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Conversion of an Ampli6ed Dirac Equation to an Approximately Relativistic Form. *

W. A. BARKERt AND Z. V. CHRAPLYVY

Physics Departs, ent, St. Louis University, St. Louis, Missouri

(Received September 3, 1952)

A fermion is described by a one-body relativistic wave equation of the Dirac type in which scalar, vector,
.tensor, pseudovector, and pseudoscalar interactions are included phenomenologically. This equation is
converted to an approximately relativistic form by means of the Foldy-Wouthuysen transformation. The
resulting relativistic correction terms associated with the five types of interaction are tabulated. The
tables may be used to convert any one-body Dirac equation to its corresponding approximately relativistic
form. The fine structure of the hydrogenic atom including the Lamb-Retherford shift is discussed as an
illustration.

I. INTRODUCTION

FERMION of mass m interacting with an
external field may be described by a four-

component wave function p satisfying the equation

(V~(PI+grel) i(me+go)
(I/2!)—grrv pv. ttp. (1/3!)—girrv pv. v pttp. p—(i/4 t)g'v. v.v~v. g....}P=o, (1)

where p„= ( 47iV—', ih8/—Bx4), x4 ict, V„——= ( ipn—, p);
P and n are the familiar Dirac matrices; c, 5 are the
velocity of light and Planck's constant divided by 2~.
The usual summation convention applies in expressions
involving repeated Greek indices with the restriction
that no two of the subscripts are equal in the same
term. The external field is characterized by a scalar 0,
a vector 0„, an antisymmetric tensor e„„apseudovector
Htt p and a pseudoscalar 0„„,=8, which have been
added to the free particle Dirac equation in such a way
as to satisfy the invariance requirements of special
relativity under a Lorentz transformation. The strength
of the interaction is determined by the coupling
constants g, gi, giz, grzr, and g~.

We do not identify the interaction terms with any
particular type of external field nor the coupling con-
stants with any specific coupling mechanism. For
example, H„may be identified with the electromagnetic
potentials, the field strengths in scalar meson theory,
or any other type of external field as long as it trans-
forms like a four vector.

We propose to convert Eq. (1) into an approximately
relativistic form, more amenable to physical interpre-
tation and practical calculation, by a method recently
developed by Foldy and Wouthuysen. ' This technique
has two advantages not shared by the method previ-
ously used to study this amplified Dirac equation'—
the traditional method of eliminating the small compo-
nents in terms of the large. First, the transformed
Hamiltonian is Hermitian. Second, the transformed
four-component wave function may be split into two

*This work was done under ONR auspices.
f Based on a thesis submitted to St. Louis University in partial

fulfillment of the requirements for the degree of Doctor of Phi-
losophy.' L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950),

2 G. Petiau, J. phys. et radium 10, 264 (1949).

sets of two-component wave functions which describe
positive and negative energy states, respectively. The
calculations are carried out to the second order in the
expansion parameter, (Ii/mc) (8/Bx„)

By way of illustration, the results are applied to a
study of the fine structure of th'e hydrogenic atom
including the l,amb-Retherford shift.

II.REDUCTION OF THE AMPLIFIED DIRAC EQUATION
TO AN APPROXIMATELY RELATIVISTIC FORM

In order to apply the Foldy-Wouthuysen method,
it is necessary to write Eq. (1) in the form

IIP= (Pmc'+ 8+ $)P= i7iBP/Bt, (2)

where the odd operators 8 and the even operators 8
are explicitly separated. ' This may be readily done with

the aid of the relations 4r= (1/2i)(nX n), Vs=ininini,
and the following change of notation: 0„~(8,04),

0„„~(M,P), 0„„,—+(S, S4). The result is

HP= f Pmc'+cgPe+icgi04+cgrzP4r M+cgrn& S
+cn (p+gre) —cgrrpn P—icgrlrV4S4

+cg~PV 40~}P= i7ictP/Bt (3).
The terms involving the matrices I, P, 4r, and P4r are

even, those involving n, pn, V4, and pV4 are odd. The
transformed wave equation generated by the Hermitian
operator S= —(i/2mc')P8 is of the form4

H'p'= l pmc'+ 8+ 8'
2mc'

1 88
8, [8, hj +i74

Sm'c4 Bt

=i I'iBp'/hatt (4).

