Eq. (23)
serves precisely to make this second approximation
Gnite, and in their case, very small.

Returning to the general case of 6nite scatterers, we
consider the simplest case, where only the contribution
of the erst term is large:" we have as a erst approxi-
mation

&o'—ko' —E(2 )'/ 3P(Ko, Ko) =0 (42)
It is shown in Sec. V that P is Hermitean where no
inelastic scattering is present: hence, m is real. If, as
it happens often, the third term is small, we can solve
this transcendental equation by successive approxima-
tions:

Z,s —k,s= $(2~)s/r]P(k„k,),
where

kp= (Kp/ ) Kp ( )kp, (44)

and so forth. Equation (43) is a sufficient approximation
for all known cases of slow neutron scattering.

For point scatterers
r

os' —1= (4'/kp'r) tanbp. (45)

If we had used the retarded solution n instead of P
we would have obtained

gs —1=p(2or)s/rkps$rr(kp, kp),

and for point scatterers

4or exp(2ibp) 1—
e' —1=

2i

(46)

(47)

Equation (47) is a slight generalization of the ele-
mentary theory' which predicts wave attenuation in a
case where it obviously cannot exist. The use of the
half-retarded, half-advanced solution has avoided this
diRiculty.

As an illustration of the eGect of radiation damping,
we consider again the case of small scatterers, elis. ,
nuclei whose scattering is described by a one-level
Breit-signer formula. In this case' with the usual
notation

jp g2ig
eo 1 4pr'ikpf= e"» 1— (48)

E—E,+ ',iI'-
From Eq. (I, 19) we have"

(2or) s 1 e'o~LE E,+&i(I's I'r) j——e 'o/E E,+—,'i(I's+ I'g)$—-
n2 —I=

rk, s 2n'iko e'o/E E,+ 'i(I's I'r)3+e—'oÃ —E+—i(1 s+I t) J
(49)

e question as to whether the generalization of Ewald's method to 5nite scatterers leads precisely to the form of Laue's equations
has been discussed, but not entirely clarihed by Ewald (Z. Krist. 97, 1 (1937)).

'o This approximation does not mean that the wave function is essentially a plane wave, as in Eq. (14). On the contrary, for point
scatterers the wave function has singularities of the type 1/r. The higher terms G(KI,) are omitted not because they are small, but be-
cause they are compensated by the integral on the right hand side of Eq. (23).

'4 N. E. Mott and H. S. W. Massey, The Theory of Atomic ColHsions (The Clarendon Press, Oxford, 1949).
The use of Eq. (I, 19), which has been derived for pure potential scattering only, will be justified in Sec. V.
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In particular, if F2 is very small, we can neglect g near
resonance,

set, whereas in Laue's approximation method the self-
action causes divergence.

yb2 —1=
rkp' E—E,+-,'iFp

(50)

whereas, by using the retarded solution, we would have
obtained

n2 —1=-
k, .Z—Z,+-', i(r,+r,)

(51)

Im(N' —1)=o;./kpr. (53)

Equation (53) is just what one would expect intuitively;
since in the present approximation all inelastically scat-
tered particles are considered lost, the attenuation is
clearly proportional to the inelastic cross-section under
conditions where no attenuation by radiation damping
occurs.

Equation (53) is important in interpreting slow
neutron transmission measurements. The attenuation
coefficient varies from o.;„(longwaves) to otpi, i (e.g. , in
case of exact Bragg reflection from a crystal).

