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sample despite the presence of 67 atomic percent of
silicon, the ideal resistivity at the ice-point, about 13.9
micro-ohm cm, being comparable with that of pure
metallic elements. The resistivity was constant between
4.2' and 1.5'K at about 16 percent of the ice-point
value, which in comparison with corresponding data on
solid solution alloys suggests that the deviation from
stoichiometric composition was probably less than
1 percent.

The enlarged portion of Fig. 4 indicates that in zero
field quite a sharp superconducting transition was
observed at 1.455'K. The curves for restoration of
resistance by a magnetic field at temperatures below
the transition point were also studied and as shown in
Fig. 5 were found to be of a rather gradual type.
However, a plot of the fmld at which the Grst trace of
resistance was restored against T' (cross points, Fig. 2)
gave a straight line parallel to the critical Geld line
obtained from induction measurements. Thus, allowing
for the fact that the transition temperature of the
electrical resistivity specimen (1.455') is slightly higher
than that of the magnetic specimen (1.432'K), the

held at which resistance begins to be restored is prob-
ably quite close to the thermodynamic critical field in
the present case.

CONCLUSIO N

Cobalt disilicide crystallizes in the calcium Auoride
structure, in which, to our knowledge, no other super-
conducting compound has previously been found.
Although this structure is usually regarded as typical
for ionic compounds, 4 the present work indicates a clear
exception in the case of CoSi2. It remains to be seen
whether similar exceptions are provided by other
isomorphous intermetallic compounds such as NiSi2
and AuAl. , but it may be remarked for the present
that neither of these compounds showed magnetic
evidence of superconductivity down to 1.1'K.

%e are grateful to E. Corenzwit for help in cryo-
genics, to D. H. %enney and K. M. Olsen for casting
the CoSi& rods, and to S. Geller for performing x-ray
analyses.

' A. F. Wells, Strnctnral Inorganic Chemistry (Clsrendon Press,
Oxford, 1945), p. 275.
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Variational Principles for Three-Body Scattering Problems*
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Several stationary expressions for the direct and the exchange scattered amplitudes in three-body colli-
sions are derived.

I. INTRODUCTION

~

'HREE-BODY scattering problems have been
solved approximately either by a Born approxi-

mation or by variational methods involving a diGer-
ential operator. ' %e shall discuss here several general-
izations for three-body problems of the variational
principle proposed by Schwinger' for two-body problems.

Important prototypes of three-body scattering prob-
'lerns are those involving the scattering of electrons by

*This work was performed at Washington Square College of
Arts and Science, New York University, and was supported by
contract with the U. S. Air Force through sponsorship of the
Geophysics Research Division, Air Force Cambridge Research
Center, Air Research and Development Command.' For a resume of the literature see ¹ F. Mott and H. S. W.
Massey, Theory of Atomic Collisions (Clarendon Press, Oxford,
1949), second edition.' W. Kohn, Phys. Rev. 74, 1793 (1948); S. S. Huang, Phys. Rev.
76, 477 (1949); H. S. W. Massey and B. L. Moiseiwitsch, Proc.
Roy. Soc. (London) A205, 483 (1951); M. Verde, Helv. Phys.
Acta, 22, 339 (1949); A. Troesch and M. Verde, Helv. Phys.
Acta 24, 39 (1951).' J. Schwinger, hectographed notes on nuclear physics, Harvard
Qpiversity, unpublished,

hydrogen atoms and the scattering of neutrons by deu-
terons. In both these cases the indistinguishability of
the scattered particle and one of the scatterers creates
some special diKculties due to the symmetry conditions
imposed on the solution by the Pauli principle. In this
paper we shall assume that two of the particles are
identical and that exchange sects are consequently
important.

In Sec. II of this paper we formulate the problem and
indicate how a knowledge of the direct and exchange
scattered amplitude enables us to satisfy the Pauli
principle without explicitly working with symmetrical
or antisymmetrical wave functions. In Sec. III we,de-
rive a stationary expression for the direct scattered
amplitude, and in Sec. IV we derive a stationary ex-
pression for the exchange scattered amplitude.

Finally, we derive in Sec. V still another stationary
expression for the scattered amplitudes which is more
likely to converge to the correct solution when the trial
field, is the iterated unperturbed, field, .



