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Lifetimes of Nuclear Isomers*
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Lifetimes of nuclear isomers for gamma-transitions are calcu-
lated theoretically on the basis of various independent particle
models; e.g., single proton, single neutron, and states of several
particles (Sec. II). The calculations of this paper are essentially
restricted to the most common type of transition vis. , multipole
order equal to spin change. The lifetime is expressed in terms of a
matrix element, M, whose theoretical value depends on the
particular model of the nucleus. Radial integrals are calculated
numerically, assuming that the nuclear wave functions are given
by single particle wave functions for a spherical square well.

Empirical values of M' can be deduced from measured isomeric
lifetimes, corrected for internal conversion. An analysis of em-
pirical M2 for some gamma transitions points to a number of
regularities which, in general, speak in favor of an independent
particle model (Sec. III).

The regularities are the following:
Empirical values of M' for 3EI4 transitions are of order unity and

show little scattering and no distinction between odd proton and
odd neutron nuclei. The lack of scattering within each group of
transitions is consistent with predictions of a single particle

model. However, according to this model, one would expect odd
proton nuclei to have lifetimes about half as large as odd neutron
nuclei for the same transition energy, and also would expect life-
times about 1/10 as large as found empirically. Empirical values
of 3P for 3I/4 transitions appear to be larger for transitions in
nuclei with nearly closed shells.

According to an independent particle model, M2 for E3 transi-
tions of energy 100 kev should be of order 10 ' for single neutron
transitions, and vanish for many particle transitions, such as
those between Pl and 7/2+states. The fact that empirical 3Is
for E3 transitions are small can be interpreted as resulting from
small deviations from an independent particle model. In fact,
empirical M' for transitions between pl and 7/2+states in odd-
neutron nuclei appear to be smaller the more nearly the nucleus
can be represented as a closed shell nucleus.

The empirical value of M' for an M1 isomeric transition in Liv

is slightly larger than expected according to an independent
particle model.

A graph of energy levels for a spherical square well potential is
presented (Appendix, Fig. 2).

I. INTRODUCTION

'T was first suggested by v. Weizsacker, ' and has
~ - become generally accepted, that nuclear isomeric
states decay into each other by gamma-emission, but
that the lifetime is large if the spin of the two states
divers by several units of h.

The emitted quantum may carry off angular mo-
mentum L()1), giving rise to electric or magnetic 2~

pole radiation (denoted in this paper by EL or 3IL),
according to whether the quantum has parity (—1)~
or (—1)~ '. It follows that the selection rules for EL
and ML radiation, i.e., radiation of various multi-
polarities, are

II; Irl &L&l;+Ig, —

parity change (—1)E for EL, (—1)~ ' for ML. Here I;
and I~ denote the spins of the initial and final states,
respectively.

Electromagnetic radiation is not the only Inode of
decay for a nuclear excited state. Instead, an internal
conversion electron may be emitted; i.e., an orbital
electron may be ejected and carry o8 the energy of
excitation. The number of electrons emitted from a
given shell per quantum is called the conversion coef-
ficient for that shell. Values of conversion coefficients

depend on the multipolarity of the transition and on the
electronic configuration. However, they do not depend
on the detailed structure of the nucleus, and can
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therefore be calculated, in principle, to the same ac-
curacy as spectroscopic problems.

E-conversion coeS.cients have been calculated by
Rose et ul. ' neglecting the effect of screening, for
energies above 150 kev, and by Reitz' for selected cases,
including the eGect of screening. Calculations of E, Lq,
Lzi and Liii conversion coefficients over a wide range of
energies and including screening eGects are now in
progress. 4

Conversion data are extremely useful for obtaining
multipolarity of a transition, but not for obtaining
information regarding detailed nuclear structure (apart
from the spin and parity change). Goldhaber and Sunyar'
have made multipolarity assignments for many transi-
tions by comparing observed E-coeS.cients with Rose's
theoretical values, and also from a semi-empirical
analysis of E/L ratios, which indicates that E/L ratios
are a function of Z'/E and multipolarity alone (except
for M1 transitions). The work of Mihelich and Church'
indicates that ratios of L-subshell conversion coe%cients
can be of use for assigning multipolarities and for
analyzing transitions which involve a mixture of
multipolarities.

The lifetime of an excited state for gamma-emission
depends not only on the multipolarity and energy of
the transition, but also on the detailed structure of the
nucleus. It is, thus, not possible to identify the multi-

2 Rose, Goertzel, Spinrad, Barr, and Strong, Phys. Rev. 83, 79
(1951).

s I. R. Reitz, Phys. Rev. 77, 10 (1950).
4 M. E. Rose and G. Goertzel (to be published).' M. Goldhaber and A. W. Sunyar, Phys. Rev. 85, 906 (1951).
6 M. Goldhaber (private communication).
~ J. W. Mihelich and E. L. Church, Phys. Rev. 85, 733 (1952);

J. W. Mihelich, Phys. Rev. 87, 646 (1952).
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polarity of a transition from a lifetime measurement
alone, without speci6c assumptions as to nuclear
structure.

