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obtained no trace of a line at 7.8 kev using a proportional
counter with glass walls and a thin mica window, and he
suggests that the 7.8-kev line, found by the above-
mentioned authors, has its origin in the fluorescent
x-rays of copper (8.05 kev) excited in the wall of the
counter by the I. x-rays of RaD. We have since con-
firmed by absorption experiments, using the same brass
walled counter with which we had previously observed
the "7.8-kev line, " that this line is in fact produced by
fluorescent x-rays from the copper and zinc in the
counter wall.

We wish to thank Dr. S. Israelshvili of the Depart-
ment of Organic Chemistry, Hebrew University, for his
advice on the synthesis of lead tetramethyl, and also
Mr. S. Friedman, who built the pulse analyzer.

APPENDIX

Preparation of Radioactive Lead Tetramethyl

RaD (dissolved in nitric acid and in equilibrium with its
products) was added to a carrier solution containing usually
from about 5—10g of ordinary lead in the form of lead nitrate. By
the addition of excess dilute HCl the RaD was precipitated with
carrier as lead chloride, and this precipitate was washed several
times with water and acetone and then thoroughly dried. It
was found by preliminary experiment that the lead chloride
so obtained contained less than 3 percent of the RaE and
RaI' originally in equilibrium with the RaD. This precipitate was
refluxed with an ethereal solution of the freshly prepared Grignard
reagent (methyl magnesium iodide) for about 3 hours. After
destroying any excess Grignard by the addition of water, the
resulting ethereal solution of lead tetramethyl was separated,
dried with calcium chloride, and distilled, the lead tetramethyl
(bp 110'C) being collected.
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In two previous papers a causal interpretation of the quantum
theory was developed which involved the hypothesis that a
quantum-mechanical system contains a precisely defined particle
variable x but that, at present, we are restricted to calculating the
probability density P(x, t) that the particle is at the position x.
It was shown that the assumption that P(x, t)= ~P(x, t) ~z is
consistent, in the sense that if it holds initially, the equations of
motion of the particles will cause this relation to be maintained
for all time. In this paper, we extend the theory by showing that
as a result of random collisions, an arbitrary probability density
will ultimately decay into one with a density of

~
P(x, t)

~

. Since
all quantum-mechanical experiments to date have been con-
cerned with statistical ensembles of systems that have been col-
liding with other systems for a very long time, it is therefore

. inevitable that as we draw samples from such ensembles, the
probability density of systems with particles at the point x will
be equal to

~
P(x, t) ~z.

'In the previous papers we also pointed out that, within the
conceptual framework of the causal interpretation, it was possible
to suggest mathematical theories more general than are permitted
by the usual interpretation and that these more general theories
might be needed in the domain of 10 "cm, where present theories
seem to fail. However, if these more general theories should apply
at the level of 10 "cm, then there would be a tendency to create
discrepancies between P and

~ P ~

z, a tendency whose cumulative
e6ects should be felt even at the atomic level, where the more
general theory ought to approach the usual theory. However,
because those discrepancies have been shown to die out as a result
of collisions, we can expect that under normal conditions the dif-
ference between P and

~

P~' would be negligible. Conditions are
suggested, however, in which this difference might be appreciable,
and experiments are indicated which might be able to test for the
existence of such discrepancies.

I. INTRODUCTION
' 'N two recent papers, ' (to be denoted hereafter by I

and II, respectively) the author has proposed a
causal reinterpretation of the quantum theory, based
on the following hypotheses:

(a) A quantum-mechanical system, such as an elec-
tron, consists basically of a particle having a precisely
de6ned position, which varies continuously as a function
of the time.

(b) This particle is acted on not only by the classical
potential U(x, t) but also by an additional quantum-
potential U(x, t), which is important at the atomic
level but negligible at the macroscopic level.

' D. Bohm, Phys. Rev. 85, 166 (1952) (paper I); 85, 180 (1952)
(paper II). See also, Phys. Rev. 87, 389 (1952).

(c) If we write /=Re's'", where lt is the wave func-
tion and 8 and 5 are real, then the quantum potential
is given by

U(x, t) = —(h, '/2rrs) V'R(x, t)/R(x, t) (1).
The equation of motion of the particle then takes the
form

srsd'x/dtz= —V(U(x, t)+ U(x, t)). (2)

To obtain the same predictions for all experimental
results as are obtained from the usual interpretation of
the quantum theory it is necessary, however, to make
the following additional special assumptions (see paper
I, p. 171):

(1) The tlr field satisfies Schrodinger's equation.
(2) The particle velocity is restricted to v = VS(x)/srz.
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(3) We do not predict or control the precise location
of a particle, but have a statistical ensemble of particles
with a probability density, P(x) =

~
f(x) ~

'.
It was suggested in paper I, Sec. 4, that if we gave

up the special assumptions listed above, the causal
interpretation of the quantum theory would permit the
construction of new types of theories which might be
needed in the treatment of certain domains, such as
that involving distances of the order of 10 "cm, where
existing theories do not seem to be adequate. In
support of this suggestion it was actually demonstrated
in paper I, Sec. 9, that theories could be formulated, in
which assumptions (1) and (2) ceased to be valid at
the level of 10 " cm but became approximately valid
at the atomic level, where the usual theory is known
to be applicable. No similar proof was given in papers
I and II, however, with regard to assumption (3),
although the conjecture was made in paper II, Sec. 7,
that the effects of collisions and other random processes
would be to cause any differences between P(x) and

~
P(x) ~' to decay with the passage of time, and thus to

tend to establish the validity of assumption (3) at the
atomic level, even under conditions in which it failed
in the domain of 10 " cm. The object of the present
paper is to prove the above conjecture.

