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Lifetimes of nuclear isomers for gamma-transitions are calcu--

lated theoretically on the basis of various independent particle
models; e.g., single proton, single neutron, and states of several
particles (Sec. IT). The calculations of this paper are essentially
restricted to the most common type of transition véz., multipole
order equal to spin change. The lifetime is expressed in terms of a
matrix element, M, whose theoretical value depends on the
particular model of the nucleus. Radial integrals are calculated
numerically, assuming that the nuclear wave functions are given
by single particle wave functions for a spherical square well.

Empirical values of M2 can be deduced from measured isomeric
lifetimes, corrected for internal conversion. An analysis of em-
pirical M? for some gamma transitions points to a number of
regularities which, in general, speak in favor of an independent
particle model (Sec. III).

The regularities are the following:

Empirical values of M2 for M4 transitions are of order unity and
show little scattering and no distinction between odd proton and
odd neutron nuclei. The lack of scattering within each group of
transitions is consistent with predictions of a single particle

model. However, according to this model, one would expect odd
proton nuclei to have lifetimes about half as large as odd neutron
nuclei for the same transition energy, and also would expect life-
times about 1/10 as large as found empirically. Empirical values
of M? for M4 transitions appear to be larger for transitions in
nuclei with nearly closed shells.

According to an independent particle model, M2 for E3 transi-
tions of energy 100 kev should be of order 1078 for single neutron
transitions, and vanish for many particle transitions, such as
those between p; and 7/2+-states. The fact that empirical M?
for E3 transitions are small can be interpreted as resulting from
small deviations from an independent particle model. In fact,
empirical M? for transitions between p3 and 7/2+states in odd-
neutron nuclei appear to be smaller the more nearly the nucleus
can be represented as a closed shell nucleus.

The empirical value of M2 for an M1 isomeric transition in Li’
is slightly larger than expected according to an independent
particle model.

A graph of energy levels for a spherical square well potential is
presented (Appendix, Fig. 2).

I INTRODUCTION

T was first suggested by v. Weizsacker,! and has

become generally accepted, that nuclear isomeric
states decay into each other by gamma-emission, but
that the lifetime is large if the spin of the two states
differs by several units of %.

The emitted quantum may carry off angular mo-
mentum L(>1), giving rise to electric or magnetic 2%
pole radiation (denoted in this paper by EL or ML),
according to whether the quantum has parity (—1)F
or (—1)E1, It follows that the selection rules for EL
and ML radiation, i.e., radiation of various multi-
polarities, are

|Ii—I;| KL I+, 1)

parity change (—1)% for EL, (—1)L~! for M L. Here I;
and I; denote the spins of the initial and final states,
respectively.

Electromagnetic radiation is not the only mode of
decay for a nuclear excited state. Instead, an internal
conversion electron may be emitted; i.e., an orbital
electron may be ejected and carry off the energy of
excitation. The number of electrons emitted from a
given shell per quantum is called the conversion coef-
ficient for that shell. Values of conversion coefficients
depend on the multipolarity of the transition and on the
electronic configuration. However, they do not depend
on the detailed structure of the nucleus, and can
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1C. F. v. Weizsacker, Naturwiss. 24, 813 (1936).

therefore be calculated, in principle, to the same ac-
curacy as spectroscopic problems.

K-conversion coefficients have been calculated by
Rose et al? neglecting the effect of screening, for
energies above 150 kev, and by Reitz? for selected cases,
including the effect of screening. Calculations of K, Ly,
L1 and L1 conversion coefficients over a wide range of
energies and including screening effects are now in
progress.*

Conversion data are extremely useful for obtaining
multipolarity of a transition, but not for obtaining
information regarding detailed nuclear structure (apart
from the spin and parity change). Goldhaber and Sunyar®
have made multipolarity assignments for many transi-
tions by comparing observed K-coefficients with Rose’s
theoretical values, -and also from a semi-empirical
analysis of K/L ratios, which indicates that K/L ratios
are a function of Z%/E and multipolarity alone (except
for M1 transitions).® The work of Mihelich and Church?
indicates that ratios of L-subshell conversion coefficients
can be of use for assigning multipolarities and for
analyzing transitions which involve a mixture of
multipolarities.

The lifetime of an excited state for gamma-emission
depends not only on the multipolarity and energy of
the transition, but also on the detailed structure of the
nucleus. It is, thus, not possible to identify the multi-

( 2 R())se, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 83, 79
1951).

3 J. R. Reitz, Phys. Rev. 77, 10 (1950).

4M. E. Rose and G. Goertzel (to be published).

5 M. Goldhaher and A. W. Sunyar, Phys. Rev. 83, 906 (1951).

6 M. Goldhaber (private communication).

7] W. Mihelich and E. L. Church, Phys. Rev. 85, 733 (1952);
J. W. Mihelich, Phys. Rev. 87, 646 (1952)
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LIFETIMES OF NUCLEAR ISOMERS

polarity of a transition from a lifetime measurement
alone, without specific assumptions as to nuclear
structure.