However, information regarding nuclear structure
can be obtained by comparing the measured lifetime of
a transition with the lifetime calculated using a specific
nuclear model, e.g. , the independent particle model, '
provided the multipolarity of the transition has already
been identified, say, from conversion data.

2Ã
W= —~X, ~'X(E)

h
(2)

Here K~,' is the matrix element of the electromagnetic
interaction between particles and field, E(E) is the
number of final states available per unit energy interval.
The total nonrelativistic Hamiltonian of proton and
electromagnetic field can be written"

(p —eA/c)' etz

+V(r) ttp (e—H)+ps zzstztog, . (3)
2M 2Mc

Here M denotes mass of proton, p~ is the proton mag-
netic moment in nuclear magnetrons. The vector
potential, normalized to one quantum per unit volume
is given by

A = s(2zrtzcs/ro) &et"'.

The radiation interaction is contained in (3) and is
given by

e ekX'= — p A—ttp (tr H).
Mc 2Mc

)The term (e'/2Mc')A' is neglected here, as are second
order perturbation terms, both of which give rise to
double quantum emission, with a transition probability
which is usually several orders of magnitude less than
the transition probability for single quantum emis-
sion. $""The first term in (5) is the interaction energy
of a point charge with an electromagnetic field, while
the second term is the interaction energy of an intrinsic
magnetic moment with the field. The transition prob-
ability between states is calculated using (2), summing

' M. G. Mayer, Phys. Rev. 78, 16, 22 (1950).
'L. I. Schi8, Quantum Mechanics (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), 6rst edition, p. 193.
"W. Heitler, The Quantum Theory of Radzatzon (Oxford Uni-

versity Press, London, 1947), second edition, p. 91.
"M. Goeppert-Mayer, Ann. Physik 9, 273 (1931}."R.G. Sachs, Phys. Rev. 57, 194 (1940}.

II. THEORETICAL CALCULATIONS OF LIFETIMES
FOR GAMMA-DECAY

a. Single Proton for Spin Change Equal to Multiple
Order-Central Potential

The transition probability per unit time for a system
to undergo an electromagnetic transition from an initial
state z to a final state f is given by the well-known
equation'

over polarizations, and integrating over all directions
of emission.

2o) dQ@=-
he ~4 4zr

(6)

Here dQ„ is the solid angle for direction of emission,

( e zoo eIt
(p e)+—

t p (~ s') le'"'
4Mc e 2Mc

(7)

Here I is the orbital angular momentum operator in
units of Ig.

A transition between two given states can usually
proceed by radiation of several multipolarities, con-
sistent with the selection rules (1). In this paper, only
those transitions are considered for which the radius of
the nucleus, a, is much smaller than the wavelength of
the radiation, cotz/c«1; e.g. , most nuclear isomeric
transitions. For such cases, the calculations presented
here, and also independent calculations of %eisskopf"
and of Stech, " indicate, in accord with experimental
evidence, that the transition will go primarily by the
lowest multipole order permitted by the selection rules,
itis , EL fo.r AI=L, parity change (—1)~. The only
exceptions to this found experimentally to date are a
few M1+E2 mixtures. "

Interaction terms which give rise to pure 2~ pole
radiation transform under space rotation of the nucleus
as the components of the irreducible tensor of order I.,"
denoted by Z)t~'. For transitions involving AI=L,
but only for these, terms which result from an expansion
of the interaction into powers of k r transform as
'7) ts'. In particular, the Lth term of the erst and second
series of (8) corresponds to an EL and ML transition,
respectively.

To evaluate (8) and the transition probability (6),
one uses the fact that for a central potential, the wave

"V.F. Weisskopf, Phys. Rev. 83, 1073 (1951)."B.Stech, Z. Naturforsch. 7a, 401 (1952).
~5 E. Wigner, Gruppentheorie und iher Anmendung auf die

Quantenmechanik der Atom Spektren (Edwards Brothers, Ann
Arbor, Michigan, 1944), p. 164.

e'=n)&s, and n=kc/to, the unit vector in direction of
emission. The exponential in (7) can be expanded in
ascending powers of k r, which is assumed to be «1.

Using elementary relations of quantum mechanics,
one can write J~; as follows:

e (zoo) ~

~~'= Z —
]
—

I f.(r')(r n)' ']r'
L-~I. I E. c &

eh 1 (zto) ~ ( l r.
'

ttprr e')
+Z I

—
I I

+
r-rMc (L 1)!E c I —EL+1 2 )

(r n)~ —' (r n)~ ' t'1 e' ttpe e'q—+ —
I +

2 2 EL+1 2 j
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2(L+1) 1 e' (~u) '~
TpEL= (g—!