We begin our proof by noting that, in general, the
probability density P(x) may be an arbitrary function,
restricted only by the requirement that it satisfies the
conservation equation

(BP/Bt)+ div(Pv) =0. (3)

But as shown in paper I, Sec. 4, provided that P is a
solution of Schrodinger's equation and that v= 7'S/m,
(i.e., provided assumptions (1) and (2) are val'id), the
function ~P(x, t) ~' will satisfy a similar conservation
equation

a
( P (

'/at+ div() P (
'V'5/m)

=8( f['/Bt+div()PJ'v) =0. (4)

Clearly, then if P(x) is chosen initially equal to
~
P{x)~,

the two will remain. equal for all time; and thus, the
consistency of assumption (3) is demonstrated. Any
failure of assumptions (1) and (2) would, however, also
result in the failure of (3), since P(x) would be still con-
served, while ~P(x) ~', in general, would not. Thus, if
deviations from (1) and (2) really existed, for example,
at the level of 10 " cm, differences between I' and
~P~' would arise whose cumulative effects would in
general be felt even at the atomic level, unless there
exist opposing processes which tend continually to
re-establish the equality of P and ~P~'. As we have
already pointed out, we shall demonstrate in this paper
that randomly distributed collisions furnish just such
opposing processes, which in the absence of perturba-
tions from the level of 10 "cm would cause an arbitrary
probability density P(x, t) to decay into

~
P(x, t)

~

with
the passage of time. Clearly this result constitutes an
important part of the causal interpretation of the

quantum theory, since it shows that the causal inter-
pretation could have an experimental content different
from that of the usual interpretation at 10 " cm and
still lead to agreement with a11 experimental data that
can now be understood in terms of the usual inter-
pretation.

To show the importance of collisions in determining
the probability density, we first note that all experiments
in quantum mechanics to date have been concerned
with statistics of systems (such as hydrogen atoms)
drawn from large aggregates of matter, where they
have been interacting with other systems for a very
long time. When we do an experiment now, we have no
choice but to drawn our samples from such an ensemble,
whose members have undergone this lengthy process of
collision with other atoms, electromagnetic waves,
sound waves, and other disturbances which can alter
the physical condition of the members of our ensemble.
Now, each collision of, for example, a hydrogen atom
with another atom can change the positions of the
precisely defined particles located in each atom in a
way that depends on the collision parameter and on the
initial velocity of approach. Since there is a statistical
ensemble of different kinds of collisions, we conclude
that even if all the particles in our ensemble initially
has the same positions, they would have some kind of
distribution after collision.

To study how this probability distribution changes
in a collision, we shall find it convenient to define a
function f(x, t) through the equation

P(x, t) =
~
lP(x, t)

~
'y(x, t)

Since P(x, t) satisfies the conservation equation (3),
while ~f(x, t) ~' satisfies the similar Eq. (4), we read-
ily find by subtracting (4) from (3) that

Bf/Bt+v V'f=0. (6)

But the above is just df/df, the rate of change of f
which results from following a particle orbit. We obtain,
therefore, df/dt=0 and

f(x, t) = f(x'i t'),

where x' is the position of a particle at the time t' which
arrives at the position x at the time t.

Equation (7) is analogous to Liouville's theorem in
classical statistical mechanics, with the important
difference that in quantum theory, the ratio f=P/

~ P ~

'
is what remains constant when we follow a moving
particle, while in classical statistical mechanics it is the
density p(x, p, t) of points in phase space that remains
constant. However, by methods that are very similar to
those that can be used in classical statistical mechanics
to show that p(x, p, t) approaches a constant' along any

~ Note that this result is not to be confused with the statement
that p(x, p, t) remains constant when x(t) and p(t) are solutions of
the equations of motion. For in this case, even though p depends
on x, p, and t, the dependence is such that there is no net change
in p when we follow a trajectory of a particle in phase space.
However, after many collisions, the functional form of p itself
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surface of constant energy, we shall show in this paper
that f(x, t) approaches a constant, so that P approaches
fff'. Moreover, once P has become equal to fPf', no
disturbance satisfying conditions (1) and (2) can
possibly produce a diR'erence between these two quan-
tities, because the relation P=

f P f

' is then maintained
for all time by the equations of motion of the particles.

The above results are deduced with the aid of as-
sumptions (1) and (2), which certainly hold in the
atomic domain. If, in this domain, perturbations arising
at the level of 10—"cm should create discrepancies
between P and

f f f
', we should then expect that these

discrepancies would die out in some mean time T, which

js determined by the solutions of the equations of
motion of the various particles involved and by the
rates of collisions of these particles. In the steady state,
the difference P—

f P f

' will be determined by the balance
between the mean rate E., at which perturbations surge
up from the level of 10 " cm, and the mean rate
(P f f f

')/T, a—t which a perturbation already in
existence dies out. This yields

P—
f P f'=ET.