3 An odd operator couples the upper and lower components of

P; an even operator does not. See reference 1, p. 30, footnote 3.
4 See reference 1, Eq. (32).

Carrying this prescription out explicitly for Eq. (3)
requires the evaluation of a large number of commu-

tators and anticommutators. The calculations are
facilitated by the use of the following identities of
which the first two are well known and the last two

446



CONVERSION OF AN AMPLIFIED DIRAC EQUATION

are easily verified.

L(n B), (n C)],=B C+in BXC
+C Brie CXB, (5)

(e B)(e C) =B C+in BXC,

[(n B), (n C)]p= —y,B C+in BXC
aygC Bein CXB, (7)

L(n B), (ygC)]p=w(n. B)CaC(n B). (g)

It is assumed that B, C, and C commute with the Dirac
matrices but not necessarily with one another.

The five types of interaction generate relativistic
correction terms of zero, first, and second order in the
expansion parameter. These we have placed into six
classifications, of which three involve e and three do not.

A "Schrodinger term" is one which has the appear-
ance of one or more of the terms in the ordinary
Schrodinger equation, (p'/2m+ V)p= Ep.

A "divergence term" is one which is similar to the
term used by Foldy and Wouthuysen' to account for
the "Darwin correction, " to the S levels in a hydrogen
atom, —(eh'/Snz'c') V E.

A "Darwin term" is one which is analogous to the
term originally used by Darwin' to account for the
"Darwin correction, " —(eh2/4m'c4) E V.

A "spin-field term" is one which resembles the well-
known term involving the normal magnetic moment
of the electron, (Peh/2mc)e H.

A "spin-orbit term" is one which is similar to the
well-known Thomas term, e —(eh/4m'c')n (EXp).

Finally, a "spin-momentum term" is one which
involves the dot product of e and the linear momentum

The results are presented in tabular form. In Table I
are entered all those correction terms which do not
involve mixed products between different types of
interaction. In Table II are entered correction terms
which do involve mixed products. It must alwaysbe
considered along with Table I when a study is made of
the correction terms arising from two or more types of
interaction present in the original relativistic equation,
say the vector and the tensor. The coupling constants
have been suppressed in the tables, since how they
should be reinserted is quite evident when a given
term is to be used. Of course, the order of a term will

be changed if the coupling constant includes any power
of the Compton wavelength of the particle.

III. THE HYDROGENIC ATOM

In this section, we illustrate the use of the tables in
demonstrating how one may obtain expressions for the
major contributions to the Lamb-Retherford shift by
applying the Foldy-Wouthuysen transformation to a
relativistic one-body wave equation in which appro-

~ C. G. Darwin, Proc. Roy. Soc. (London) 118, 654 (1928).
'L. H. Thomas, Nature 117, 514 (1926).

, p' ek
EPx'= mc'+ +ey — V E

2m 8m 2'

ek p4 (h)'
n EXy — —e~) ~V E

4m'c' gm'c' & mc)

(e.—1) (~.—1)

t

eh'V. E— aha. EXpt x'
2m c

= ihBX'/Bt,

where II' is the transformed Hamiltonian and x' is a
two-component wave function corresponding to positive
energies. (The p' term in Eq. (10) does not come from
the tables. It is obtained from —PO'/8m'c' which is the
next even term in the expansion (4).)

The last six terms in Eq. (10) may be considered as
perturbations on the Balmer energy levels. Their
individual contributions to the energy are given in
Table III.

The kinetic energy, Darwin, and Thomas corrections
are well known' and account for all the Rt,"hn' terms in
the expansion of the Sommerfeld fine structure formula.
E. is the Rydberg, and a is the fine structure constant.

7 L. L. Foldy, Phys. Rev. 83, 688 (1951); Phys. Rev. 86) 646
(1952).

8 See, for example, E. U. Condon and G. Shortley, The Theory
of Atomic Spectra (Cambridge University Press, New York, 1951),
Chap. 5.

priate quantum-electrodynamic eGects are included
phenomenologically.

Hf= fPnsc'+eP jcn p+(y, —I)(eh/2mc)~Pn. E
—e~(h/mc)'V E)tp= ihip/Bt (9.)