442 S. BOROWITZ AND B. FRIEDMAN

II. GENERAL CONSIDERATIONS

In the problem which we treat, particle 1 is incident
on a system consisting of particles 2 and 3 bound in
their lowest state. The scattering cross section for this
process can be found by considering the solution of the
following Schrodinger equation with suitable boundary
conditions:

(V12+V'22+ 2I E—p(rl)
—p(r2) —V(r12)]}%'0(rl, r2) =0. (1)

In setting down this equation we have chosen m~=m~
=k=1 and m~= ~. r~ and r~ are the position vectors
of particles 1 and 2 with respect to the origin of co-
ordinates, which is the position of particle 3. r~~ is the
distance between particles 1 and 2. E is the total energy
of the system and the V's are the potentials between the
particles. The results in all but the last section of this
paper can be generalized in a useful way to nz3 finite
by introducing the following change of variables in the
Schrodinger equation,

P= ~~—~3,

continuum states. By analogy with the three-dimen-
sional wave equation, and from physical considerations,
it is presumed but has never been proven that Eq. (1)
with the boundary conditions (4) specifies a unique
solution%'0. The coefficients f„and g„ for those terms
in (4) for which k„ is not imaginary, are called the
scattered amplitudes for direct and exchange scattering.

A knowledge of f„and g„enables one to determine
the effect of the Pauli principle on the cross section. '
A solution %0 of (1) which satisfies this principle and the
physical boundary conditions can be constructed from
lifo(ri, r2) as follows:

%0 (rl r2) = %0(rl, r2)&40(r2, rl) (6)

where the plus sign is taken for the antisymmetric spin
state and the minus sign for the symmetric spin state.
The scattering cross section for an unpolarized incident
beam is given by

k„
(~.If—-+g-I'+~

I f- g-I')—
ko

R= rl —L(m2r2+mprp)/(m2+mp)],
I = (m 1r1+m 2r2+m 8 r 8)/ (m 1+m 2+m 8)

(2) where 221 and w, are statistical weight factors for the
antisymmetric and symmetric spin states, respectively.

and eliminating the coordinates of the center of mass.
We can now best specify the appropriate boundary

conditions for the solution %0(rl, r2) by separating off
the incident wave. If we let gp(r2) describe the bound
state of particles 2 and 3, then we may write

4'0(rl, r2) =exp(ikpnp rl)po(r2)+4(ri, r2). (3)

Here np is the direction and kp ——(E 00) the wa—ve
number of the incident particle; eo is the binding energy
of particles 2 and 3. $(rl, r2), the scattered part of the
solution, should be regular everywhere, and should
behave either like an outgoing wave or a decreasing
exponential as.rl (or r2) goes to infinity. A simple means
for choosing the correct function p(rl, r2) is to assume
that the energy E has a small imaginary part and then
to require that $(rl, r2) vanish exponentially as either
rl and/or r2 goes to infinity.

The boundary conditions on 4'0 are, therefore, that

Lim+0 ——exP(ikpnp r, )yp(r2)
+1~00

as a perturbation and introduce the Green's function
for the operator

a,= V,2+ V,2+2LE—p(r,)];
this Green's function satisfies the equation

HpG = —b(rl —rl') b(r2 —r2') .

A convenient representation of G is

G(rl, r2', 1'1, r2 )

(10)

( t ) exp('k-Irl —rl'I)
=

I p+ I4.(r2)p.*(r2') (11)

III. DIRECT SCATTERING

The first step in formulating a Schwinger variational
principle is to replace Eq. (1) by an integral equation
which includes the boundary conditions. For the case
of direct scattering we consider

f(rl r2) 2I &(rl)+ I (F12)3 (g)

In terms of G the solutiongp of Eq. (1) can be written as

r2

exp(ik„r2)
Lime() ——

I P+ Ig.(8, y) y„(r,).
r~~ n 4

f
(4b) +0 C 0(rl r2)

J
G(rl r2 rl r2 )

X f(rl', r2') 11'0(ri', r2') drl'dr2'. (12)
In Eq. (4) @„(r)are the eigenstates, with energy, of
the Hamiltonian 4 p(rl, r2) = exp(ikpnp' 1'1)iflp(r2). (13)

k= ~2+2I 0—p(r) j.
k 2=X 0„, and the symbol —(p +J ) signifies a sum-
matioD oyer discretq states and aD integration over the

The scattered amplitude f„can be found by taking the
limit of the right-hand side of (12) as rl—+op; this gives

' Reference 1, Chap. VIII.
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the following result:

f = —— exp( —Q„n r1)y„~(r2)
4n.~

X|(r1, r2)11 p(r1, r2)dr1dr2. (14)

(b, x) = (y, ~), (17)

and is a consequece of the fact that E is self-adjoint.
Our integral Eq. (12) corresponds to (15a), if we re-

place the abstract quantities in the latter according to
the scheme

The Born approximation consists of replacing %o in
(14) by the unperturbed wave C p.