Now in the absence of any specific hypothesis as to what
is happening at 10 "cm, it is impossible for us to know
anything about E, except that with the limitless
number of conceivable hypotheses available any value
at all is possible. Thus, if we assume the causal inter-
pretation, we can always regard any experiments which
show that P is equal to

f P f' as u posteriori evidence that
8 is so small that discrepancies between P and

f
|t f'

have not yet been detected. This means that no experi-
ment can possibly show that the usual interpretation
must be chosen in preference to the causal interpreta-
tion. On the other hand, an experimentally observed
discrepancy between P and

f P f

' would clearly indicate
that the usual interpretation was untenable and that a
causal interpretation was probably needed. '

An actual experimental test of the relation P=
f P f

'
would be impracticably diS.cult at present, but as
shown in paper II, the usual formulas for transition
probabilities are, in the causal interpretation, conse-
quencies of the assumption that P= fff'. Hence, if
this assumption is not entirely true, we should expect
to 6nd discrepancies, probably rather small, between
the observed mean rates of transitions and the rates
predicted by present theories. We must study these
discrepancies under conditions in which P is known to
a high degree of accuracy. From this point of view, the

changes arid approaches a constant along any surface of constant
energy. Similarly, from Eq. (7} we see that f(x, t) is a constant
along any particle trajectory regardless of the form of f, but we
now assert that after many collisions, the functional form of f
changes in such a way that f approaches a constant.

'In fact, we can go further and say that after we reach the
stage of postulating a particular example of a causal theory, ex-
periments are conceivable (as shown in paper II, Sec. 6) which
would permit us to infer the necessity of each element in the
hypothesis underlying that particular theory; or in other words,
to "observe" or detect that element.

best transition processes to study would probably be
those involving radiation from atoms of hydrogen.
However, to reduce. the rate at which discrepancies
between P and

f |f f' die out, we should avoid collisions
by keeping the atoms under conditions of extreme
isolation and avoid the sects of thermal radiation by
keeping them at very low temperatures. To increase
the rate 8 at which discrepancies between P and

f P f'
come up from the level of 10 "cm, we should use atoms
whose nuclei are very highly excited. Kxperimenta, l
evidence testing the accuracy of the predictions of the
usual interpretation concerning rates of transition is at
present rather rough and limited in quantity, and of
course, no experiments have as yet been done with a
view to finding conditions that are likely to lead to a
maximum discrepancy between P and

f P f

'.

f
c, l'+

I
c,

l

'= 1, (10)

and where g(p, s) is real and satisfies the normalization
condition

)t )t (g(p, s))'pdpds= l.
.—oo 0

Equation (10) permits us to write

cj =e'"' costs; c2= e'~' since. (12)

With these substitutions, we obtain (with Q=Ee's'",

(S+E'Ot) cosset sinn; cosP+ since sincL2 sing
(13)

cos~ cosni cosP+ sin&ad cosn2 sing

We note that S is a function only of @. This means
that the velocity has a component only in the direction

D. Bohm, Anais da Academia Brasileira de Ciencias (to be
published).

II. PROOF THAT P(x, t) APPROACHES
f 4(x~t) l'

On the basis of the assumption that P satisfies
Schrodinger's equation and that v=7'5/m, we shall
now show with the aid of a simple illustrative example
that an arditrary probability density P(x, t) ultimately
approaches

f f(x, t)
f

'. This proof will be generalized in
a more extensive paper to be published elsewhere. '

We choose for our example a hydrogen molecule
excited to a doubly degenerate level of energy Eo, in
which the component of the angular momentum in the
direction of the axis of the molecule is, in the usual
interpretation, said to be &k. In terms of cylindrical
polar coordinates, with the s axis along the axis of the
molecule, the most general linear combination of these
two degenerate eigenfunctions can be written as

P=&2g(p, s)(ci cosp+c2 sing)8

where c& and c2 are arbitrarily complex coefficients,
satisfying the relation
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of @, given by

d1t 1 85 1 coscv sin~ sin(a2 —u1)
Vp= p—=——=— —.(14)

dt p Bp p 1+sin10 cos~ cos(0.2
—n1) sin2&

Each electron moves in a circle, with a speed that
depends on the angle P, as well as on p. The solution
of (13) is readily seen to be

—-', COS2$ COS(C22 —n1) Sin~ COSM+ Q
—$2

= (t/p') coscu sin&a sin(n2 —n1), (15)

where &0 is a constant of integration. Three types of
orbits are possible. For &v=0, &2r/2, &2r, we obtain g
constant, so that the particle does not move. For &

close to these values (and for p large), the particle
oscillates on an arc of a circle. For large ratios of
since cos~/p, the particle rotates in a complete circle
with variable angular velocity.

Let us now consider, for any given p, a statistical
ensemble of particles all having the same initial wave
function, but having an arbitrary initial probability
distribution Pp(@). Although this distribution will, in
general, change with time as a result of particle motions,
it is clear that after the particles return to their initial
positions, they will have the same separation as they
had initially (since each follows a periodic orbit with
the same period); so that as long as the molecule is
isolated, we shall have only a periodically varying prob-
ability distribution. In practice, however, the molecule
is not really isolated, since it is subjected to a continual
series of collisions with other particles. To study the
effects of these collision, processes, we must, of course,
first solve for the changes in the wave function resulting
from the inhuence of the other particles and then use
this solution to calculate the particle motions through
the relation v= VS/222.