The first three terms are the usual ones which occur in
the wave equation for a Dirac particle of charge e
coupled to the potential g of an external electrostatic
field. In addition, the anomalous magnetic moment of
the electron (p.—1) Bohr rnagnetons is coupled to the
external electric field E, and e~, a state-dependent
quantity arising from a quantum-electrodynamic cor-
rection to the rest energy, is coupled to the d'Alem-
bertian of the external 6eld, which in the electrostatic
case is simply V. K. Two terms analogous to these have
been used by Foldy' in a relativistic wave equation for
the neutron to account for the magnetic and electro-
static contributions to the electron-neutron interaction.

Equation (9) is, of course, a specialization of Eq. (3)
under the substitutions, 04 ——iP, gz

———e/c; P= i E,
gn

———(p,—1)(eh/2mc'); 04' ——iV E, gz'= e,h'/m'c'; we
assume all the remaining coupling constants to be zero.
The corresponding approximately relativistic wave
equation may be written by using the vector and tensor
columns in Table I. Mixed product terms in Table II
are neglected as they are of third or higher order. The
result is
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TABLE III. Contributions of relativistic correction terms in Kq. (10) to hydrogenic energy levels.

Energy level correction

Kinetic energy correction

Z4Rcha' ( e 3)
(1+', 4-j

Darwin correction for 5 states

Z4Rchn'

n3

Term responsible

p4

8m3c'

ek'
———v. E

Sm'c'

Thomas correction for states of l/0
(Z4Rchn' ) f 1

[
fo»=1+;n'j , ( (2l+1)(1+1)j

6' Exp
4m'c'

(Z'Rchn') f 1

n' j &1(21+1)j
(8eq/e) && Darwin correction

e1 (Z4EchcP )

e( w' j
2(p, ,—1)XDarwin correction

(Z4Rcha' )
2(~.—1) I—

e3

2(p, ,—1}XThomas correction

for j=l—$

(h )'
—e,

i
—

(
V'E

&mcj

ek'
—

(lt .—1) V'. E
4m'c'

(Z4Rcha' ) f 1
for j=l+

n' j k (21+1)(1+1)j —(p, —1) g EXp
2m c

f Z4Rcha' i ( 1—2(p, —1)
n' j t,l(2l+1) j for j=l——,

'

The quantum-electrodynamic factors are given by' '"

(lc, —1)= n/2 pr,

rnc'CL 1 11
et ——e—ln ——ln2 ——+-

3pr kp(n, 0)

11 1 5-
+3rrZn 1+———ln2+ —I, (12)

128 2 192

where kp(re, l) is the average atomic excitation energy
for the level el.

The contribution of the anomalous electron magnetic
moment to the displacement of states of any l is easily
calculated by using Table III and Eq. (11).The result is

E(re, l) =—2(lc, —1)Z'Rckn' 1+k
(13)

m' (l+1)(2l+1)

where k= l 1 forj =l+ ,'an—d k—=l for j=l———',. This
' J. Schwinger, Phys. Rev. 73, 416 (1948).
'0 Karplus, Klein, and Schwinger, Phys. Rev. 86, 288 (1952);

see also, Bethe, Brown, and Stehn, Phys. Rev. 77, 370 (1950);
J. B. French and V. E. Weisskopf, Phys. Rev. 75, 1240 (1949}.

8Z4Rcho. ' t mc'
E(N, 0) =— tin

3pre' l kp(N, 0)

1 11—In2 ——+
5 24

11 1 5
+3prZn 1+ ——ln2+—. (14)

128 2 192
"G. Breit, Phys. Rev. 72, 984 (1947).
'~ J. A. Bearden and H. M. Watts, Phys. Rev. 81, 73 (1951)."W. E. Lamb, Jr., Phys. Rev. SS, 259 (1952).

expression agrees with that obtained by Breit" from
an approximate evaluation. Upon inserting the 1951
constants of Bearden and Watts" into Eq. (13), the
separation of the 25, 2I'; states of hydrogen due to the
anomalous magnetic moment of the electron is 67.77
Mc/sec. Also the doublet separation of the 2P*„2I'
states is increased by 25.41 Mc/sec from the value
predicted by Dirac theory. These numerical values are
in good agreement with the latest values quoted by
Lamb. "

The contribution of ej to the displacement of the
5 states is also easily obtained by using Table III and
Eq. (12):
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This agrees with the expression obtained by other
authors. " Using the numerical value for ks(2, 0) as
calculated by Bethe et al. ,

"the 2S state of hydrogen is
shifted by 994.82 Mc/sec. Table III does not, however,
predict the known additional displacement of the 2I'~
state of hydrogen by 4.00 Mc/sec.