—! SMsI.'
L (2L+1!!)'hc ( c j , (9a)

TyML
DI =L
al =L, —r-

L+1) 1 e' (a)a) '~
GO

(2L+1!!)'hc & c h

where

! SMml. '
(Mcaj

function of initial and final state of the proton can be
written as product of a radial function 8 and of an
angular function 8~ r (for intrinsic spin ~). Integrations
over the angular functions can be performed exactly,
since they involve only the symmetry properties of the
nucleus. However, values of integrals over radial
functions depend on the particular nuclear potential
chosen.

Since the transition probability and thus the gamma-
decay lifetime v~= 1/W is independent of the direction
quantum number of the initial state m;," one can
calculate the gamma-ray lifetime for a transition for
which I;=I.+L and take m, =I;; then the summation
over final ns-substates reduces to a single term, with

@st——Ig. Thus the gamma-ray lifetime is given by the
following equations'7:

transition and is dined as

FL are spherical harmonics.
This gives

(I;——',) !X(2L+1)llX(»&)!l

S(I,, L, II) = (14a)
(2I )!!XL!X(II—-')!

for I,=II+L, namely, when the spin of the initial state
is larger than the spin of the final state. For transitions
with II I,+L t——he statistical factor is given as follows,
in accordance with a simple statistical weight argument:

S(I;, L, II)=S(I;+L, I., I;)X
2I;+2L+1

2I;+1
(14b)

Note that 5 equals 1 for any transition for which If=-,'
and I;=L+ ,'. M is the o-nly term in the equation which

depends on the detailed nuclear structure. It is called
here the "matrix element. " According to Eqs. (10),
3f is expected to be of order unity, if the radial integral
is (see Sec. IIg). To bring Eqs. (9) into correspondence
with Weisskopf's equations, " one writes them as
follows:

5(I;, L, II) =4m p p I 8&III,~I'Yz~8t, , r;~'dQ . (13)
mf m 44~

M~r, '=!(r/a) ~!I;2,

( I )2 (rqL —12
M~r. '=! prL-

L+1j &a)
2L+1ll=1X3X5X X(2L+1),

!(/a)'II'= ~I(/a)'~' 'd,
"0

(1Oa)

(10b)

(12)

L(2I+1!!)'p197 Mevy '~+'

!TyEL=
4.4(L+1) E Aa) j
X (a in. 10 "cm) '~10—"5—'M» —' sec (15a)

L(2L+1)!!(197 Mev) '~+'
Ty3XIL =

0.19(I.+1) 0 h(u

X(a in 10 'acm) t2~ ml ~ 10 2rS rM~ sec. (15b)

It+2

SgI

3 (2I;+3)
4 (I;+1)

1

4I;(I;+1)

3 (2'—1)
4 I;

15 (2I;+3)(2I;+5)
32 (I;+1)(I;+2)

15 (2I;+3)
16 I;(I;+1)(I;+2)

5 (2I;—1)(2I;+3)
16 (I; 1)(I;)—
15 (2I;—1)
16 (I; 1)(I;)(I+1)—

the radial integral in units of uL, S is a statistical factor,
whose value depends only on the spins involved in the

TABLE I. Vallles of S for E1 and E2 transitions.

b. Electric Transitions for Spin Change Less than
Multiyole Order

The EL transition probability now has to be derived

by expanding the radiation interaction explicitly into
terms which transform as P&~& under space rotation of
the nucleus. It can be shown, and is stated here without
proof, that Eqs. (9a), (10a), (13) still hold in the limit
a&a/c((1. For a given I;, L, II, of the four possible kinds
of transitions (/, =I,&-,', l~ Ir&2), two h——ave the parity
change (—1)~ required for an EL transition, ttis. , those
transitions for which /; —l~—L is an even integer. S is
the same for these two transitions, as can be seen by
inserting the relation

I;—2
15 (2I;—3)(2I;—1)
32 (I; 1)(I;)— e r

~I+~s, I = ~I+& I (16)

~8 S. R. de Groot and H. A. Tolhoek, Physica 15, 833 (1949).
'~ S. A. Mosgkowski, Phys. Rev. 83, 1071 (1951),

into (13), and taking into account the fact that Yr.
commutes with e. Thus 5 for electric transition is a
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function of I;, I.and I.~ alone. Table I shows values of
5 for E1 and E2 transitions.

c. Transitions of a Single Neutron

The calculation of transition probabilities for a single
neutron is similar to the calculation for a single proton.
The interaction Hamiltonian is giv'en, as before, by (5).
However, the first term vanishes due to the absence of
electric charge of the neutron. More rigorously, if one
considers the nucleus as a two-body system of neutron
and core moving about a common center of gravity, one
obtains an electric moment term due to the motion of
the core.

For this model of the nucleus

Ze p
rq-—

SC'(r) = — y Al I
—

/ & ~ H(r), (17)
Mc EA )~ 2Mc

eh

where p~ is the neutron magnetic moment in nuclear
magnetons.