However, information regarding nuclear structure
can be obtained by comparing the measured lifetime of
a transition with the lifetime calculated using a specific
nuclear model, e.g., the independent particle model,?
provided the multipolarity of the transition has already
been identified, say, from conversion data.

II. THEORETICAL CALCULATIONS OF LIFETIMES
FOR GAMMA-DECAY

a. Single Proton for Spin Change Equal to Multiple
Order-Central Potential

The transition probability per unit time for a system
to undergo an electromagnetic transition from an initial
state 7 to a final state f is given by the well-known
equation®

2
=—1|3¢,/|2N(E). 2
hlﬁcflf() (2)

Here 3¢, is the matrix element of the electromagnetic
interaction between particles and field, N(E) is the
number of final states available per unit energy interval.
The total nonrelativistic Hamiltonian of proton and
electromagnetic field can be written'

(p—eA/c)?
=

/3
+ V(?’) - pp—e*“(()" H)+Zk nkﬁwk. (3)
2M¢

Here M denotes mass of proton, up is the proton mag-
netic moment in nuclear magnetrons. The vector
potential, normalized to one quantum per unit volume
is given by

A=e(2mhc/w)let® . 4)

The radiation interaction is contained in (3) and is
given by

A (o H) )
5/ = ——p- A~ pr—/(o-H).
Mcp “PZMc(r

[The term (e2/2Mc?)A? is neglected here, as are second
order perturbation terms, both of which give rise to
double quantum emission, with a transition probability
which is usually several orders of magnitude less than
the transition probability for single quantum emis-
sion. ]2 The first term in (5) is the interaction energy
of a point charge with an electromagnetic field, while
the second term is the interaction energy of an intrinsic
magnetic moment with the field. The transition prob-
ability between states is calculated using (2), summing

8 M. G. Mayer, Phys. Rev. 78, 16, 22 (1950).

9 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1949), first edition, p. 193. -

10W. Heitler, The Quantum Theory of Radiation (Oxford Uni-
versity Press, London, 1947), second edition, p. 91.

1 M. Goeppert-Mayer, Ann. Physik 9, 273 (1931).
2 R. G. Sachs, Phys. Rev. 57, 194 (1940).
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over polarizations, and integrating over all directions
of emission:

2w aQ,
=— | —X|Jul% (6)
hG 4r 47l' €

Here dQ, is the solid angle for direction of emission,

e iw eh )
Jyi= '(—(P'e)‘f‘—upv———(o-s'))e“‘" Q)
Mc ¢ 2Mc¢

It

¢ =nXe, and n=Kk¢/w, the unit vector in direction of
emission. The exponential in (7) can be expanded in
ascending powers of k-r, which is assumed to be «<1.

Using elementary relations of quantum mechanics,
one can write Jy; as follows:

® ‘8 Tw L
=2 _(—) [(r-e)(r-m)=" ]

L=1 LI\ ¢

w eh 1 to\Lr/ 1-¢'  ppo-e'\
L) (G 5)
L=1Mc (L—1)!\ ¢ L+1 2
n)L—1 .n)L—1 1'8, PO ’
X(r m“t (rn) ( +u t; S)J ®

2 2 \L+t
Here 1 is the orbital angular momentum operator in
units of 4.

A transition between two given states can usually
proceed by radiation of several multipolarities, con-
sistent with the selection rules (1). In this paper, only
those transitions are considered for which the radius of
the nucleus, @, is much smaller than the wavelength of
the radiation, wa/c<1; e.g., most nuclear isomeric
transitions. For such cases, the calculations presented
here, and also independent calculations of Weisskopf!?
and of Stech, indicate, in accord with experimental
evidence, that the transition will go primarily by the
lowest multipole order permitted by the selection rules,
viz., EL for AI=L, parity change (—1)L. The only
exceptions to this found experimentally to date are a
few M1+ E2 mixtures.®>’

Interaction terms which give rise to pure 2% pole
radiation transform under space rotation of the nucleus
as the components of the irreducible tensor of order L,
denoted by D@, For transitions involving AI=L,
but only for these, terms which result from an expansion
of the interaction into powers of k-r transform as
D@, In particular, the Lth term of the first and second
series of (8) corresponds to an EL and ML transition,
respectively.

To evaluate (8) and the transition probability (6),
one uses the fact that for a central potential, the wave

1BYV. F. Weisskopf, Phys. Rev. 83, 1073 (1951).

14 B, Stech, Z. Naturforsch. 7a, 401 (1952).

158 E. Wigner, Gruppentheorie und iher Anwendung auf die

Quantenmechantk der Atom Spekiren (Edwards Brothers, Ann
Arbor, Michigan, 1944), p. 164.
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function of initial and final state of the proton can be
written as product of a radial function R and of an
angular function 8; r (for intrinsic spin ). Integrations
over the angular functions can be performed exactly,
since they involve only the symmetry properties of the
nucleus. However, values of integrals over radial
functions depend on the particular nuclear potential
chosen.