Now, in our simple illustrative example, it will be
adequate to assume an incident particle whose mass M
is so great that it can be treated classically (noting,
however, that in our more complete article4 it is shown
that the same results will follow if this approximation
is not made). In the causal interpretation, a classical
approximation for the incident particle means that we
can neglect the contribution

—(h,'/2M) V 'I 4(x, y, t)
I / I

4'(x, y, t)
I

of this particle (whose coordinates are denoted by y)
to the quantum potential and that we can approximate
the wave equation as

8$ 1 (It e
I —.V*—-&(», y(t)) I 0+V(x, y(t))k,

at 2222( z c
' )

where y(t) is regarded only as a parameter, whose time
dependence is obtained by solving the equations of
motion, and where U(x, y) is the classical potential
energy of interaction between x and y, and A(x, y) the
classical vector potential (due to magnetic interactions).

I.et us further restrict ourselves to collisions so
distant that perturbation theory may be applied. Now
the major changes of the wave function will be due to
transitions between degenerate levels, and as will soon
be evident, no essential aspect of the problem will be
altered if we made the further approximation of neg-
lecting the comparatively unimportant transitions to
levels of other energies. The changes in the wave
function will then be determined by the three matrix
elements

V11(t)= 2 cosset g(p, z)Hr (x, Vx, t)g(p, z) cospdx, (14a)
J

V22(t) = 2 sining(p, z)H~(x, V'x, t) g(p, z) singdx, (14b)

f
V»(t) = V»*(t) =2 cospg(p, z)Hp(x, Vx& t)

Xg(p, z) sinydx, (14c)

where H~(x, V'x, t) is the part of the Hamiltonian
operator corresponding to the perturbation. These
matrix elements define the unitary transformation

Cl= ~11(t)cl +1212(t)C2 ) C2= &21(t)cl +&22(t)C2 )

where the O.„satisfy the following condition for a
unitary matrix

I
~» I'+

I
~» I'=

I
~»

I

'+
I
~2212=1,

C211C212+ C221C222

and where the c,' represent the values of the coefFicient
of the wave function at time t' before collision, while
the c; represent those values at the time t after collision.

The transformation matrix n;, (t) can in principle be
obtained by carrying out a series of in6nitesimal
unitary transformations, with the transformation
matrices (1—i V,,(t)dt/It); but because the V;;(t) are all
in general different functions of the time, the trans-
formation coefficients n;;(t) cannot in general be ex-
pressed in a closed form. Because the dependence of V;;
on the time will depend on the orbit of the incident
particle, it is clear that the a;,(t) will in general be dif-
ferent for different kinds of collisions. This means that
the relation between c; and c,' will depend on the col-
lision parameter h and on the initial velocity of ap-
proach u, which quantities determine the orbit of the
incident particle in a collision. Thus, we can write

c =c (c;, h, u).

Because the c, and c satisfy the identity lc1I'+ lc2I'
=

I

c1'I'+
I
c2'I'=1, which results from the unitary

character of the transformation, it is better, however,
to work in terms of the three independent parameters
introduced in Eq. (12). We obtain

a)'= (a'((a, c21, n2, h, u);

Cx1 = A1 (cgq A1) cx2q hq u) i c22= 122 ((dq A1q 122) hq u). (17)
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Now the various members of our ensemble of hydrogen
molecules undergo collisions having a continuously and
more or less randomly distributed set of values of h
and u; and as a result even if the c,' were all initially
the same before collisions, they would be distributed
statistically after collisions. ' We are therefore led to
define the probability

Q(~, n, , n2, t)d~dnidn2 ——Q(c,, t)dQ,

~here d'0= dcvdo. ~dn2 that the wave-function coefficients
lie in the region dQ. Our problem is then to study how
the function Q is changed during a collision. Now in

any particular collision, carrying the coefFicients from
c,' to c,, the volume element dQ' is carried into some
other volume element dQ. It can then easily be shown
that because of the unitary character of the collision,

not vanish identically. The identical vanishing of this
determinant would imply that there was a functional
relationship between cv, n&, a2. But as has already been
shown, a three-parameter distribution of collisions (over
the variable h for a given u) will in general produce a
three-parameter distribution of the c for a given c,',
so that there can be no functional relationship between
~, ni, n2 and the determinant J(cj~/Bh„Bni/8h„,
Bn2/Bh, ) cannot vanish identically. We can therefore
define the probability,

G(c,', c,, u, t, t')d D'du

=FJ(Bh,/8~, cth„/Bn, BI4/ctn2)dQ'du, (21a)

that the system makes a collision starting in the range
dQ'du and ending up with a given set of wave-function
coeScients c,. Clearly, by definition

dQ'= dQ. (18)

This follows from the fact that a unitary transformation
produces a rotation in the four-dimensional space,
whose coordinates are the real and imaginary coef-
ficients of the c;. Thus, the volume element in the space
is not changed, and from this fact we readily obtain
Eq. (18). Since the number of systems does not change
in a collision, we also have Q(c;, t)dQ=Q(c, ', t)dQ' and
therefore obtain for the probability density of systems,

Q(c, , t) =Q(c,', t'). (19)

Because the matrix elements V,,(t) vanish as t~& ~,
the coefFicients c, will change only during the short
time in which the potential is appreciable. Thus, if t

represents any time after the n+" collision and before
the (n+1)+", while t' represents any time before the
e+" collision and after the (e—1)+",we do not need to
consider the explicit time dependence of Q but can
write instead

Q.+&(c,) =Q.(c,'), (2o)

where Q„~i(c,) represents the value of Q(c;, t) after the
e+" collision.

