
CONVERSION OF AN AMPLIFIED DIRAC EQUATION

This agrees with the expression obtained by other
authors. " Using the numerical value for ks(2, 0) as
calculated by Bethe et al. ,

"the 2S state of hydrogen is
shifted by 994.82 Mc/sec. Table III does not, however,
predict the known additional displacement of the 2I'~
state of hydrogen by 4.00 Mc/sec.

It is hoped that in future publications we may be
able to demonstrate the utility of Tables I and II in
beta-decay and meson theories.

We wish to express our appreciation to Professor G.
Breit, Professor L.L. Foldy, and Professor H. Primakoff
for valuable suggestions.
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The pseudostationary flow field resulting from diffraction of a strong shock in air over a convex corner
has been investigated with the shock tube and interferometer. Only when the shock has turned nearly 180',
is it observed to become vanishingly weak. A potential flow theory for part of the field is inadequate to
predict the extent of a Prandtl-Meyer expansion around the corner. Viscous forces produce a boundary
layer which causes the flow to separate at the corner with significant changes in the density field as a result.

INTRODUCTION

HE diffraction of a plane shock wave by a convex
corner is one example of the general problem of

interacting shock and rarefaction waves. Since no unit
of length is given for the Qow, the pattern remains
similar to itself in time, i.e., is pseudostationary, and
may be described by the variables x/t and y/t. Like
the complementary problem of Mach reQection, the
nonlinear nature of the Quid mechanical equations
present such formidable difficulties that no complete
solution of the problem has been found. Jones, Martin,
and Thornhill, ' in a recent paper, have shown that a
part of the Qow 6eld may be readily obtained when the
incident shock is strong enough for the Qow behind it
to be supersonic. Previously, Lighthill linearized the
Qow equations by retaining only terms of first order in
the angle of the corner and calculated the pressure on
the wall and the 'shape of the diRracted shock. This
solution applies to shocks of any strength as long as
the angle is sufficiently small. Previous experiments in
this shock tube' established the validity of Lighthill's
solution. Keller4 has computed the density field for an
acoustic wave rounding a 90 corner which is in good
agreement with experimental data obtained for- very
weak shocks by White. The purpose of this paper will

be to present the results of experiments with strong
shocks (such that the flow behind them is supersonic)
and any corner angle for comparison with the theory
of reference 1 and as a guide to further theoretical work.

*This work was supported by the ONR.' Jones, Martin, and Thornhill, Proc. Roy. Soc. (London)
A209, 238 (1951).
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(1951).
4 Mathematics Research Group Rept. KM-43, New York

University, unpublished.

THEORETICAL CONSIDERATIONS

Consider a shock wave of velocity V advancing into
still air in which the velocity of sound is u&. According
to one-dimensional shock theory, the Qow velocity N2

behind the shock is

I,,/a, = 2(M I/M)/(y+ —I), (1)

where M is the shock Mach number V/at, and the
local velocity of sound a2 is

a&/a&
——{[2yMs y+1352/Ms—+7 13}'*/(7+1)—. (2)

The Qow behind the shock becomes supersonic when
its/as ——1 or for air with y= 1.4 when M=2.068.

When the incident shock passes the corner, a rare-
faction wave advances back through the moving air
with the velocity u~, but the air itself is carried along
with the velocity N2. As a result, only the region below
OAE in I'ig. 1 will know of the existence of the corner.
The strength of the diGracted shock EF varies in some
unknown way so that the boundary conditions are
difficult to establish.

A part of the Qow can still be found, however.
Jones, Martin, and Thornhill show that a Prandtl-
Meyer expansion at the corner may be terminated in
either one of two ways: (a) a uniform flow parallel to
the wall, or (b) uniform flow parallel to a line on the other
side of which some other Qow maintains equal pressure,
i.e., a slip stream. They predict that transition to the
second case will occur when the Prandtl-Meyer Qow
expands to the ambient pressure pt. The region below
the slip stream would then be at rest at pressure pr.

The radial extent of the Prandtl-Meyer Qow may be
found from the characteristics in the x/t, y/t system.
One set consists of course of the radial lines through O.
The other family must be found numerically. The
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I ro. 1. Schematic drawing of shock diffraction pattern.

characteristic which passes through the point A was
calculated for %=3 and is plotted in Fig. 2 as the
dotted curve ABD. This provides an outer limit on the
Prandtl-Meyer expansion. It will be seen that shocks
appear which end the potential Qow sooner.

was found to grow similar to itself over a range of
times varying by a factor of 5.