Since the transition probability and thus the gamma-
decay lifetime 7,=1/W is independent of the direction
quantum number of the initial state ;!¢ one can
calculate the gamma-ray lifetime for a transition for
which I;=I+L and take m;=1;; then the summation
over final m-substates reduces to a single term, with
my=1;. Thus the gamma-ray lifetime is given by the

following equations!7:

20L+1) 1 wa) 2L -1
[ ) SMEL ] y (9a)
wa )

TyEL=
Al =L
Al =L

L QL+11) e

AL+ 1
}yML_[

L QL ke
h —1
X (-——) SMMLz] , (9b)
Mca
where
Mp?=|(r/a)"|;2, (10a)
L—1]2
M= (ﬂPL_—_ , (10b)
L+1
2L—|—1!!=1X3X5X"'X(2L+1), (11)
|6/ L= [ R/ Rear, 12)
]

the radial integral in units of a%, S is a statistical factor,
whose value depends only on the spins involved in the

TaBLE L. Values of S for E1 and E2 transitions.

Is SEL Sg2

) 15 (21:;+3) (21:+5)
fit2 32 DTt D)
Ii+1 §_ (2I;+3) E (21;+3)

* 4 (I;+1) 16 I;(I;+1)(1:+2)

I 1 5 (2L—1)(21:;+3)

¢ 4I(I;+-1) 16 (Li—1)T)

¢ 4 I 16 (I;i—1)I:)(I+1)
Li—2 15 (2I;—3)(2I;—1)

32T T=-DT)

16 S, R. de Groot and H. A. Tolhoek, Physica 15, 833 (1949).
17 S. A. Moszkowski, Phys. Rev. 83, 1071 (1951).
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transition and is defined as

Sy L, I)=4m 2. 2.
mf m

f Oy, ;7Y 101, I{”‘dﬂ (13)

4

Y ™ are spherical harmonics.
This gives

Ti— 3 IX QLA 1)1IX (2I)1
S(I,-,L,If)=( X QL)X (2L) (142)
(QI)UXLIX (I;—3)!

for I,=1I;+ L, namely, when the spin of the initial state
is larger than the spin of the final state. For transitions
with I;=1;+ L the statistical factor is given as follows,
in accordance with a simple statistical weight argument:

2142141
S(Ii) L: If)=S(Iz+L; L; Iz)x .

P

(14b)

Note that S equals 1 for any transition for which I;=3
and I;,= L+%. M is the only term in the equation which
depends on the detailed nuclear structure. It is called
here the “matrix element.” According to Egs. (10),
M is expected to be of order unity, if the radial integral
is (see Sec. IIg). To bring Egs. (9) into correspondence
with Weisskopf’s equations,'* one writes them as
follows:

L2L+11)2 /197 Mevy 25+
TyEL= ( )
4L+ \ o
X (@ in 10~13 cm)—2£10~2.5~1M g2 sec, (15a)
LQL+1!! /197 Mev 2L+1
TyML= )
0.19(L+ 1)\ 7o
X (@ in 10713 cm)—CL=2. 10251} 32 sec.  (15Db)

b. Electric Transitions for Spin Change Less than
Multipole Order

The EL transition probability now has to be derived
by expanding the radiation interaction explicitly into
terms which transform as ©@ under space rotation of
the nucleus. It can be shown, and is stated here without
proof, that Eqgs. (9a), (10a), (13) still hold in the limit
wa/cK1. For a given I;, L, I, of the four possible kinds
of transitions (I;=1,4+1%, l[;=I,4%), two have the parity
change (—1)Z required for an EL transition, viz., those
transitions for which /;—I,— L is an even integer. .S is
the same for these two transitions, as can be seen by
inserting the relation

o'r
— 0143, 1"=
7

(16)

O3, 1™

into (13), and taking into account the fact that Y™
commutes with o, Thus S for electric transition is a
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function of I;, L and L; alone. Table I shows values of
S for E1 and E2 transitions.

c. Transitions of a Single Neutron

The calculation of transition probabilities for a single
neutron is similar to the calculation for a single proton.
The interaction Hamiltonian is given, as before, by (5).
However, the first term vanishes due to the absence of
electric charge of the neutron. More rigorously, if one
considers the nucleus as a two-body system of neutron
and core moving about a common center of gravity, one
obtains an electric moment term due to the motion of
the core.

For this model of the nucleus

s Ze A —7 _ eh - .
(‘)“‘AZ["' (7)]—uN2—M—C[«- <r>], ()

where ux is the neutron magnetic moment in nuclear
magnetons.