We must now take into account the fact that there
is a statistical ensemble of collisions of different types.
To do this we define the probability F(h, u)dhdu that
a collision occurs with collision parameter in the range
dh and the velocity of approach in the range du. The
next step is to eliminate the components of the collision
parameter h, in terms of the variables ~, ni, n~, with
the aid of Eq. (17). This is permissible only if the
Jacobian determinant J(8'/BIE„Bni/Bh„, Bn2/Bh, ), does

~ It is important to note here that the range of values of c;,
resulting from a given set of c, covers some three-dimensional
region (or more precisely a set of 6nite measure) in the space of
co, oI, cd. This can be seen, from the fact that our group of in-
finitesimal transformations is isomorphic with the group of
in6nitesimal rotations on a two component spinor. As a result of
the continuous distribution over h, we shall have, in general, a
continuous distribution of the V;;(t) for a given u; and as a result
of the continuous distribution over u, a continuous distribution of
the V;; for a given h. Thus, for each value of h (or of u), we shall
obtain a three-parameter distribution over co, nI, n2, for a given
~', cxI', ~g' (or of ~', O.I', 0.2' for a given ~, al, ~g).

G(c, c,, u, t') dQ, 'du= 1. (21b)

The precise form of the function G is determined by the
distribution function Ii and by the matrix elements
V,,(t) in a very complicated way, but the only property
of 6 that is of interest here is the fact that it is a con-
tinuous function of all its variables. This property of
continuity follows from the continuity of F, the con-
tinuity of the relations (17), and the existence of the
determinant J(Bh /cj~, Bh,/ctni, BI4/Bn, ). The con-
tinuity of Ii, however, follows from the assumption
of a more or less random distribution of collision
parameters and velocities of approach. It is here that
we introduce the fundamental statistical element into
our treatment.

To calculate the probability density Q„~&(c,) of
wave-function parameters existing after the eth
collision, we need only average the contributions to
Q„+, coming from the various types of collisions. But
each contribution satisfies Eq. (19). Thus, we obtain
the following integral equation, which defines the way
in which Q„changes as a result of a collision:

Q +i(c;)=. G(c,, c, u)Q (c,')dQ'du. (22)

We are now ready to show that Q (c,') approaches a
constant as e~~. First, we note that if Q (c,') is a
constant, then by virtue of Eq. (21b), we obtain
Q„+i——Q„. Thus, Q„=constant is a possible equilibrium
solution. If Q„(c ) is not a constant, then let us denote
by A its maximum value (as a function of all its
variables). This maximum must exist, because by
hypothesis, Q„(c,') is a continuous function. Let us also
denote by 8„ the minimum value of Q (c,'), and let us
restrict ourselves for the time to the case in which there
is only one point at which Q„(c,') takes on the value A „
(and also only one point at which it takes the value B„).
Then since Q„(c,')(A„ for all points except one we
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obtain, with the aid of Eq. (21b),

Q +&(c,)& G(c,, c, u)A„dQ'du=A„, (22a)

and similarly, since Q„(c,') &B„except for one point,
we have

Q~~i(c,)) G(c,, c,', u)B„dQ'du= B„(.22b)

A- —Q-+ ('")= G('" '
u)

X(A —Q„(c )+e.(c ))dn'dn.

But if Q„(c ) is not a constant function of its argu-
ments, then in the region in which C is appreciable,
A„—Q„(c,') will be some finite number which does not
approach zero as e—+~. We conclude then that
Q„(c, )—Q +~(c; ) also does not approach zero as
n —+~. This contradicts the hypothesis that Q„(c,) ap-
proaches Q„(c~) as a limit, since such an approach
requires that Q„~&(c,)—Q„(c,) approach zero for all c;.
We conclude then that Q (c,) must approach a constant
as e—&~.

We shall now remove the limitation that Q„(c,')
takes on its maximum (or minimum) value at only one
point. First, we note that if Q„(c,') takes on the value
A „(orB„)on a set of isolated points, curves or surfa, ces,
of dimensionality lower than that of the space of the
~, n&, n2 (or more generally, on a set of measure zero
in this space), then it is obvious that the reasoning goes
through precisely the same lines as before. If, however,
Q„(c,') should happen to take on the value A„ in a
three-dimensional domain (or more generally in a region
of finite measure in the space of ~, n&, n~) and if this
region is bigger than the domain in which G(c,, c, , u)
is diGerent from zero, the problem is a little more com-
plicated, because one then obtains the result that
A +~=A . However, if we evaluate Q„+~(c,) near the
edge of such a domain, we obtain contributions to the

This means that Q„+~(c,) can nowhere be as large as the
maximum of Q„(c,') nor as small as the minimum of

Q„(c,'). Hence, the maximum of Q„+q(c;) must be less
than that of Q„, and its minimum must be greater than
that of Q„. In other words,

A„+g(A„; 8„+g&B„. (23)

On the basis of the above results, it seems clear on
intuitive grounds that Q„(c,) must approach a constant
as n—+~. To prove that this happens, we shall show
that the hypothesis that it does not approach a constant
leads to a contradiction. We let Q„(c;) represent the
limiting form of Q„(c,). We can then write Q„(c,)
=Q„(c,)+e (c,), where e„(c,) is a term that approaches
zero uniformly as e~~. Let us now evaluate Q„(c,")
—Q„+~(c, ), where c, is the point at which Q„(c;) has
its maximum value A„. We have

Q.(.-)-Q...(,-)=A.-Q...(.-)+ .(,-),
and

integral from regions in which Q„(c )&A, so that at
such points, Q„+~(c,) &A„. Thus, in each collision, the
special domain in which Q„(c;) =A„ is narrowed until
there is left only an isolated maximum point, and the
problem is then reduced to the case originally con-
sidered.