Starting with an integral equation it is a simple
matter to write down a Schwinger variational prin-
ciple. The usual algebraic complexities are simplified
by 6rst expressing this principle in operator form.

If E is a self-adjoint operator and if in the domain
of E, x and y are vectors which satisfy the equations

Ex= 8, (15a)

Ey = b, (15b)

where u and b are vectors, then the expression

(y, Ex)/(b, x)(y, a) =1/(b, x) (16)
is stationary5 with respect to arbitrary variations of x
and y. The symbol (a, P) in Eq. (16) represents the
inner products J'n*Pdr. The reciprocity condition is
given by

H '= V,'+V,'+2[8—(,)J;
this Green's function satisies the equation

Hp' 8= —b (r1—r 1')b (x2—r2').

A convenient representation of g is

g(xl x2 xl x2 )

(23)

(24)

(
I ) ik Irp —r2'I

=+
I Z+ I4-(r1)4-*(r1')exp, (25)

42xl x,—r2'I

The complication in this formulation is that the in-
cident wave does not satisfy the equation

Ho'+o= 0. (26)

It is now most convenient to use the decomposition
given by Eq. (3) to obtain the following integral equa-
tion for the scattered wave:

0(r1, x2)

g(rlr2 xl x2 )'g(rl x2 )4'(rl x2 )drl dr2

(27)
'

g(r1, r2, r1', r2')f(rx', r2')C p(r1', r2')dr1'dr2'.

as a perturbation and introduce the Green's function
for the operator

&—+ dr1'dr2'[8(r1 —r1') b(r2 —x2')l (r1', r2')

gn=gn+b,
a~i (r1, x2)+P(x1, 1'2).

For the equation corresponding to (15b) we choose

where

g„'= —— exp( —ik„n r2')@ (r1')g(rl', r2 )4~

The exchange scattered amplitude is found by taking
the limit of the right-hand side of (27) as r2—+~; this

+0(xl x2)G(rlx2 xl x2 )l (xl x2 )) gives the following result:
x—&4 p(r, ', r, '), (18)

(rl r2) c (rlx2) G(rl x2 xl x2 )
1

Xp(r1', r2')dr, 'dr2' ————C „(r2', r, ')
4n-~

with
=exp(ik„n r1)$„(r2).

y~%'„(r1', x2'),

b~f(r1, r2)C„(r1, x2).

(20)

(21)

Xl (rl', 'r)+2„(r 1r2')dr1'dr2'), (19) X7/(xl, I'2 )lp(x1, x2 )dl'1 dl'2,
1

b= ——I exp( ik„n r,—')f„(r,')f(r, ', r,')

Xexp(ikpnp r, ')yp(r2')dr1'dr2') = ——c „(x,', r1')
4~~

With the substitutions (18) and (21), Eq. (16) gives
us a stationary expression for —1/42xf„.

IV. EXCHANGE SCATTERING

In order to obtain the exchange scattered amplitude
we consider

2)(ll x2) = 2[2 (x2)+ i (x12)j (22)
' N. Marcuvitz —Sec. III D, Recent Developmentsin the Theory

of lVave Propagation, New York University, Institute for Mathe-
matics and Mechanics (1949).

X (r1 x2 )C'p(xl x2 )dxl dx2 ~

The Born approximation involves setting P=—0 in (29)
and thus gives g„=b.

Our result for g„ in the Born approximation does not agree
vrith that given by Mott and Massey, ' namely,

fc„(x2'—, x—~')q(x&', x2')c'o(x~', x2')dx~'dx, '.

' Reference 1, Chap. VIII.
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The two results are equivalent~ when p„corresponds to a bound
state, since their difference,

(r2 r1 )Ls(&1 ) s(&2 }3@0(rl r2 }drl mrs

can be shown to be equal to zero as follows: Since H0'C„*(r&, rI)
=0, replace s(r~')C„(rs', r~') by -', (VP+VP+2E)c'„(rs', rs').
Similarly replace v(r2')40(rI', rg') by gf~P+~2'+2~}C'0(rl r2 )
Then integrate by parts.

However, when @„is in the continuum, the result of Mott and
Massey in the Born approximation diverges, whereas Eq. (29)
does not. The procedure that Mott and Massey use is open to
question since they expand the entire solution including the
incident wave in terms of the orthonormal set @„(r1).This pro-
cedure is not valid, as is shown in the Appendix.