Thus, transitions between single neutron states in-
volving AI'=L and parity change (—1)%! will proceed
by magnetic 2% pole radiation as in the single proton
case. With respect to Egs. (9b), obtained for the
single proton case, the only change is that the term
[upL—(L/L+1)T is replaced by (uxL)%. However,
electric 2F pole transitions between states involving
AI'=L and parity change (— 1) now have probabilities
only (Z/A¥)? as large as for the single proton case. One
can also get a contribution to the transition probability
from the second term in (17), because of interaction of
intrinsic magnetic moment with the electromagnetic
field.!® It is easy to convince oneself that the EL and
M (L+-1) transition probabilities resulting from intrinsic
magnetic moment are smaller than the corresponding
EL probabilities for a single proton (9a) (resulting from
the EL moment) by a factor of order (hw/Mc2)2 1t is
thus seen that the EL matrix elements for gamma-ray
transitions involving L>2, for odd neutron nuclei,

assuming an independent particle model, are expected

to be much smaller than 1.

d. Effect of a Spin-Orbit Interaction on M1
Transitions

Sachs and Austern'® have shown that the introduction
of a velocity-dependent interaction will leave electric
transition probabilities the same. as calculated above,
but that it will result in different magnetic transition
probabilities. In particular, Jensen and Mayer!® have
shown that the introduction of a spin-orbit coupling
for a single proton leads to finite M1 transition prob-
abilities, both for Al=0, and for Al=2. In contrast, for
a pure central potential, in the absence of spin-orbit
coupling, no M1 transitions can occur, because either
the M1 matrix element between initial and final state
vanishes, or the two states are degenerate.

18 R. G. Sachs and N. Austern, Phys. Rev. 81, 705, 710 (1951).
19 J.H. D. Jensen and M. G. Mayer, Phys. Rev. 85, 1040 (1952).
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With reasonable assumptions regarding the strength
of spin-orbit coupling in nuclei (AE=2 Mev for A =100,
1=4), Jensen and Mayer obtain M?=0.26 for an M1
transition in an odd proton nucleus involving Al=2.

e. Transitions between States of Several Particles

Strictly speaking, all nuclear states, except those of
a single nucleon, are states of several particles. In most
cases involving an odd number of particles, the spins
of all but one particle couple to spin zero, and the state
has the I of the odd particle.® These particular states
will be referred to as ‘“‘states of normal coupling.” Such
states behave in many ways like the corresponding
states of a single particle, e.g., have the same spin and
magnetic moment. It shall be assumed that the particles
can be treated as independent; i.e., that the wave
function of a state of several particles can be written
as a sum of products of single particle wave functions.

States in which an odd number of identical particles
couple to a spin different from the spin of the odd
particle; e.g., (go/2)7/2+ *°°* 7 are also known to occur.®!’
Such states are called here ‘“states of abnormal
coupling.” Calculations of Kurath? and of Talmi? of
energy levels for the different configurations of three
identical particles in a ds/s or f7/2 orbit indicate that the
state of normal coupling is expected to be the ground
state, provided the forces between particles are of short
range, compared to the nuclear radius. However, for a
range of forces comparable to the nuclear radius, Kurath
and also Talmi find that the state (7);—:® can be the
ground state. In view of these results, the existence of
states of abnormal coupling should not be surprising.

The wave functions of individual nucleons in various
quantum states shall be labeled y;;™ and one writes
symbolically for the properly antisymmetrized linear
combination of single particle wave functions of #
nucleons; i.e., for the Slater determinant,

W= 1//3‘1’"11[0‘2’"2 cen lﬁjn’mn'

The wave function for 2s identical particles, each of
spin 7, and differing only in m, which couple to a total
spin 0, denoted by ¥(5%%)o° can be written as

(18)

(J-l—‘)’S’]

It is easily seen that ¥(52%),° is an eigenfunction of I?
and of I, with the proper eigenvalues I(I41)=0, M =0.

Any term containing the same value of m twice
automatically vanishes. Since there are (j+3%!)/
(s!j+3—s!) different nonvanishing terms, and each
one occurs s! times, the normalization of (19) is war-
ranted.

20 M. G. Mayer, Phys. Rev. 74, 235 (1948).

2t D, Kurath, Phys. Rev. 80, 98 (1950).
2 1. Talmi, Phys. Rev. 82, 101 (1951).
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"A wave function of 2s+1 partlcles, each of spln 7y
which couple to I=j, M =j is given by

\I,(j2a+l)ji

=¢,~f( ég(—l)f%%%rﬂ») / [ (]_1__)_';'!] (20)

For j<7/2, these wave functions are the only ones
which can be constructed.

The total wave function of a number of identical
particles can thus be written, apart from normalization
factors, as products of wave functions of pairs of iden-
tical particles coupling to a spin 0, and that of the
wave function of the odd particle, if any. The total
normalization factor is not equal to the product of the
separate normalization factors, because many terms in
the product can vanish.

The total wave function of #, particles in an orbit
a and 7 particles in a different orbit 4 is just the product
of ¥(j,") and of ¥(;,™), including the value of the
normalization factor.

Using the wave functions (19) and (20), and assuming
an interaction operator which can be written as a sum
of terms, each of which acts on one particle at a time,

and which is symmetric in all the particles (called a .

symmetric single-particle interaction operator),

Z Ok)

particles %

0= (21)

one can evaluate the probability for transitions between
states of normal coupling involving configurations of
only protons (or neutrons).?