We discuss the second approximation to Eq. (42).
We have, from Eq. (34), as a Grat approximation

(k' kp'—)c;(k) [(2=m)'/r). P;(kKp),
)&exp[ir& ' (Kp —k) jCp, (54)

and, by introducing this into the small terms of Eq. (23),

(2')' (2s.)P P(kp, Kg,)P(Kp„kp)
Ep' kp' — p(kp, kp)—+—

T A&0 Ea' —&o'

(2~) s ~ P;(k„~)P, (~, I,)I' dr.Q, (55)
a' —ko'

It is apparent that the second approximation does not
diverge, even for point scatterers. Just as in the case
of 6nite scattering systems, the integral compensates
the nonoscillatory terms of the sum, because the self-
action of each scatterer has been eliminated at the out-

The correction for radiation damping has the eBect
of removing the natural line width from the terms com-

posing the total line width. If no competing processes
are present, i.e., Fp ——0, the correct formula (50) shows
that the index of refraction is either real or imaginary
whereas the uncorrected Eq. (51) predicts attenuated
waves. Hence, a good mirror for slow neutrons should
have nuclei with large scattering, but small absorption
cross section.

It is shown in Sec. V that for 6nite scatterers, and
including absorption

&mP(kp, kp) = [kp/(2m)s]o', (52)

where 0.;„is the cross section for inelastic and absorption
processes of the single, fixed scatterer. Hence, we have,
for long waves or, more generally, far from Laue-Bragg
rejections

IV. THE RANDOM MEDIUM

In this section, the random medium will be studied
from the viewpoint of a dynamical theory, i.e., we seek
the properties of solutions in the in6nite medium rather
than considering the scatterer as a cause of perturbation
of an incident beam.

There are, at present, two approaches to wave
propagation in random media: (1) the perturbation (or'
geometric) theory which calculates the scattered wave
for a de6nite configuration, and averages intensities by
weighting all possible configurations with their prob-
ability. (2) a dynamical theory originated by Foldy"
and extended by Lax' "which determines the properties
of a mean wave obtained by statistical averaging of
some scatterer positions. Now, the outstanding fact
about a random medium such as glass is that measurable
properties do not vary from sample to sample: one can
say that the sample is so large that its various parts
constitute already a statistical ensemble. Hence, it
seems that the purpose of a deductive theory is to show
that observable properties don't depend on the precise
con6guration, but only on certain autocorrelation
functions, in other words, to show that scattering is not
"structure sensitive. "

The present analysis considers a de6nite "frozen"
con6guration of the random medium, and does not
make use of any statistical averaging. It is found that
the only assumption necessary is the mathematical
existence of a correlation function. To avoid a misun-
derstanding, it may be remembered that the autocorre-
lation function has by itself nothing to do with statistics;
it is a definite functional of a given function.

We consider 6rst a de6nite time-independent poten-
tial v(r). The "random medium" is defined by the
existence of the correlation function

(56)

where 7 is the volume of integration. To define the
problem completely, we must select a class of solutions
by some means. We do not wish to this by the intro-
duction of boundary conditions at infinity, because it is
clear from analogy with the crystal that the solutions
needed to satisfy boundary conditions in a problem
involving a 6nite scatterer are of very diferent types,
increasing exponentially in various space directions. '~

In the case of the crystal, the selection of solutions is
made by I'loquet's theorem, which is expressed by Eq.
(11).What we need for the random medium is evidently
an analog of I'loquet's theorem.

"L.L. Foldy, Phys. Rev. 67, 107 (1945).
'~ In the simplest case of a homogeneous medium, the solutions

needed to solve the problem of total reflection are exponentially
increasing normal to the boundary.
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Our choice is based on the simple remark that the
crystal can be considered as the most general medium
provided that the unit cell is extended to inanity.
Hence, we shall follow the formalism of Sec. III, going
to the limit 7—&~ at the appropriate point. This
selection is not equivalent to the periodic boundary
conditions frequently used in physics, mainly because
complex values of the wave numbers must be admitted

%e consider now the second-order solution to the
crystal problem. By inversion of Eq. (12) we have

1
V„=— exp( —2niA„r)p(r)dr. (57)

will exist in the limit; if the correlation function tc(r)
exists, and will be given by the%iener-Khinchin formula

limr
~
V(R)

~

'=
~t dr exp( 2ni—r R)w(. r) =G(R). (59)