The significance of our result is that after many
collisions, the probability density for any set of wave-
function coeKcients, as defined by the co, o.&, n2, will
be uniform. This means that each coefFicient has a
random phase and that there is a uniform probability
for all values of &a (cv defines the absolute magnitude of
the wave-function coefFicients costs and since, of c~ and
c2, respectively). But this is exactly what would be
obtained from the usual quantum-statistical mechanics
for the case of an ensemble of systems, each having two
degenerate levels. This result is not surprising, since the
causal interpretation treats the wave function in
exactly the same way as does the usual interpretation.

It is important to note that the continuity of the
function G(c,, c,', u) played an essential role in the
proof that Q„(c;)approaches a constant as u-+~. Thus,
if G had been a function that was zero everywhere
except at certain isolated points, we could not have
shown that A „+~&A „.For in this case, if the function
Q„(c,') had taken on its maximum value at precisely
those points where G did not vanish, we should have
obtained A „+&=A „.But the continuity of G guarantees
that the integral expressing Q„+~(c;) in terms of Q (c,')
must obtain contributions from regions in which

Q„(c,') is less than its maximum, so that A„~~&A „.As
we have seen, the continuity of G originates in the
assumption of a more or less random distribution of
types of collision. Thus, the approach of Q„(c,) to its
equilibrium value is based on the random character of
the collision processes.

I.et us now consider the particle motions. In general,
these are rather difficult to solve for; but as in the case
of the wave-function coefFicients we are not interested
in the details, but only in the fact that a statistical
ensemble of collisions will lead to a corresponding
statistical ensemble of changes in particle positions. By
integrating the relation %= VS/m, we see that the
initial position x' of a particle is a function of the final
position x, the final wave-function coefficients c;, the
collision parameter h, and the initial velocity of ap-
proach u. But as shown in Eq. (17), we can eliminate
h in terms of c; and c,'. We then get

x = x (c,) cq, ll, K, 3, 3 ). (24)

YVe must explicitly retain t and t' here, because the
particles are in general moving both before and after
the collision. However, it will be convenient to define

6 This can be seen from Eq. (14). Since the phase difference
0.2—a& appearing in this equation is not in general zero either
before or after collision, and since cosco since is also not in general
zero, v& will in general dier from zero except in the very special
cases mentioned above, which correspond to isolated possibilities
of probability zero.
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P(c;, x, 3) =
~
P(c;, x, 3)

~
'f(c;, x, i), (25)

t' in such a way that it represents what may be called
the "beginning" of the collision. This could be done,
for example, by choosing it as the time when the
distance of the incident particle is the smallest value
do for which the interactions can be neglected.

Now, because the relation between x' and x depends
on u, which is distributed statistically, we conclude that
even if those particles having the same wave-function
coeKcients before and after collision had the same
initial positions x, they would have a statistical dis-
tribution of positions x after collision. ' This leads us to
define the probability P(c;, x, t)dx that if a hydrogen
molecule has wave-function coefFicients c;, its electron
is located in the region dx. In accordance with Eq. (5),
we can write

statistical equilibrium in p a,nd s. In this example, we
shall hereafter restrict ourselves to. considering P and

f as functions only of p.
Now, even when c; and c,' are fixed, a continuous

variation in any component of u, say N„will in general
produce a corresponding continuous variation' of g'.
In other words, if we solve for p' with Eq. (24), we
shall find that ci&'/Bu, is a continuous function, not
identically zero. Thus, we can eliminate u, in Eq. (21),
expressing it in terms of @,and obtain the probability,

E(C;, C, '; @, P', N„uv, t, i.') =G(8u, /By')dy'dD'dugu„,

that a collision occurs with approach velocity com-
ponents in the range dugu„and which carries the wave-
function coefficients from dQ' to c; and the angle of the
particle from dg' to P. Note that by definition

where by definition,
J

KdQ'dQ'dB, dN„= 1. (28)

P(c;, x, t)dx= t i'(c, , x, t)i'dx=1. (26)

To obtain the probability density for the entire en-
semble, we must multiply the above by the probability
density Q(c~) that a molecule has the wave-function
coefficients c,. Using Eq. (7), we also have f(c,, x, t)
= f(c,', x', t'); and using Eq. (19), we have Q(c,, t)
=Q(c, ', i') Thus, w. e can write for the probability
density in the space of x, co, u~ and n2,

Q(c;, t)P(i;;, x, 3) =
~
f(c;, x, t) ~'Q('c, ', i') j(c,', x', t'). (27)

To calculate the probability density after the eth
collision, we must average the contribution to
Q(c;, t)P(c,, x, t) coming from the various types of
collisions. Each contribution satisfies Eq. (27). But
each contribution must be weighted with the proper
weighting function. To obtain the weighting function,
we begin with Eq. (21), which gives the probability of
a collision with velocity of approach in the range du,
that carries the wave-function coeKcients from the
region dQ' to the definite values c,. Ke must now elimi-
nate u in terms of x with the aid of Eq. (24). However,
we must note here that in our example of two degenerate
levels, only P will be changed in a collision, ' and not p
and s. Our simple example therefore serves only to
illustrate the approach to equilibrium of the distribution
in g; but it is easily shown' that a more complex ex-
ample would also demonstrate a similar approach to

7 This result is proved in detail in the more extensive paper
mentioned in reference 4. However, it is very plausible, since
different collision parameters will produce diferent changes of
the wave-function coeScients throughout the collision, and
therefore diGerent velocities v= VS/m, so that difFerent distances
would be covered by the particles in the resulting motions.' This can be seen from Kq. (14) and (14a, b, c). In the present
approximation of neglecting transitions to nondegenerate levels,
the phase S, and therefore the velocity v=&Sjm, can depend
only on @;but if more terms were included in the expansion (9)
of the wave function, S would clearly depend on p and s also. For
a more detailed treatment of this point, see the paper mentioned
in reference 4.