Thus, transitions between single neutron states in-
volving EI=L and parity change (—1)z ' will proceed
by magnetic 2~ pole radiation as in the single proton
case. With respect to Eqs. (9b), obtained for the
single proton case, the only change is that the term
[FAIL (L/L+1)]' is—replaced by (p/vL)'. However,
electric 2~ pole transitions between states involving
AI= L and parity change (—1)z now have probabilities
only (Z/Ac)' as large as for the single proton case. One
can also get a contribution to the transition probability
from the second term in (17), because of interaction of
intrinsic magnetic moment with the electromagnetic
6eld."It is easy to convince oneself that the EI and
M(L+ 1) transition probabilities resulting from intrinsic
magnetic moment are smaller than the corresponding
EL, probabilities for a single proton (9a) (resulting from
the EL moment) by a factor of order (h~/Mc')'. It is
thus seen that the EJ matrix elements for gamma-ray
transitions involving 1.&2, for odd neutron nuclei,
assuming an independent particle model, are expected
to be much smaller than 1.

d.. Effect of a Spin-Orbit Interaction on Ml
Transitions

Sachs and Austern' have shown that the introduction
of a velocity-dependent interaction will leave electric
transition probabilities the same as calculated above,
but that it will result in diGerent magnetic transition
probabilities. In particular, Jensen and Mayer's have
shown that the introduction of a spin-orbit coupling
for a single proton leads to Anite 3f1 transition prob-
abilities, both for Al=0, and for El=2. In contrast, for
a pure central potential, in the absence of spin-orbit
coupling, no Mi transitions can occur, because either
the I matrix element between initial and Anal state
vanishes, or the two states are degenerate.

' R. G. Sachs and N. Austern, Phys. Rev. 81, 705, 710 (1951)."J.H. D. Jensen and M. G. Mayer, Phys. Rev. 85, 1040 (1952).

With reasonable assumptions regarding the strength
of spin-orbit coupling in nuclei (AE= 2 Mev for A = 100,
l=4),"Jensen and Mayer obtain M'=0. 26 for an M1
transition in an odd proton nucleus involving 61=2.

e. Transitions between States of Several Particles

Strictly speaking, all nuclear states, except those of
a single nucleon, are states of several particles. In most
cases involving an odd number of particles, the spins
of all but one particle couple to spin zero, and the state
has the I of the odd particle. ' These particular states
will be referred to as "states of normal coupling. "Such
states behave in many ways like the corresponding
states of a single particle, e.g. , have the same spin and
magnetic moment. It shall be assumed that the particles
can be treated as independent; i.e., that the wave
function of a state of several particles can be written
as a sum of products of single particle wave functions.

States in which an odd number of identical particles
couple to a spin diferent from the spin of the odd
particle; e.g. , (gs/s) 7/2+

""are also known to occur. ' "
Such states are called here "states of abnormal
coupling. " Calculations of Kurath ' and of TalmP of
energy levels for the diferent configurations of three
identical particles in a ds/s or fr/s orbit indicate that the
state of normal coupling is expected to be the ground
state, provided the forces between particles are of short
range, compared to the nuclear radius. However, for a
range of forces comparable to the nuclear radius, Kurath
and also Talmi find that the state (j); i' can be the
ground state. In view of these results, the existence of
states of abnormal coupling should not be surprising.

The wave functions of individual nucleons in various
quantum states shall be labeled P&'/,™and one writes
symbolically for the properly antisymmetrized linear
combination of single particle wave functions of e
nucleons; i.e., for the Slater determinant,

i'P~s ''
The wave function for 2s identical particles, each of

spin j, and differing only in m, which couple to a total
spin 0, denoted by 4(j")se can be written as

((j")o'=I 2(—)™0'0""
I&=1

' ' )

It is easily seen that 4'(j")s' is an eigenfunction of Is
and of I,with the proper eigenvalues I(I+1)=0, M =0.

Any term containing the same value of ns twice
automatically vanishes. Since there are (j+ss!)/
(s!j+s—s!) different nonvanishing terms, and each
one occurs s! times, the normalization of (19) is war-
ranted.

s' M. G. Mayer, Phys. Rev. 74, 235 {1948).
2' D. Kurath, Phys. Rev. 80, 98 {1950).
~ I. Talrei, Phys. Rev. 82, 101 (1951).
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A wave function of 2s+1 particles, each of spin j,
which couple to I=j, M= j is given by

@(j2s+1),j

Then (odd particle jumping), p is given by

j,+2 —s, j b+2 s~-
p=- X

gb+ k
(22a)

(20)

For j&7/2, these wave functions are the only ones
which can be constructed.

The total wave function of a number of identical
particles can thus be written, apart from normalization
factors, as products of wave functions of pairs of iden-
tical particles coupling to a spin 0, and that of the
wave function of the odd particle, if any. The total
normalization factor is not equal to the product of the
separate normalization factors, because many terms in
the product can vanish.