The Fourier coefficients V„tend to zero as 1/gr,
except Vo, the mean value, which remains 6nite.
Therefore, Uo and the coeKcient ao must be singled out.
Instead of Eqs. (14) and (15), we have

I
Eosj(2m/k') Vp —kps)co++' v c =0, (60)

(n+ 0)L(Ko+2m-A„)'+(2m/k') U, —kos)c„

+V„co++'V„c„=0.(61)

In the limit the reciprocal lattice vectors will form a
dense set R and V„will tend toward V(R). But

1 '2

lim — exp( —24rsR r)p(r)dr = limr
~
V(R)

~

' (58)

2m (2mls
Ep' —kso+ Vp —

ik' & l't' )
G(R)dR

X-
(Kp+ 2pr R) '—kp'+ (2m/k') Vp

=0, (64)

to the second order.
%e now turn to the boundary value problem of a

semi-infinite medium, with an incident plane wave.
Rigorously, the solution of the boundary value problem
would require an in6nite number of solutions for the
in6nite medium, and not only the one approximated by
Eqs. (62, 64), but we follow the usual procedure" in
omitting all but the strongest. The tangential com-
ponents of Kp are then determined by the requirements
of continuity: they must be equal to those of the
incident wave, and the only unknown is the component
of Kp normal to the boundary which is determined by
Eq. (64). The reflected and transmitted strong waves
are determined as in homogeneous refraction, with a
refractive index

s2—1=—2m (2m)'
Vo+

k '5'

G(R)dR
X (65)

(ko+24rR)' —ko +(2m/ttt') Vo

where we have substituted kp, the wave vector of the
incident wave, for Kp in the denominator of the
integral. By the de6nition of the integral, the imaginary
part of e' is given by

the unit volume of Fourier space is r. Hence, we obtain

Assuming again co to be large, we obtain

(62)
k' (Ko+ 2m A„)'+ (2m/It') Vo —kos

m'
t rR —koq

Iml'= ' G] /dO.
(2n)'koItt4 "8 ( 2n )

(66)

and
2m (2m is

Eo'—kp'+ Vp—
(as ( as )

X
(Kp+2vrA~)'+ (2m/k') Vp —kp'

=0. (63)

For finite cell dimensions, Kp is obviously such that
none of the denominators in Eqs. (62, 63) vanishes. As
the vectors A„become a dense set, it is no longer pos-
sible to avoid the vanishing of the denominators, and a
suitable limiting process must be defined. By analogy
with usual scattering theory, we define the limiting
process so that ko' has a small positive imaginary part,
which is made to vanish after the sum has been con-
verted into an integral.

In converting the sum in Eq. (63) into an integral,
we note that the number of reciprocal lattice points in

which is the equivalent of the formulas for turbidity in
the optics of liquids. "

In contrast to the crystal case, the weak reQected or
scattered vacuum waves cannot be disregarded, because
the resonance denominator vanishes for some of the
internal weak waves.

The calculation of the weak reQected waves is some-
what facilitated by remarking that those internal waves
for which the tangential component of Ks is larger
than ko, can be only continued into the vacuum by
waves decaying exponentially from the surface as in
total reAection of homogeneous bodies. Hence, most of
the weak waves will give rise only to surface waves
which are hardly observable. Furthermore, it is clear
that waves with propagation vectors greatly different

"M. von Laue, Materie4oetten 44nd ihre Interferensen (Aka-
demische Verlagsgesellschaf t, Leipzig, 1948)."S. Bhagavantam, Scattering of Light and the Rarnan Egect
(Chemical Publishing Company, Brooklyn, 1942).
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from kp suffer strong, if not total, reAection in pene-
trating through the boundary. It is, hence, plausible to
assume that the only important contribution to the
weak. external field is given by internal waves with
propagation vectors

~
Kz

~

—
~
Kp

~

=ko. But these waves
suer little refraction, so that we may simply continue
them into the vacuum without change.