This transition probability is equal to the transition
probability between the corresponding single particle
states, multiplied by a factor denoted here by p, which
depends on the number of particles in the two orbits
involved in the transition and also on the spins of these
orbits. We must consider two cases, according to
whether the particle undergoing the transition is an odd
one Or an even one.

Let the initial state of spin j, contain 25,41 particles
in orbit @ and 2s; particles in orbit 4, and the final state
of spin 7, have 2s, and 2s;+1 particles in orbits a and
b, respectively.

2 For many nuclear states, e.g. ground and low-lying isomeric
states of heavy nuclei with N>50 and also of some light nuclei,
all orbits partially or completely filled by protons are also com-
pletely filled by neutrons. The isotopic spin of such a state is
uniquely given as (N —Z2)/2. A transition between two such states
involving a particle jump between orbits ¢ and b can be charac-
terized as a proton (or neutron) transition if the orbits ¢ and b
are partially filled by protons (or neutrons).

According to the independent particle model, the transition
probability between these two states is equal to the transition
probability between two corresponding states of a hypothetical
nucleus for which there are protons (or neutrons) only in orbits
a and b. Thus, although in this section states consisting exclusively
of protons (or neutrons) are considered, the results are applicable
tolheavy nuclei, in so far as the independent particle model is
valid.
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Then (odd particle jumping), p is given by

]a+"“é‘a jb‘l‘%—sb
p= X : . (228.)
]a+ 2 ]b+%

Alternatively, let the initial state of spin j, be composed
of 2s,—1 particles and 2s; particles in orbits a and &,
and the final state of ‘spin j, contain 2s, and 2s;—1
particles in these orbits.

Then (even partlcle jumping), p is given by

Sa Sb
p= X . (22b)
Jats Jet3

According to Egs. (22), the transition probability
between states of partially filled orbits is less than that
between the corresponding single particle states.
Physically, this reduction comes about from the fact
that a fraction of the substates, which would be available
to the particle in the corresponding transition between
single  particle states, are not available in this case to
the jumping particle, because they are already occupied.
It can also be shown that certain kinds of transitions
cannot occur, according to an independent particle
picture, assuming a symmetric single-particle interac-

tion operator. These follow:

1. Transitions which require change of orbit for
several particles.

This is an immediate consequence of the form of the
interaction operator.

2. Transitions between a state of normal coupling
and a state of abnormal coupling of only protons
(or neutrons), involving a change of orbit for one
particle.

Such a transition would require that several particles
change their state, since not only is one particle chang-
ing its orbit, but at least two other particles must
change from being lined up antiparallel to being lined
up in a different way.

3. M1 transitions between two states of the same
configuration, consisting exclusively of protons (or
neutrons), and differing only in coupling and no
change of orbit.

The transition matrix element is

f‘I’;(Zk Ok)\I/idT‘:Cf‘I’f(Zk j/c)‘I/idT (23)

which follows from the relation?*

[vrovrie=c [urtimar 24)

# E, U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (University Press, Cambridge, England, 1951), first
edition, p. 61.
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where ¢ is independent of the values of m and m/'. Since
the operator I=3; ji does not mix wave functions of
different states, the integral (23) must vanish.

f. Numerical Calculations of Radial Integrals

The radial integrals in Egs. (10) depend on the form
of the nuclear potential. It is questionable whether the
single particle wave functions calculated for a central
potential are good approximations to the real nuclear
wave functions. However, the success of the inde-
pendent particle model in explaining many observed
phenomena® makes the attempt to use single particle
wave functions at least plausible.

The radial integrals Eq. (12) have been evaluated
for several cases:

1. Wave Function Constant Inside Nucleus—
Vanishing Outside'

For EL radiation [(r/a)E|;i=3/(L+3). (25a)
For ML radiation |(r/a)X|;=3/(L+2). (25b)

2. Spherical Square Well Potential—No Spin-
Orbit Coupling

The wave functions are obtained by solving the
eigenvalue problem for a square well (of radius ¢ and
depth V,), i.e., by obtaining the solutions of the
Schroedinger equation for <a and for r>a and fitting
the values of the wave functions and their derivatives
atr=a. :

Calculations of the radial integrals were made for
several cases which represent typical isomeric transi-
tions in nuclei. All states are assumed to be bound by
8 Mev. (V,is slightly different for initial and final state.
The radius ¢ has been taken as 1.5%X 10713 4% cm.)

The results of these calculationsareshown in Table II.

The radial integrals (in units of proper power of
nuclear radius), are nearly independent of the size of
the nucleus. This is a consequence of the fact that for
the cases treated here, the binding energy is much
smaller than the depth of the potential well.

The results of Table II suggest, in agreement with
expectations, that values of radial integrals depend
less on the particular nuclear model for large multipole
orders of the radiation than for small multipole order,
and that they do not depend strongly on the particular
states nor on nuclear size for a given multipole order.