Only when the diGracted shock has turned nearly
180' does it become vanishingly weak. In the other
cases the end moves forward to meet the wall normally.
Except where the wall interferes directly, the subsidiary
shocks 5 are nearly indistinguishable in the three
experiments. An important result of this comparison is
the observation that the slip stream angle and, there-
fore, the pressure to which the Qow expands depend on
the corner angle. This comes about through the action
of viscosity in forming a boundary layer along the
surface upstream from the corner. The vorticity so
generated is shed from the corner in a sheet which then
curls up to form the vortex already referred to in Fig. 2.
Any such disturbance can make its presence felt in the
entire region below the slip stream since there the air
is nearly at rest.

EXPERIMENTAL RESULTS

Three models were made having corner angles
8,=35', 90', and 160'. In each case, the model com-
pletely spanned the four-inch width of the shock tube.
The maximum distance past the corner which the shock
could travel with the entire diRraction 6eld still in
view was about 2.5 in. Since the theory and operation
of the tube have been described already, ' no detailed
explanation will be given here. Plane shock waves
striking the model are photographed through a Mach-
Zehnder interferometer with the aid of a 1-p,sec spark
triggered from an adjustable delay circuit. Thus any
stage in the development of the Qow could be recorded.
This was especially significant in checking the assump-
tion that the entire process was pseudostationary.

Figure 2 shows a typical density pattern obtained
from an interferogram with a shock Mach number of
3.10. Numbers on the contours give the ratio of the
density to the density ahead of the incident shock. The
two discontinuities marked 5 may be either shocks or
slip streams. Since we cannot decide which they are
from these experiments alone, we shall arbitrarily
refer to them as shocks. A small region of low density
is observed below the slip stream (denoted by the
dashed line) indicating that a vortex is shed from the
corner. For comparison, the boundaries of the Qow

predicted theoretically for M =3 are shown by the
dotted lines. 08 is the Anal expansion wave which
produces plane parallel Qow at the ambient pressure
in region OBD.

The inQuence of the corner angle on the Qow pattern
may be seen from Fig. 3 in which the shock and slip
stream positions are drawn for three different corners
with the same shock strength. For each case the pattern

~ Keakney, %eimer, and Fletcher, Rev. Sci. Instr. 20, 807
(1949).

Fn. 2. Density 6eld resulting from diffraction of a shock
moving with a Mach number 3f=3.10 over a 90' corner. The
dotted lines are the boundaries of the Bow predicted theoretically
for &=3.

Figure 4 shows the experimentally determined slip
stream angle for each of the three corners as a function
of M. The theoretical curve is obtained by computing
the angle of turn necessary to expand the high pressure
air behind the incident shock to ambient pressure. By
coincidence, a corner angle of about 77 would give
excellent agreement with the theory for all M between
2.06 and 3.2.

To study further the origin of viscous eGects, the
plate upstream from the corner was lengthened from
2 in. to 7 in. No changes could be detected. It appears,
therefore, that the boundary layer thickness at the
corner in these experiments was determined by the
time since the Qow was initiated by arrival of the shock
rather than by the distance from the leading edge of
the plate.

No theory is available for the growth of the boundary
layer in the Qow set up by a shock, but an order of
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magnitude for the thickness of such a layer may be
obtained by applying the result for a plate suddenly
set in motion. ' The thickness is given by 2(nt)&, where
~ is the kinematic viscosity and t is the elapsed time.
For the earliest picture, where t=10 p,sec, this gives
0.007 inch. The surprising result is that such an ex-
ceedingly thin boundary layer causes the Row to
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FIG. 4. Slip stream angle plotted as a function of M for each
of the three corners. The dotted curve shows the theoretical
dependence obtained by Thornhill.

Fxo. 3. Influence of corner angle on shock and slip stream
position for &=2.95.

separate at the corner and depart signi6cantly from
the predictions of potential Aow theory.

CONCLUSIONS

The strength of a plane strong shock di6racted at a
convex corner decreases monotonically from the point

'W. F. Dnrsnd, Aerodynamic Theory (J. Springer, Berlin,
1934), Vol. 3, p. 63.

of intersection with the leading edge of the rarefaction
wave and reaches vanishing strength only in the
neighborhood of a 180' turn. Predictions from potential
theory concerning the Row field are only qualitatively
correct in air. Viscous forces produce a boundary layer
which causes the Qow to separate at thecornerwith
resulting modifications in pressure distribution. The
location of the 6nal wave in the Prandtl-Meyer expan-
sion, therefore, becomes dependent upon the corner
angle as well as the shock strength. Two subsidiary
discontinuities occur whose positions are remarkably
stable with respect to changes in corner angle and shock
strength.