By Eqs. (11) and (62), the wave function in the
vacuum ls

2m V„cp
P= —exp(iKO r)P exp(2~iA~ r), (67)

h' Ey, '—kp'

hm-]P exp(ik r,)[ .

The existence of this limit is implied in the existence of
G(R) as de6ned in Eq. (59), for, if the potential is due
to individual scatterers, with potentials v, (r), V has the
form

V=(1/r)P; exp(iR r,)V;(R), (72)

exist. The first limit is clearly the mean value of
P,(KO, K~) and exists by assumption. To investigate the
second limit, we may disregard the matrices P; and
consider

the summation being extended over a small range
)K~~ =ko. Passing to the continuum, we have for @0=1

with

V,= ~ w, (r) exp(iR r)dr. (73)
2m p expt-i(KO+2mR) rjV(R)

dR. (68)
k' " (Ko+2~R)' —ko'

where k is a vector of length ko and parallel to r. Hence,
by Eq. (59)

p2~m~ ' r pk —K, q

&k2& "(2~) (69)

Equation (69) is almost identical with Born s approxi-
mation for the scattered waves, but it contains instead
of the propagation vector of the incident wave ko, the
vector Ko which has a complex normal component, so
that only a surface layer of the medium contributes to
scattering.

This approach to the dynamical theory of the random
medium may become inadequate either because the
potential has strong singularities (point scatterers)
so that the second term in Eq. (64) becomes very large
even diverges; or because the interaction cannot be de-
scribed by a potential. In either case, we can use the
alternative formulation in terms of two-body matrices P.

Conversion of the sums into integrals, in the manner
previously described, gives by Eq. (55)

(2~)'
Eg' —ko' —— P(Kp, K,)

(2~)3 [P(Kp, x)P(tc Kp) —P P (Kp ~)t'~(x Ko)

P) — Ch
X2—kp'

(2')' Arkp

~l p(K„.)p(~, K,)un. (70)
2

This expression is meaningful if the limits

p(KO, Ko) p(K0, x)p(x, Ko)
lim — and lim (x/KO) (71)

For large values of r, one obtains the asymptotic value

2m r l'k —Koq exp(ikor)

k2 4~

Hence, the refractive index is

(P,(K„K,)) 1 p G"(K„x)
n' 1= (2m)' — +I —dx

kp2 p2g K2 p2

where

2'r
G'(Ko, x)dQ, (74)

2kp "s

G'(Kp, x) =lim(1/r)P(KO, x)P(x, Ko), (75)

G"(Kp, x) =lim(1/r) LP(KO, x)P(x, Ko)
—Q P, (Ko, x)P, (x, KO)), (76)

and
(P;(Ko, Kp) )=lim(1/r)P P;(Ko, Kp). (77)

If one or several scatterers are point scatterers (I',
constant), the principal value still exists in this for-
mulation because the constant part of the first term of
G" is canceled by the second term.

The first term in Eq. (74) has the same form as in
the crystal case, and needs no further discussion. The
third term has a simple meaning only when the single
scattering event is purely elastic. In this case, the
integral is essentially the cross section, in first approxi-
mation, of a unit volume of liquid, by comparison with
Eqs. (9) and (10).This is in agreement with well-known
results on turbidity. "The second term is purely real
for nonabsorbing liquids, and is evidently the equivalent
of the Lorentz correction. From the comparison with
the Lorentz correction for crystals we may infer that
its order of magnitude, relative to the erst term is P/g,
where u is a mean distance between scatterers. This
term constitutes the main contribution to the first non-
vanishing correction for the refractive index of a liquid
as used in the experiments of Surgy, Ringo, and
Hughes "

Since the third term vanishes when the density of
scatterers is so large that destructive interference
prevails, we find that the refractive index is real for very
dense, nonabsorbing liquids. This result is in agreement

"Burgy, Ringo and Hughes, Phys. Rev. 84, 1MO (1951).
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Hence,

vy

v.((P')—(P)') = (at—as)'.
16 4+4

4mvp 3 1
Imi'= ——(ar —up) '.

kp 28
(77)

In other words, the apparent cross section of the
protons, as measured by a transmission experiment, is
sztimes the "incoherent" rs-P cross section. This result
could also have been obtained from the elementary
theory, i.e., by determining in 6rst approximation, the
number of incident neutrons scattered by a thin sheet.