The function Ado'dQ'duQu„ is clearly the proper
weighting function to use with Eq. (27). Denoting by
f +i the value of f after the eth collision, we then obtain

=
~ P(c,, Q, t)

~

' E(c,, c,'; Q, P'; l„I„,t, t')
J

XQ„(c )f„(c,y', t')dQ'du, dn„dy'. (29)

But the above must also be averaged over the times t'
at which a collision begin, which are distributed at
random. In doing this, it is convenient to average over
a time T long compared to the time necessary to com-
plete a collision but short compared with the time
between collisions (such a case can always be obtained
by making the pressure low enough). We then obtain
[with the aid of (25)] an integral equation defining
how Q„f„ is changed in these systems undergoing col-
lision between t and t—T:

Xf„(c rtp', t')dQ, 'dg'du, dus (30).

Qn+rfs+i&Cn j Qn+ifn+1+Ds. (31)

Note, however, that to obtain this result, we must, as

'As shown in paper II, Sec. 6, if the usual theory should fail
in any domain, such as that associated with 10 "cm, the positions
of these particles could be observed with unlimited precision, so
that it would be possible, at least in principle, to predict the precise
time of decay of an individual nucleus,

From here on, the proof that Q„f„appr acohe ascon-
stant as e—+~ is much the same as was the proof that
Q„approaches a constant. We let C„be the maximum
of Q„f„and D„ its minimum. Then using (28), we
readily show that
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in obtaining the similar result for Q„, use the fact that
E is a continuous function of all its variables. It is here
that we bring in the basic hypothesis of a statistically
distributed series of kinds of collisions.

Thus, we can deduce that Q„f„approaches a con-
stant. Since Q„approaches a constant, we deduce that
f„als oapproaches a constant, which must be unity,
since by (26) both I' and

~
tt ~' are by definition nor-

malized. This means that P(c,, P, t) =
~
iP(c;, P, t)

~

', or
that if we fix our attention on those cases in which the
wave-function coefficients are c;, the probability density
is just ~P(c„g, t) ~'.

Finally, let us note that no other solution of the con-
servation equation could have taken the place of
~f(c,, P, l) ~' in our proof that after many collisions,
I'(c,, P, 3)—+~ f(c;, P, l) ~'. Although Eq. (7) would have
followed from Eq. (5) if we had replaced

~
f(x, t) ~' by

an arbitrary solution H(x, t) of the conservation equa-
tion, the step from Eq. (27) to Eq. (29) would not then
have been possible, For in this step, we used the property
that the value of

~
iP(c,, @, t) ~' depends ority on the final

coefficients c, of the wave function and not on the
initial coefficients c, . This property makes it possible
for us to take ~P(c;, Q, t) ~' out of the integral as a
common factor, independent of the initial wave-func-
tions coeKcients c,'. With any other solution of the
conservation equation, the final value of the function
would have depended on the initial coefFicients c, as well

as on the c,, so that the function could not have been
taken out of the integral and the proof would not have
gone through.

III. SUMMARY AND CONCLUSIONS

We shall summarize the results of this paper in terms
of the simple example of the O.-decay of two uranium
nuclei having the same wave function. Now one of
these nuclei may disintegrate tomorrow and the other
in two billion years. The usual interpretation of the
quantum theory states, however, that today there can
be no physically describable difference between these
nuclei, since they both have the same wave function and
since the wave function is said to determine all physi-
cally significant properties of a system. But the most
elementary scientific procedure would suggest that if
two objects are observed to act differently, this should
be regarded as a posteriori evidence that there must in

fact be some physical difference between them. Indeed,
in the causal interpretation, the di6erence in the two
uranium nuclei is explained very simply in terms of the
assumption that each nucleus has in it a set of particles
with precisely defined positions, which determine in
principle exactly when that nucleus is going to decay
(see paper I, Sec. 8). The difference in times of disin-
tegration is then ascribed to the differences in positions
of the various particles in the two nuclei. In fact, if we
consider a statistical ensemble of such nuclei, all having
the same wave function, then as has been shown in this
paper, the particles in diGerent nuclei will be in dif-

ferent positions as a result of collisions suffered by these
nuclei over the past few billion years; and these col-
lisions will have produced a probability density of
I'=

~
ip~

' that the particles in a particular nucleus take
a given set of positions. Thus, we are able, as shown in
paper I, Sec. 8, to explain the statistical ensemble in
decay times of a large number of nuclei.