It is hoped that in future publications we may be
able to demonstrate the utility of Tables I and II in
beta-decay and meson theories.

We wish to express our appreciation to Professor G.
Breit, Professor L.L. Foldy, and Professor H. Primakoff
for valuable suggestions.
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The Diffraction of Strong Shock Waves*

WAYLAND GRIFFITH AND DAVID E. SRICKL
Palmer Physical Laboratory, Princeton University, Princeton, Xm Jersey

(Received August 15, 1952)

The pseudostationary flow field resulting from diffraction of a strong shock in air over a convex corner
has been investigated with the shock tube and interferometer. Only when the shock has turned nearly 180',
is it observed to become vanishingly weak. A potential flow theory for part of the field is inadequate to
predict the extent of a Prandtl-Meyer expansion around the corner. Viscous forces produce a boundary
layer which causes the flow to separate at the corner with significant changes in the density field as a result.

INTRODUCTION

HE diffraction of a plane shock wave by a convex
corner is one example of the general problem of

interacting shock and rarefaction waves. Since no unit
of length is given for the Qow, the pattern remains
similar to itself in time, i.e., is pseudostationary, and
may be described by the variables x/t and y/t. Like
the complementary problem of Mach reQection, the
nonlinear nature of the Quid mechanical equations
present such formidable difficulties that no complete
solution of the problem has been found. Jones, Martin,
and Thornhill, ' in a recent paper, have shown that a
part of the Qow 6eld may be readily obtained when the
incident shock is strong enough for the Qow behind it
to be supersonic. Previously, Lighthill linearized the
Qow equations by retaining only terms of first order in
the angle of the corner and calculated the pressure on
the wall and the 'shape of the diRracted shock. This
solution applies to shocks of any strength as long as
the angle is sufficiently small. Previous experiments in
this shock tube' established the validity of Lighthill's
solution. Keller4 has computed the density field for an
acoustic wave rounding a 90 corner which is in good
agreement with experimental data obtained for- very
weak shocks by White. The purpose of this paper will

be to present the results of experiments with strong
shocks (such that the flow behind them is supersonic)
and any corner angle for comparison with the theory
of reference 1 and as a guide to further theoretical work.

*This work was supported by the ONR.' Jones, Martin, and Thornhill, Proc. Roy. Soc. (London)
A209, 238 (1951).

2 M. J. Lighthill, Proc. Roy. Soc. (London) A198, 454 (1949).
'Fletcher, Taub, and Bleakney, Revs. Modern Phys. 23, 271

(1951).
4 Mathematics Research Group Rept. KM-43, New York

University, unpublished.

THEORETICAL CONSIDERATIONS

Consider a shock wave of velocity V advancing into
still air in which the velocity of sound is u&. According
to one-dimensional shock theory, the Qow velocity N2

behind the shock is

I,,/a, = 2(M I/M)/(y+ —I), (1)

where M is the shock Mach number V/at, and the
local velocity of sound a2 is

a&/a&
——{[2yMs y+1352/Ms—+7 13}'*/(7+1)—. (2)

The Qow behind the shock becomes supersonic when
its/as ——1 or for air with y= 1.4 when M=2.068.

When the incident shock passes the corner, a rare-
faction wave advances back through the moving air
with the velocity u~, but the air itself is carried along
with the velocity N2. As a result, only the region below
OAE in I'ig. 1 will know of the existence of the corner.
The strength of the diGracted shock EF varies in some
unknown way so that the boundary conditions are
difficult to establish.

A part of the Qow can still be found, however.
Jones, Martin, and Thornhill show that a Prandtl-
Meyer expansion at the corner may be terminated in
either one of two ways: (a) a uniform flow parallel to
the wall, or (b) uniform flow parallel to a line on the other
side of which some other Qow maintains equal pressure,
i.e., a slip stream. They predict that transition to the
second case will occur when the Prandtl-Meyer Qow
expands to the ambient pressure pt. The region below
the slip stream would then be at rest at pressure pr.

The radial extent of the Prandtl-Meyer Qow may be
found from the characteristics in the x/t, y/t system.
One set consists of course of the radial lines through O.
The other family must be found numerically. The