Specifically dynamical phenomena, not described by a
kinematic theory, are to be expected when the scatterers
have their spins partially aligned by an external 6eld.
In this case, the spinor character of the neutrons cannot
be disregarded, and the coefficients (."„in Eq, (41) must
be considered as spinors. For a liquid, all coefficients but
Cp may be disregarded in 6rst approximation, so that
two refractive indices must be considered, for neutron
spin parallel and antiparallel to the 6eld direction, as
in the theory of neutron propagation in a ferromagnet. "
We have

4x vp
ss' 1=————(3us+a, )a v,—(as —ar)+ vsrasr, (78)

kp' 4 "2

where v„and v~ are the numbers per unit volume, of

"Reference 4, p. 177.
~ H. Ehstein, Phys. Rev. 76, 1328 (1949).

with theoretical results usually reported. " These,
however, are obtained by arbitrarily disregarding radi-
ation damping contrary to the present derivation.

As an example, we consider the imaginary part of n'
for the case of a crystal with protons having random
spins. The disordered crystal is a special case of a
random medium, and can be treated dynamically by the
present method. However, the particular approximation
method used to derive Eq. (70) assumes that no Bragg
reQection has importance, so that the following result
is only valid for a wavelength large enough to avoid
Bragg reaction in a polycrystal, or for a nonreAecting
position of a single crystal.

The elements of the matrix P for the rs-p scattering
are derived in Sec. V.

The contribution of the first term in the bracket
l Eq. (74)j is

(a, ap)'v—v/167r')p p,

where v„is the number of protons per unit volume. This
contribution is in agreement with Eq. (53), since the
inelastic (usually called incoherent) cross section of the
unpolarized proton is (4sr/8) (ur —as)'. The second
term in the bracket is real to the second order in the
scattering length, and does not contribute. The inte-
grand of the third term can be easily evaluated on the
assumption of random spins. " It is

V. PROPERTIES OF THE MATRICES n AND

The basic assumption of this paper is that equations
derived for the simplest case of potential scattering
remain approximately valid if the matrices cr and P
describing the elastic scattering of a more general
single scatterer are substituted. We shall now express
these quantities in terms of the general theory of scat-
tering and derive some of their properties.

It would be desirable to relate the multiple scattering
to a general time-independent theory of single scat-
tering. Neither of the three presentations known to
us" "is quite sufficient to describe absorption, creation
and rearrangement processes which occur in the nuclear
phenomena under study. We have to make the further
assumption that the general properties of the scattering
matrices are preserved in a more general theory, and
we shall use Pauli's formalism.

The scattering of an incident plane wave is described
by the matrix

(~ I fl 0) = v(ul pl 0), (80)

where U is the interaction Hamiltonian, and (kl &l0)
the wave function in momentum representation. If U
is a scalar potential in coordinate space,

(kl fl 0) = "N(r)P(r) exp( —ik r)dr, (81)

where P is that wave function which has the asymptotic
form exp(ikp r). Hence, it is seen by comparison with
Eq. (I, 4) that

f(k) = —(2m/h')(kl fl0) (82)

in the simplest case." The generalization consists in
substituting for f that submatrix which describes elastic
scattering, i.e.,

f(k) = (2m/)s')—(k l f l 0) lan, p, (83)

where e and ep characterize two unperturbed states of
the scatterer. In the following, it will be useful to

2' C. Mgller, Kgl. Danske Videnskab. Selskab Mat. -fys. Medd.
23, No. 1 (1945); 22, No. 19 (1946).

s4 W. Pauli, Mesou Theory of Nuclear Forces (Interscience Pub-
lishers, Inc. , ¹wYork, 1948).

ss B. Lippmann 'and J. Schwinger, Phys. Rev. 79, 469 (1950).
26 Pauli's equation giving the connection between the asymp-

totic value of the wave function in coordinate space and the
matrix (h

~f ~
0) differs from our Eq. (I, 8) by a factor (—(2s.) &).