The total wave function of e particles in an orbit
a and eb particles in a diferent orbit b is just the product
of %(j "') and. of 4(~q"t'), including the value of the
normalization factor.

Using the wave functions (19) and (20), and assuming
an interaction operator which can be written as a sum
of terms, each of which acts on one particle at a time,
and which is symmetric in all the particles (called a
symmetric single-particle interaction operator),

0= Q OI„
particles A;

(21)

~ For many nuclear states, e.g. ground and low-lying isomeric
states of heavy nuclei with N&50 and also of some light nuclei,
all orbits partially or completely 6lled by protons are also com-
pletely 6lled by neutrons. The isotopic spin of such a state is
uniquely given as (N —Z)/2. A transition between two such states
involving a particle jump between orbits a and b can be charac-
terized as a proton (or neutron) transition if the orbits a and b
are partially 6lled by protons (or neutrons).

According to the independent particle model, the transition
probability between these two states is equal to the transition
probability between two corresponding states of a hypothetical
nucleus for which there are protons (or neutrons) only in orbits
a and b. Thus, although in this section states consisting exclusively
of protons (or neutrons) are considered, the results are applicable
to heavy nuclei, in so far as the independent particle model is
valid.

one can evaluate the probability for transitions between
states of normal coupling involving configurations of
only protons (or neutrons). "

This transition probability is equal to the transition
probability between the corresponding single particle
states, multiplied by a factor denoted here by p, which
depends on the number of particles in the two orbits
involved in the transition and also on the spins of these
orbits. We must consider two cases, according to
whether the particle undergoing the transition is an odd
one or an even one.

Let the initial state of spin j, contain 2s,+ 1 particles
in orbit a and 2sb particles in orbit b, and the final state
of spin j~ have 2s, and 2s~+1 particles in orbits a and

b, respectively.

Alternatively, let the initial state of spin j,be composed
of 2s —I particles and 2sb particles in orbits u and b,
and the final state of spin jb contain 2s, and 2sb —I
particles in these orbits.

Then (even particle jumping), p is given by

Sa Sb
p= X

ja+ 2 jb+ 2

(22b)

'

%g(pg Og)@,d7 =c +r(pg j I.)@,dr
al

(23)

which follows from the relation'4

f, 'OAPd~=c 0; 'Hydr (24)

24K. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (University Press, Cambridge, England, 1951), Grst
edition, p. 61.

According to Eqs. (22), the transition probability
between states of partially hlled orbits is less than that
between the corresponding single particle states.
Physically, this reduction comes about from the fact
that a fraction of the substates, which would be available
to the particle in the corresponding transition between
single particle states, are not available in this case to
the jumping particle, because they are already occupied.

lt can also be shown that certain kinds of transitions
cannot occur, according to an independent particle
picture, assuming a symmetric single-particle interac-
tion operator. These follow .'

1. Transitions which require change of orbit for
several particles.

This is an immediate consequence of the form of the
interaction operator.

2. Transitions between a state of normal coupling
and a state of abnormal coupling of only protons
(or neutrons), involving a change of orbit for one
particle.

Such a transition would require that several particles
change their state, since not only is one particle chang-
ing its orbit, but at least two other particles must
change from being lined up antiparallel to being lined

up in a different way.

3. Mi transitions between two states of the same
configuration, consisting exclusively of protons (or
neutrons), and differing only in coupling and no
change of orbit.

The transition matrix element is
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where c is independent of the values of m and m'. Since
the operator I=+& j& does not mix wave functions of
different states, the integral (23) must vanish.

TABLE II. Calculated values of radial integral.

'Radial integral ) (rja)+ "+ !fi
for EL or MI

f. Numerical Calculations of Radial lntegrals Transi-
tiona Cases of interest

Square
well

A =100

Square
well

A =140

Constant
wave

function

1. S'ave Fgmctiom CorIstarIt IrIside ENclels-
Uumishieg Outside"

I (~/~)'lt'=3/(L+3) (25a)For EL radiation

For ML radiation
~
(r/u)z '~i;=3/(L+2). (25b)

2. Spherical Square Well Potentia/ No Spin—
Orbit Coupling

The wave functions are obtained by solving the
eigenvalue problem for a square well (of radius a and
depth Vo), i.e., by obtaining the solutions of the
Schroedinger equation for r&0, and for r& a and 6tting
the values of the wave functions and their derivatives
at r=a.

Calculations of the radial integrals were made for
several cases which represent typical isomeric transi-
tions in nuclei. All states are assumed to be bound by
8 Mev. (Vo is slightly di6'erent for initial and final state.
The radius u has been taken as 1.5X10 "A& cm.)

The results of these calculations are shown in Table II.
The radial integrals (in units of proper power of

nuclear radius), are nearly independent of the size of
the nucleus. This is a consequence of the fact that for
the cases treated here, the binding energy is much
smaller than the depth of the potential we11.