In the usual interpretation, however, the role of
statistics is very diGerent, for it is said that the precise
future behavior of an individual system is completely
arbitrary, in the sense that it cannot be related to any
physically definable properties of that system or of
anything else existing in the world today. Only the
probability of decay in a statistical ensemble of systems
is said to be determined by physical factors now in
existence. Nevertheless, it is admitted that the behavior
of an individual system such as a uranium nucleus can
be physically significant, since, for example, if this
nucleus disintegrates, the resulting particle can activate
a Geiger counter, which can initiate a large scale
process, such as the setting oG of a bomb. In this situ-
ation, the question of when a particular nucleus decays
clearly has physical significance, since it determines, for
example, whether the bomb will explode tomorrow or
in two billion years. In accordance with the postulate
that only the behavior of a statistical ensemble of
uranium nuclei can be determined by physical factors
now in existence, however, the usual interpretation
states that the time at which a particular bomb goes
o6 is completely arbitrary, from a physical point of
view.

The arbitrariness of the usual interpretation in the
description of the behavior of an individual system is
closely related to the assumption, already stated, that
the wave function determines all physically significant
properties of that system. Now, in the case of the
uranium nucleus, the wave function takes the form of
a packet initially entirely within the nucleus, which
gradually "leaks" through the barrier and thereafter
rapidly spreads without limit in all directions. Clearly,
although this wave function is supposed to describe alt
physically significant properties of the system, it cannot
explain the fact that each a-particle is actually detected
in a comparatively small region of space and at a fairly
well-defined instant of time. The usual interpretation
states that this phenomenon must simply be accepted
as an event that somehow manages to occur but in a
way that is as a matter of principle forever beyond the
possibility of a simultaneous and detailed "space-time
and causal description. " Indeed, even to ask for such a
description is said to be a meaningless question within
the framework of the usual interpretation of the quan-
tum theory. In the causal interpretation, however, the
postulated particles with precisely defined positions
explain in a natural way why an n-particle can be
detected at a fairly definite place and time, on the
basis of the simple assumption that the particle existed
all the time and just moved from its original location
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to the place where it was finally found. Thus, even
though we cannot yet' observe the precise locations of
our postulated particles, they already perform a real
function in the theory, namely, to explain certain
properties of individual systems which are said in the
usual interpretation to be just empirically given and
forever unexplainable.

The postulation of particles with precisely defined
(but not at present precisely measurable) positions not
only makes possible a more connected description of
the behavior of an individual system than is possible
in the usual interpretation but also serves to increase
the degree of unity in the treatment of the statistical
aspects of the theory. Thus, in the usual interpretation,
two completely diferent kinds of statistics are needed.
First, there is the ordinary statistical mechanics, which
treats of the distribution of systems among the quantum
states, resulting from various chaotic factors such as
collisions. The need for this type of statistics could in
principle be avoided by means of more accurate
measurements which would supply more detailed
information about the quantum state, but in systems
of appreciable complexity, such measurements would be
impracticably difficult. Secondly, however, there is the
fundamental and irreducible probability distribution,
P(x) =

~
P(x) (', or more generally, P =

( C,
~

', where P,
is the probability that in the measurement of an arbi-
trary observable A we shall obtain the eigenvalue a,
corresponding to the eigenfunction Po(x), and where
P=P, C,P,(x). The need for this type of statistics
cannot even in principle be avoided by means of better
measurements, nor can it be explained in terms of the
effects of random collision processes. The usual inter-
petation simply postulates the above probability dis-
tribution as a basic and not further analyzable property
of matter, in addition to the more familiar type of
probability that applies in the statistical distribution
of systems among the quantum states. On the other
hand, the causal interpretation requires only one kind
of probability. For as we have seen, we can deduce the
probability distribution P(x) =

~
f(x) ~

' as a consequence
of the same random collision processes that give rise
to the statistical distributions among the quantum

states. Moreover, as shown in paper II, this result is
sufficient to prove the more general result that the
probability of obtaining the eigenvalue a in the meas-
urement of an arbitrary observable A is P,= j C,

~

'. In
this way, the causal interpretation avoids the need for
introducing ad hoc a completely new type of probability
distribution, which does not represent incompleteness
of information and which is not even in principle ex-
plainable in terms of random processes, such as col-
lisions.

As the situation stands now, the causal interpretation
and the usual interpretation each introduce one hy-
pothesis that has not yet been proved experimentally,
the causal interpretation assuming the existence of
particles with precisely defined positions and the usual
interpretation assuming that P(x)= ~P(x) ~' (or more
generally, P,=

~
C,

~

')." The causal interpretation
already has, however, the advantage of providing a
more unified description of nature than is possible in
the usual interpretation, one involving a smaller number
of hypotheses that must simply be accepted as empirical
facts without further explanation. For by making ore
postulate, that of the existence of particles with pre-
cisely defined positions, the causal interpretation
explains two general properties of matter which must
simply be postulated in the usual interpretation, i.e.,
the appearance of an individual particle in a fairly
definite position and at a fairly well-defined instant of
time after the wave function has spread over a wide
region of space, and the probability distribution of these
particles in a statistical ensemble of systems having the
same wave function. For this reason, it would seem that
the assumption of particles with precisely de6ned posi-
tions is likely to be on the right track, at least in its
essential features, even if all of the details of the theory
thus far suggested may perhaps not appear in a better
theory of the phenomena associated with distances of
the order of 10 "cm.

The author wishes to thank Professor R. P. Feynman
for several interesting and stimulating discussions.

"As shown in Sec. I of the present paper, the assumption that
J'(x) =

~ P(x) ~' has not yet been verified experimentally, nor is it
likely that experiments of the requisite precisio'n will be possible
in the near future.