The minus sign is presumably omitted by mistake; the constant
factor is due to our use of unnormalized plane waves exp(jh r)
as usual in the theory of scalar scattering, instead of normalized
plane waves (2s) & exp(jh r).

protons and other spinless nuclei, respectively, a~ the
scattering length of these, and e the relative excess of
protons aligned:

e= (v+—v-)/v —s

A measurement of the angle of total reAection provides
a means for determining the difference of triplet and
singlet amplitude.
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(e, k
I
U

I
m, l) (m, l

I
n

I
n p, «)()(, I I o)—2

l, m Ep —Ef(k) = —(2m/k') (k, ep
I f I

kp, np).

distinguish between variables characterizing the scat- We write the equation defining n (Eq. (85)) under
terer (n) and the incident particle (k). Thus, we can the form
write

Generalizing Eq. (I, 28) we can define a matrix (k
I
n

I «)
for the general scattering problem by the integral
equation

(k[ Uli)
(kin[«) —P (ilnl«)

Ep—Ei

+i' Q (e, k[U[m, A)(m, A lnlnp, K)
m gnp

A

X (np, A
I
n

I ep, «). (89)

which reduces to Pauli's equation (5) for (k I fl 0) in the
special case where E(«) =Ep. In Pauli's notation, the
symbol 2 stands for all variables except the energy,
and the integral is extended over the "energy shell"
E=Ep. The matrix n(k, op) used in the theory of mul-

tiple scattering is proportional to that submatrix of
(k I

n
I «), which describes elastic processes only:

(n, k[P[no, A)(«A lnl««) (90)

This equation allows us to calculate P if n is known. It
is similar to Heitler s integral equation, except for the
circumstance that in general Ep &Enp„. The solution
can be obtained in two steps: since only values of P
on the energy shell occur under the integral, we can
write, for the particular set of values ~ = kp such that
Ep =Enp„'.

n(kp ip) = —(2 /mk') (ek
I nl np«) anno (8.6)

The matrix (k
I
n

I
«) has no direct physical meaning, but

it can be connected with the scattering of a beam of
particles issued from a point source at a finite distance,
in the manner described by Eqs. (I, 23, 29).

For the theory of multiple scattering in extended
bodies, . we need the generalization of the matrix P(k. x)
introduced in Eq. (I, 30).

This matrix divers from n by the elimination of
radiation damping in elastic, but only in elastic scat-
tering. Hence, the appropriate generalization is given by
the equation

(n k If[no ko) = (e k[glnoko)

is
J

(n k[gl«» A)(no A[fino, ko). (91)

If g is determined by solving this equation, P is given by

(n, k
I P I no, «) = (e, k

I
n

I
n p, «)

�

+i~ t (kl U[A)(A [nl«)=(kl Ul«), (85) Comparison with Eq. (87) shows that

(e, kln[np, «)= (e, k[P[np, «)

(n, k
I Ul m, i) (m, il p [n„.)

(n, k
I p I n„«)- p

Ep —E

+Ar g ~t (n, kl U[m, A)(m, A[Pleo, K)
m~no ~ A

=(n, kl Ulno, «), (87)

in which the term describing radiation damping by
loss of the elastically scattered particles has been
omitted. The matrix p(k, r) is again proportional to
the elastic submatrix of (n, kl plnp, «):

P(k, r) = —(2m/k')(e, k[P[no, «)anno. (88)

If the Hamiltonian of the single scattering process
is not known, the matrix n can, at least in principle,
be measured by a set of double-scattering experiments,
using Eq. (I, 52), but p is not directly related to an
experiment using a small number of scatterers. There-
fore, it is useful to show how P can be calculated if n
is known.