The results of Table II suggest, in agreement with

expectations, that values of radial integrals depend
less on the particular nuclear model for large multipole
orders of the radiation than for small multipole order,
and that they do not depend strongly on the particular
states nor on nuclear size for a given multipole order.

3. Spherical Square Wel/ Potential with Spin Orbit-
Coup/ing

The radial integral was evaluated for a square well

potential with an additional spin-orbit interaction
given by

1 dU
(I e)

r dr

The radial integrals in Eqs. (10) depend on the form
of the nuclear potential. It is questionable whether the
single particle wave functions calculated for a central
potential are good approximations to the real nuclear
wave functions. However, the success of the inde-
pendent particle model in explaining many observed
phenomena makes the attempt to use single particle
wave functions at least plausible.

The radial integrals Kq. (12) have been evaluated
for several cases:

Ih —3s
1g—2p
1h—2d

E5 h11/2~sl/2
~4 gg/2~P1/2
M4 h11/2 —+d3/2

~3 hII/2~de/2
~2 de/2~SI/2

0.43
0.45
0.43

0.40
0.43
0.42

O.SO

0.38
0.50
0.50

0.60

' k or each state, the number denotes radial quantum number e (number
of radial nodes +1), letter corresponds to orbital quantum number I,.

(which is infinite a,t r = a and vanishes everywhere else),
for the special case of an M4 transition between a
1ggt2 and 2pit2 state in In"'.

The value of E and of well depth Vo were so chosen
that both initial and final state are bound by 8 Mev.
The radial wave functions are assumed to be of the
same kind as those of a square well, but the boundary
conditions require a finite discontinuity in the derivative
at r= a. The value of the radial integral for this case is
0.53 compared to 0.44 for the same transition in a
square well potential without a spin-orbit interaction.

2(L+1)
"%EL=
dI =L, Lal =L

1 e' /(uu) 'z
SMzl,', (9a)

(2L+1!~)' hc ( c )
2(I.+1) 1

TyML= CO

AI L . L (2L+ 1!f)2

e' (~g) 'i ( h
X—

I
—

i i i
SM ' . (9b)

hc ( c ) LMca)

For transitions for which I,=Iq+L,

(I'—2)!2L+1" (2') '.
S(I;, L, Ig)=, (14a)

(2I*)!! L! (Ii—-')!

and a simple statistical weight argument gives S for
transitions for which I;= I~—L.

In the later discussion of M4 transitions (Sec. IIIa),
the following values of S will be of particular interest:

S(9/2, 4, —') = 1;

S(2, 4, 9/2) =5;

S(11/2, 4, —',) = 15/11;

S(13/2, 4, 5/2) =225/143.

(2/a)

(27b)

(27c)

(27d)

The value of M' depends on the particular model of the

g. Summary of Theoretical Results

The lifetime for a nuclear isomeric state for gamma-
decay can be written as follows (Sec. IIa):
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nucleus. For a single proton (Sec. IIa),

M- = I(/ )'I.;;
I )2 rr)L 12—

l.+1) (a)
(10b)

For a single neutron (Sec. IIc),

r Zp rr)
I aL)

(28a)

proton
neutron
neutron

Transition Group M~4'
1gb/2~2pi/2 (4P) 22 (29a)
1g3/2~2 pi/2 (4X) 11.8 (29b)
h»/2~2d3/2 (5lV) 10.8 (29c)

For transitions between states of normal coup]ing,
involving configurations of only protons (or neutrons),
calculations based on an independent particle model
(Sec. IIe), give as result that M' is equal to M2 for the
corresponding transition between pure single particle
states, times a factor p.

FOr [(j )2sa+1(gb)2sb]7 ~[(g )2sa(yb)2sb+1]/b

j.+2 —3. jb+2 eb-

j.+2 ib+2
(22a)

For [(j )2sa 1(jb)2sbl—& ~[(g )2sa(2b)2sb 1]&b

Sa Sg
p= Xj.+2 jb+1

(22b)

TABLE III. Distribution of log& values for M4 transitions in
odd-A nuclei; subscript denotes group of transition.

or of order (h&v/Mc2)2, whichever is larger.
For E3 transitions of energy 100 kev, M'~10 '.

M/b/L'= (/bb/L)' I (r/a)
—'

I/ . (28b)

Theoretical values of M' for M4 transitions square-well
potential, 2 = 100 (Secs. IIf, IIIa), follow:

ExamPle: The transition [P;(gb/2) )s —b[(g2/2) ]g/2~
has a transition probability 4/5 as large as ps—+gb/2

transition. A [p;(gb/2)']; ~[(py)'(gb/2)]2/2~ transition
has a transition probability only 1/5 as large as the
transition between single particle states. Thus the
three transitions are all between —',—and 9/2+ statesyet
the transition probabilities are diferent.

Transitions requiring change of orbit for several
particles cannot occur according to an independent par-
ticle model (Sec. IIe); neither can transitions between
a state of normal coupling and one of abnormal coupling
of only protons (or neutrons), involving a change of
orbit for one particle, e.g. , [Ps(gb/2)'];=+[(g, /2)']7/2~.