3. Spherical Square Well Potential with Spin-Orbit
Coupling

The radial integral was evaluated for a square well
potential with an additional spin-orbit interaction
given by

1av
~K-—(-0)

r dr

(26)
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TastE II. Calculated values of radial integral.

Radial integral | (r/a)Lor L1

or ELor ML
Square Square Constant
Transi- well well wave
tiona Cases of interest A =100 A =140 function
1h—3s ES hiys—sue 0.43 0.40 0.38
1g—2p M4 gory—pue 0.45 0.43 0.50
1h—2d M4 hyys—dse 0.43 0.42 0.50
E3 hyye—dsz .
2d—3s E2 dsj5—s12 0.52 0.50 0.60

» For each state, the number denotes radial quantum number 7 (number
of radial nodes -1), letter corresponds to orbital quantum number .

(which is infinite at = ¢ and vanishes everywhere else),
for the special case of an M4 transition between a
1g9/2 and 2pyy, state in In'te,

The value of K and of well depth V, were so chosen
that both initial and final state are bound by 8 Mev.
The radial wave functions are assumed to be of the
same kind as those of a square well, but the boundary
conditions require a finite discontinuity in the derivative
at r=a. The value of the radial integral for this case is
0.53 compared to 0.44 for the same transition in a
square well potential without a spin-orbit interaction.

g. Summary of Theoretical Results

The lifetime for a nuclear isomeric state for gamma-
decay can be written as follows (Sec. IIa):

. [Z(L—}— 1) 1 e (w_a)2LSMEL2]—1; o)

Ty ZUJ_
arZL | L QLA R\ ¢
2AL+1) 1
AzleL=[ e

ar =L L (L+11)

e swaN?L s B oN\2 -1
X— —) (——**) SMML2] . (9b)
hic\ ¢ Mca

For transitions for which I;,=7,+L,

(Ii—3)1 204111
@I

@I
Ll (=1

S, L, I5)= (14a)

and a simple statistical weight argument gives .S for
transitions for which I,=1,— L.

In the later discussion of M4 transitions (Sec. I1Ia),
the following values of S will be of particular interest:

5(9/2,4,%)=1; (27a)
S(3,4,9/2)=5; (27b)
S(11/2, 4,%)=15/11; (27¢)
S(13/2, 4, 5/2)=225/143. (27d)

The value of M? depends on the particular model of the
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nucleus. For a single proton (Sec. IIa),

Mpr*=|(r/a)"|?; (102)
L 2 7 L—1|2
M= (upL—— (—) . (10b)
L+ 1 a fi
For a single neutron (Sec. IIc),
Z 2 7 L2
Mpgi*= <_) (“) ) (282)
AL a fi

or of order (hw/Mc?)?, whichever is larger.
For E3 transitions of energy 100 kev, M*~1078,

Marr2=(uxL)?| (/@) =] 42, (28b)

Theoretical values of M? for M4 transitions square-well
potential, 4=100 (Secs. IIf, IIIa), follow:

Transition  Group M u4’
proton 1goye=2p12 (4P) 22 (29a)
neutron 1ge/22p12  (4N) 11.8 (29b)
neutron hi1yee2dss (5N) 10.8  (29¢)

For transitions between states of normal coupling,
involving configurations of only protons (or neutrons),
calculations based on an independent particle model
(Sec. ITe), give as result that M? is equal to M2 for the
corresponding transition between pure single particle
states, times a factor p.

For [(ja)*=41(j0)***Jia—[ (Fa)**(j6)**** Jis

].a+%—sa jb+%_sb

p - - (22a)
Jat3 s
For [(ja)**7(jv)** Jra—[(ja)**(7)**  Dra,
Sa S»
p=—"—X—". (22b)
Jat+3 1

TaBre III. Distribution of logM? values for M4 transitions in
odd-A4 nuclei; subscript denotes group of transition.

Xesn13
Tesn12
T
€5V
Bagy17 Snpytt?
Ba;y!® Pbex™’ Tewp®
Hgey'®® Xesy® Xesn'® Tecp??
Hgen'® Tesn2? Tesn'2? Tcyp?
Ptenl9s Pten'®” Ingplts Y87 Nb,p%
Ba.u\]]33 Xe,s N129 :[I’L;P“3 SI‘4 N87 Zr4 1‘189
Nb.p®? Zn,n% Y. Sryn®® Krin®
9.72 9.8 9.9 0.0 0.1
Snzx11? Y4p? Tes Nm l Nb.p"
0.2 0.3 0.4 | 0.9
logioM?

2 9.7 denotes 9.7 —10.
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Example: The transition [ p3(ges2)? h—— (gos2)*Jos2+
has a transition probability 4/5 as large as py—go2
transition. A [ p3(ges2)* h——L ($1)%(ges2) Joso+ transition
has a transition probability only 1/5 as large as the
transition between single particle states. Thus the
three transitions are all between $— and 9/24 statesyet
the transition probabilities are different.