+ipr (e, kl glnp, A)(np, A In[no K). (92)
J A

In first approximation, when P differs only slightly from
we have

(e, k [ p I
n p, K) = (n k

I
n

I
np «)

+ipr (n, k[nlno, A)(no, A [nlno, «). (93)
A

This equation can be used to estimate the importance
of the correction for radiation damping. For point
scatterers, Eq. (90) becomes

(n I
n [ ep) = (n I p I ep) i(4''k pm—/k') (n I p I ep) (no I

n [ n p),
(94)

or, if we write, in accordance with Eqs. (86, 88),

n„=—(2m/k') (nl nl e), P„=—(2m/k') (el P I n), (95)

P„=n„/(1+2in'kpn„) (96)

Hence, if n„ is written under the form 1/4x'ikp
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)&Lexp(2i8„)—1j where 8 is now complex, we have Because of the Hermitean character of V, we have also

P„=(1/2n'ko) tanb„, (97) (104)

or

4t W « t4 N: —',('~+' ),

N «N ~ 4t:s('~-'~),
where '0. and 'n are the corresponding quantities for
triplet and singlet scattering. The diagonal elements of
P are, by Eq. (97)

'o./(1+ 2iz'k p 'cr) (parallel spins),

xs('or+'a)/L1+iz kp('cr+'n) j (antiparallel spins).

By Eq. (I, 21) we have, for each of the elements sn

and 'n,
(98)2z'cr = 5p/k p+i Boo/k p

to the second order of the small phase angle. In terms
of the scattering length,

a= Bp/kp, — (99)

which justifies the generalized use of Eq. (I, 22) made
in Sec. III.

As an example, we calculate P for rs pscat-tering. The
only nonvanishing matrix elements of cx are, with
obvious notation 9'

Multiplication of Eq. (102) by (1—T*) from the left
and of Eq. (104) by (1—T) from the right, gives

In particular, when only elastic scattering exists, i.e.,
all matrix elements of U except («kl Ul «k') vanish,

P—0*=0, (106)

which proves the statement made in Sec. II. In general
we obtain from Eq. (105) for the matrix element e,
k='0 ) k =Op) kp:

2Im(no, kolPI«, ko)

I (~, ~
I P Imp, ko) I

o. (107)
mQnp

By Eq. (93) P differs from n only by second-order
terms. Hence, we can substitute cr for P in the right-
hand side, with an error of third order in P, We can
use this approximation consistently to evaluate P(kp, kp)
in Eq. (43). The elements of a appearing under the
integral belong to the submatrix f of a, since
Zp= E(Np kp). The relation between the asymptotic
form of the scattered wave and f is"

we have then

2z'P = —ao (parallel spins),
and

exp(ik„) (dk )&-(r)-—(2~)'* k-I I (rN ~
I fl «ko)

(100) r ( dEi' a=I
„

(108)

2z P s (&8+~1)+4iko(~s +1)' (antip»»le»pins) Hence, the partial differential cross section « for the
(101) process rrp-+m is"

The scattering lengths a~ and a3 are here those of the
bound proton, i.e., twice the scattering length for the
free collision.

Equation (87) can be written ImP(kp, kp) =
I

kp/(27r)'ga. ;„, (110)

m'
«-=(2~)'——

I (~ ~
I fl «ko) I'did (1o9)

&p &4

Therefore,

P= U(1 T), — where
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'~ L. Rosenfeld, nuclear Forces (North-Holland Publishing
Company, New York, j.948).
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This result was anticipated in Sec. III.
The author is indebted to Miss Irene Corvin for

numerical calculations leading to Eq. (33).
s' The factor (2s)' is dne to different nornralization, as pointed

out in footnote 26.