M1 transitions between two states of the same con-
figuration of only protons (or neutrons), and di6ering
only in coupling, and involving no change of orbit, e.g.,
[(gg/2) ]g/2y~[(gg/2) ]7/2+ cannot occur either.

III. SOME INTERPRETATIONS —VALUES OF M9

Values of empirical squares of matrix elements 3P,
obtained by comparing the experimental lifetime, cor-
rected for internal conversion, with the theoretical
lifetime of Eqs. (9) or (15), show some interesting
regularities, which may have significance in connection
with nuclear shell structure. '

A comprehensive summary of the classi6cation of
isomeric transitions as well as a discussion of values of
empirical matrix elements has been given by Goldhaber
and Sunyar. ' Some of their conclusions were derived
independently by the author. ' It is found that most
magnetic transitions have empirical M' values of order
1, while most electric transitions (except some E2),
have smaller M' values, generally of order 10 ', re-
sulting in comparable lifetimes for EL and ML transi-
tions of the same energy.

However, some additional results of an analysis of
M' values, which were not discussed in the above
papers, can be mentioned at this point; vis. , M4 transi-
tions in odd-A nuclei, E3 transitions in odd-A nuclei,
and the M1 transition in Li'.

a. M4 Transitions in Odd-A Nuclei

Pt6N"'
Qa N133

Nb4P97

Q 7s

Hg N199

g N197

Pt 197

Xe5N"'
Zn4N69

9.8

Sn N119

a 5.f denotes 9.f -10.

Qa 137

N135

Te5N~9
In~ll5
In4p113
+4P91

99
4p89

0.3

loglpM'

pb6w '
Xe6N'33
TesN"7
+4P87
Sr4N»
Sr4N85

0.0

Xe N135

TeSN
5N123

Te6N~'
Sn N117

Tc 99

Tc4p97
c 96

Nb4P'5
Zr4N
Kr4N

0.1

Te ~lsl
(

Nb~01

0.4 [ 0.9

M4 transitions are found precisely where they are
expected according to the j-j coupling shell model.
These transitions may be divided into four groups,
according to the number of the shell in which they
occur (near the end), and according to whether cV or Z
is odd. The shells containing up to 50, 82, and 126
particles are denoted by 4, 5, and 6 (corresponding
transitions: gb/2~pi/2, hii/2~d3/2, and 213/2 +fb/2), re-
spectively, in accordance with the order of Ailing of
shells in the j-j coupling model.

Empirical values of M' for M4 transitions (calculated
with the aid of Eqs. (10b) and (27), are in good agree-
ment with the estimates of Weisskopf, "M'=1, and
show surprising lack of scattering, as can be seen from
Table III. The average and scatter of logM' values for
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TAsx,z IV. Average and scatter of lo M2 l fog va ues or various groups
of M4 transitions in odd-A nuclei.

Number of cases

4~ g9/2 P 1/2

4N g9/2 —Pi/2
5N hl1/2 ~3/2
6N Z13/2 —fe/2

Total odd —Z
Total odd —N

Total

0.08
9.99
0.03
9.83
0.08
9.98
0.01

' As measured by root mean square deviation.

l
Ig2

g 9g~

tv 2
1 ~t
l3g& Sg&0.2—

O.l 36 K

385
5.9—

ODD-Z NU

~ ARE UN

0.8—
30Zn

5.7 '—

9.

49ln

I. I

65 70

N

FxG. 1.Values of log%2 for M4 transItlons versus
neutron number (odd-A nuclei).

l I

75 80 t20 12545 50 55
Goldhaber and Sunyar is the same

in this paper, while their "~M' ~"' is equivalent to M'
use ere, the latter normalized to an average value of 1.

6 F. Bloch, Phys. Rev. 83, 839 (1951).

a large amount of scattering of theoretical M' values
would now result, due to scattering of values of p~ and

Average pN for ground states.

11
Furthermore, the difference between theoretical 3P

5 0.09
~ values for odd- r

would
-p oton and odd-neutron transit'

5

nsi ions
still exist. In any case, it is questio bl h hues iona e w ether

11
any re ation exists between matrix elements for M4

36

transitions and static M1 mome t f dmen a o ground states,
0 23 since the "intrinsic magnetic mo t,"omen s, w ic are

assumed to influence the magnitude of these quantities,
may be quite di8erent from each other.