Transitions requiring change of orbit for several
particles cannot occur according to an independent par-
ticle model (Sec. Ile); neither can transitions between
a state of normal coupling and one of abnormal coupling
of only protons (or neutrons), involving a change of
orbit for one particle, e.g., [p3(gss2)* i——" (go2)* /2.

M1 transitions between two states of the same con-
figuration of only protons (or neutrons), and differing
only in coupling, and involving no change of orbit, e.g.,
[(go/2)*Jos2+—L (g9/2)*J7/2+, cannot occur either.

III. SOME INTERPRETATIONS—VALUES OF M?

Values of empirical squares of matrix elements M2,
obtained by comparing the experimental lifetime, cor-
rected for internal conversion, with the theoretical
lifetime of Egs. (9) or (15), show some interesting
regularities, which may have significance in connection
with nuclear shell structure.?

A comprehensive summary of the classification of
isomeric transitions as well as a discussion of values of
empirical matrix elements has been given by Goldhaber
and Sunyar.® Some of their conclusions were derived
independently by the author.l” It is found that most
magnetic transitions have empirical M? values of order
1, while most electric transitions (except some E2),
have smaller M? values, generally of order 1073 re-
sulting in comparable lifetimes for EL and ML transi-
tions of the same energy.

However, some additional results of an analysis of
M? values, which were not discussed in the above
papers, can be mentioned at this point; viz., M4 transi-
tions in odd-4 nuclei, E3 transitions in odd-4 nuclei,
and the M1 transition in Li’.

a. M4 Transitions in Odd-4 Nuclei

M4 transitions are found precisely where they are
expected according to the j-j coupling shell model.8
These transitions may be divided into four groups,
according to the number of the shell in which they
occur (near the end), and according to whether V or Z
is odd. The shells containing up to 50, 82, and 126
particles are denoted by 4, 5, and 6 (corresponding
transitions: go/z¢>pise, Miyz—ds2, and i132— f5/2), re-
spectively, in accordance with the order of filling of
shells in the j-j coupling model.

Empirical values of M? for M4 transitions (calculated
with the aid of Egs. (10b) and (27), are in good agree-
ment with the estimates of Weisskopf,'* M?=1, and
show surprising lack of scattering, as can be seen from
Table III. The average and scatter of logM? values for



LIFETIMES OF NUCLEAR ISOMERS

TasLE IV. Average and scatter of logM? values for various groups
of M4 transitions in odd-4 nuclei.

Group Number of cases Average Scatters

4P gg/z"‘ﬁl/z 11 908 032
4N gglg—ﬁl/z 5 9 99 0.09
SN hie—dse 15 0.03 0.16
6N i13/2— fsr2 5 9.83 0.10
Total odd—Z 11 0.08 0.32
Total odd—N 25 9.98 0.16
Total 36 0.01 0.23

a As measured by root mean square deviation.

M4 transitions of the various groups (4P, 4N, 5N, and
6N) are shown in Table IV. It is seen that the average
value of logM? is nearly identical for the 4P, 4N, and SN
groups, and slightly smaller for the small 6V group.
Goldhaber and Sunyar®? have calculated M? by putting
S=1/(2I+1), rather than values given by Eq. (27),
their idea probably being that lifetimes should be pro-
portional to the number of initial m-substates. Owing
to this difference, they find a considerably larger average
value for M? in the SN group than in the 4N group.
As the statistical factors used here, Eqs. (14, 27) are
uniquely given by integration of the angular parts of
the nuclear wave functions, their adoption seems more
realistic than the use of the factors proposed by Gold-
haber and Sunyar.® ,

Theoretical values of M? for M4 transitions (assuming
a single proton or neutron in a spherical square well,
nucleus of 4=100, a=1.5X10"1 4% cm), are given by
Eqs. (29) for 4P, 4N, and SN transitions.

On the basis of a single particle model, one would
thus expect M? values for odd proton nuclei as well as
odd neutron nuclei to show very little scattering, and
also very little difference between the 4N and SN
groups.

One would, however, expect a considerable difference
in M? values between odd proton and odd neutron
nuclei, with the former expected to be about twice as
large as the latter. No such difference between M?
values is found experimentally, as far as can be ascer-
tained from the data available to date. According to
Egs. (29), M? values predicted by the single particle
model are of order 10, while empirical M? values are of
order 1. One might attempt to reduce this apparent
discrepancy by modifying the theoretical predictions;
e.g., by substituting for up and uy not the magnetic
moment of a free particle, but the effective intrinsic
magnetic moment for an odd particle, which can be
inferred from a magnetic moment measurement of the
ground state, on the assumption that the spin and
magnetic moment of the nucleus is determined by that
of the odd particle.? This would give values of theo-
retical M? lower than the values of Egs. (29). However,

25 The term “| M |?” used by Goldhaber and Sunyar is the same
as SM? used in this paper, while their “| M’ |2” is equivalent to M?
used here, the latter normalized to an average value of 1.

26 F. Bloch, Phys. Rev. 83, 839 (1951).
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a large amount of scattering of theoretical M?* values
would now result, due to scattering of values of up and
uy for ground states.

Furthermore, the difference between theoretical M?
values for odd-proton and odd-neutron transitions
would still exist. In any case, it is questionable whether
any relation exists between matrix elements for M4
transitions and static M1 momenta of ground states,
since the “intrinsic magnetic moments,” which are
assumed to influence the magnitude of these quantities,
may be quite different from each other.

Empirical values of logM? as function of neutron
number (Fig. 1) show some interesting regularities. For
4P isomers, logM? as function of NV has a maximum at
N =50, while for 5N isomers, it tends to increase as
function of N(IV<82) and decreases as function of
Z(Z>50). In general, M? values appear to be larger,
the more closely the nucleus can be represented by
closed shells. The apparent tendency of empirical M?
to be larger for nearly closed shell nuclei than for
others receives some support from theoretical values of
M? calculated for transitions between states containing
several particles on the basis of an independent particle
model [Sec. ITe, Egs. (22)].

The M? values for transitions between states of
normal coupling are, in general, found to be smaller
than those for the corresponding true single particle
states.

b. E3 Transitions in Odd-4 Nuclei

Most known E3 transitions in odd-A4 nuclei are either
in odd neutron nuclei or between py2and 7/24 states
(the latter for odd particle number 43, 45, or 47). For
a single neutron transition, the value of M? according
to an independent particle model, should be of order
(Z/AX)? because of the recoil of the core, or of order
(hw/Mc%)? because of the intrinsic magnetic moment of
the (hw/Mc?)? neutron, whichever is the larger (Sec.
IIc); i.e., be of order 10~8 for L=3, 4=100, E=100
kev. The empirical value of M? for the E3 transition in
Cd™(/11/9—dsys, energy 149 kev) is 4.5X1075.

04— Py, 89,

T T ‘ T I l T

® 8o Py,

03— &y~ ds, 4Nb

02— ® " o
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off— 36KF

e W CE

00——— —
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Fic. 1. Values of logM? for M4 transitions versus
neutron number (odd-4 nuclei).
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F16. 2. Energy levels for a spherical square well.

For a transition between py2 and 7/24 states, M?
vanishes according to the independent particle model
(Sec. ITe). It is thus not surprising that the empirical
values of M? for E3 transitions are small and show
considerable scattering, as shown in Table V.

The size of the M? can be taken as a measure of the
deviations from a pure independent particle model. As
it is likely that the size of these deviations will probably
be different nuclei, the variation of logM? values shown
in Table V can be understood in this picture. In fact, it
can be seen that logM? decreases as function of NV for N
between 43 and 47; i.e., as the neutron number ap-
proaches 50. This is not surprising, since one would
expect greater validity of the independent particle
model for a given nucleus, the more nearly it is a closed
shell nucleus.

¢. M1 Transition in Li’

The %-—3-transition in Li” (energy 479 kev), is the
only one of the M1 group known for which the inde-
pendent particle model (including the effect of spin-
orbit coupling) predicts matrix elements of order 1.

The theoretical M? value according to this model is
(up—13)2=5.25 for a free proton undergoing a py—p;
transition. According to calculations similar to the ones
described in section Ile, M? is 2.7 for a [(p3)®]i——
[(p3)*]y— transition, and 1.0 for a [(pg)*(py) i—
[(ps)*]s— transition, for a system of two neutrons and
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one proton with isotopic spin % in both initial and final
state.

The empirical value of M? is 7.6. The fact that the
empirical value of M? is larger than the theoretical M?
for any of the configurations mentioned, is somewhat
surprising, but is probably not significant, due to the
questionable validity of the assumptions made in the
calculations.
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TaBLE V. Empirical logM? values for some E3 transitions between
puz and 7/2+ states in odd-N nuclei.

4 34 36

N 43 740 6.6
45 6.6 6.5
47 5.8 6.2

2 7.4 denotes 7.4 —10.

APPENDIX. ENERGY LEVELS FOR A SPHERICAL
SQUARE-WELL POTENTIAL

To evaluate the radial wave functions (Sec. IIf), it
was first necessary to obtain energy levels. A graph of
energy levels is given here in the hope that it may be
useful for related problems of energy levels in a spherical
square-well potential. Assume,

Ar E, (30a)
2Ma?

A= - By ¢, (30b)

Av Vo (30C)

where a=radius of well, Vy=depth of potential, E,
=kinetic energy of particle in nucleus, and By=binding.
energy (Eo+Bo=V,). Specifically, assuming a=1.5
X10713X 4% cm and taking energies in Mev, we obtain

2Ma?/h2=0.10844% Mev—", (31)

The energy value solutions of the Schroedinger equa-
tion for states with radial quantum numbers # (number
of radial nodes 1), and orbital angular momentum
numbers / are plotted as function of Ay in Fig. 2. Using
Fig. 2 it is possible to obtain the position of energy
levels for square wells for a wide range of radii and well
depths.