M4 t itio of th io o (4E 4/t/ SE,
~ are shown in Table IV. It is seen that the

ig. ~ s"ow some interesting regularities. For

value oflo M 1 id ti 1fo th 4P, 4S, dsÃ g=
n a e average 4P isomers lp ~2

d li htl 11 fo th 11 6S ( )sma group. function of
ase as

—/(,+ ), h h l i b E. (27), th
cu a e yputting Z(Z)50); In eneral M'

hi 'd ob bl b' h 1'f '
ho ldb

1 h b f ''1 b 0

e y

t th dG th fi d 'd bl 1

1 f M 'h 5S h ythg4E
g PP o"''g

1
'

b
' t t'o oft}1 1

the nuclear wave functions, their ado tion seems
realistic hth'n th'u"'f th'f"t"' " '"db G'ld
haber and Sunyar. '

se y o - normal coupling are, in general, found to be smaller

Th o
'

1 1 of M'fo M4t 't'
1ansi lons [assuming states.

sing e partic e

a single proton or neutron in a spherical square well,
b. E3 Transitions in Odd-A Nuc1ei

On the basis of a single particle model one would
MostknownE3 tra sitionsinodd-A n 1

'

thus ex ect M' valuep va ues for odd proton nuclei as well as
in odd neutron nuclei or between d

'n o - nuc ei are either

odd neutron nuclei to0 show very little scattering and
e latter for odd Particle number 43 45'th

ween "i/s an 2+ states

also ver little d'6y
'

difference between the 4Ã and RV
a single neutro~ tra sition the I f7

m er, , or4 . For

grou s.

e va ue o ', according

One would however
p

to an independent article mp
'

model, should be of order

wou, owever, expect a considerable difference (ZjA )' because of the recoil of the

in M' values between o
A 22

o e core, or of order

nuclei with the f
en odd proton and odd neutron

~ Mc) because of the intrinsic'nsic magnetic moment of

large as the latter
er e pe ted to be about t icece as , w ic ever is t e larger (Sec.

g e a er. No such difference between M' IIc); i.e., be of order 10 ' for L=3
values is found ex erimentall

or =, A=100, E=i00

p r jmenta11 y as far as can be ascer- kev. The emPirical value of 3P for the E
tajned from the data available to date. Ac

' Cd h

or t e 3 transition in

o a e According to \ ii/s/Es/s, energy 149 kev) is 4.5X10

qs. ~ ~, values predicted by the single particle
model are of order 10, while empirical M' val

er . ne mig t attempt to reduce this apparent '4 —' I

discrepancy by modifying the theoretical predictions; 0.3

e.g., by substituting for pI and p not thp~ o e magnetic
4lNb

moment of a free particle but th 8 t) e e ec ive intrinsic
505n

magnetic moment for an odd particle, which can be
inferred from a ma magnetic moment measurement of the

ice w ic can be '
52T

ground state, on the assumption that the spin and

magnetic moment of the nucleus is determined b that
CLEI 54Xe

o particle. This would give values of theo-
y a DERLlNED

54Xe 80Ng

retical M' lower than the values of Eqs. (29). However



S0

STFVF N MOSZKO

p on with ls

Pirical value pf ~2 ~

p cal value of ~2
' ~ ~ ~he fact th

ls larger than
at the

the configurat
the theoretical ~2

sur prisin b
lons Inentipn

'questipnabl l. . y 11ot signig

calculatip
y the assumption

the
vai it

ue tp

thor wishes to
rpfessor Maria G

press his dee

rce 0 lnSplratlp
as been a

and who
on throughout h'

cons

p gave him so
m» graduate st

se of th;
uable ad

.
is work. He al

. a vice durjn

tine L. Tele d
aspwishesto th

g he

criticisms.
eeg i for ma

-
an Dr.

any stimulat-
. alen-

uthPr held an Ato
doctoral Fell

. omi«ner

$g5
ship duri

mission p

$—ggg2
ng mpst of th

re-

grate full
e academic

»d receive
y acknowledges th

year
ges the. financial

90

eo

70

60
O

LLI

N
N g0

I&

4d

40

30

20

~ABLE V. mpjr leal l
Pj/2 and 7 2

or some g3 trans'g values fo
~ + states in odd ~

n»tions betw
nuclej.

een

!
20 40

gy evels for a s }er'p erjcal square well E 43
45
47

7.4~

6.6
5.8

+ 7.4 denotes 7.4 -10

2 8
0 (30b)

(30c)

where a=

The -', =+-'- '
i ener

=radius of well

~-transition in Li' ener

e, V0 ——depth of ot

X10- XA dtk
y g

ing energies in Mev we

Th th o t' 1M' 1a val ng to this mo del
' ue solutions

n for states with radit radial quantum

numbers l are plott d

[(p)

of Xy in Fig. 2 U g

levels for
o obtain the

an depth s.

o energy
e e range of rad"ll and well

c. M1T '' 'nTransition in Li'

Z

For a

34

transition betwee

36

od t th 'd p d tp ti l

6.6
6.5
6.2

'd bl ttca enng, as show
an show

GY LEVELS FOR A SPHERICAL

y o p tain energy levels. A
s is given here in the hp ee ope that it may b

in p
~ square-well

e

s s no surpnsin si pu

en
1 th

gOa)

shell nucleus
s, e more nearly t '
s, e i is a closed