We now proceed as in Sec. III to formulate a sta-
tionary expression for g„'. Equation (27) corresponds
to (15a) with

Hp" = 7'P+&s'+2LE —e(rt) —e(rs)];

this function is given by

I(ft, rs', rt, rs )

(33)

cedure to the situation in which one of the particles of
the system has an inFinite mass. Otherwise the un-
perturbed problem would be a true three-body problem
and the Green's function for the unperturbed operator
would in general be unobtainable.

Following the procedure of Sec. IU we introduce the
Green's function corresponding to the operator

=
I 2+ I4-(rs)4-*(rs')~-(rt, rt') (34b)dr ldr 2L~(rl rl )~(r2 r2 )'g(rl rs )

+"( " ' ~( " " '' ' " ' ' ' j'
30 In Eqs. (34a) and (34b) y„(r, r') is the Green's function

for the operator
a~ q(r„—r,) h„=7'+2LE—e„—e(r) j. (35)

8(r„rs, r, ', r, ')t'(r, ', rs')C s(rt', r, ')dr, 'dr, '.

For the equation corresponding to (15b) we choose

X (rl r&) =@-(rs, rt) —
~

8(rt, r2 rl rs )

Thus
X g(rl r2'))f (rl r2')«t'«s'. (31)

3'~X (rt rs)
b~C'„(r, , r,)q(r, , r,).

(32)

With the substitutions (30) and (32), Eq. (16) gives us
a stationary expression for —1/4z.g„. A similar varia-
tional expression could be derived for —1/47rf„.

We shall use Eq. (34a) to investigate the asymptotic
behavior of the solution when r2—+~: when r~—+~ we
shall use (34b).

The solution of Eq. (1) satisfying the boundary
conditions is

+o=q4(rt)go(rs) —2~t I'(rt, rs', rt', rs') V(rts')

X+s(r,', rs')drt'drs' (36).
In Eq. (36), Q, (rt) is a solution of the equation h,p, (r) =0
which at infinity describes an incoming wave approach-
ing the origin along the direction no.

The scattered amplitudes can be found from the
asymptotic forms of the Green's function":

V. OTHER FORMULATIONS

While the expressions corresponding to Eq. (16) with
the replacements discussed in Secs. III and IV are
stationary, their utility frequently depends to a large
extent on whether or not one can use the unperturbed
6eld as a trial function. There is some question as- to
whether the expressions derived in Secs. III and IV
converge upon successive iterations of the unperturbed
field. This applies especially to the case of exchange
scattering. ' In order to avoid this difFiculty it might be
useful to formulate additional stationary expressions
for the scattered amplitude such that the use of the
unperturbed field in their evaluation would be the First

step in a converging process.
To do this we consider 2V(r») of Eq. (1) as a per-

turbation. This step restricts the usefulness of the pro-

We are indebted to Major G. W. GriGing for this remark.' W. Kohn, private communication.

LimI'(rr, rs rt r2')= —
l Z+~" le-(rs)e.*(rs')

f'I-+00

exp(ik„r, )
X F„(rt', z —4'). (37b)

In Eqs. (37), P„ is a solution of the equation

h„F„=O, (3g)
~ Reference j., Chap. IV. It should be remarked that Eqs. (27),

hold only for a s(r) which goes to zero faster than 1/r. For the
Coulomb fIeld one obtains a logarithmic phase factor in the ex-
ponential in the usual way,

LimF(rt, rs., r, ', rs') = —
l P+ ly„(rt)y„*(r,')

~ )
exp(ik„rs)

X -Ji„(r,', z.—0) (37a)
4xr2
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which at infinity represents a wave approaching the
origin at an angle of 2r —0 (or s —C) with the s axis;
O(4) is the angle between r2 and r2'(r1 and r1').

From Eq. (37a) and (37b) one can immediately
write down the amplitudes for direct and exchange
scattering:

1
a„=——y„*(r2')F„(rl'; 2r —C) V(r12')

2m~
XC'p(rl', r2 )«1'«2', (39).

and
1

p„=——y„*(rl')F„(r2', 2r —0)V(r12')
22r

XC'p(r1, r2 )drl dr2 . (40)

Equations (39) and (40) give correctly the inelastically
scattered amplitudes as well as the elastically scattered
exchange amplitude. To determine the direct elastically
scattered amplitude'fp it is necessary to add to np the
coeKcient of the outgoing spherical wave contained in

f;(r) as r—+~.
In formulating the stationary expression we shall

again require, as in Secs. III and IV a solution of Eq.
(1) satisfying different boundary conditions. The solu-
tion whose inhomogeneous term is F *(r1', x—C)@„(r2)
will be designated by %„(rl, r,), and the solution whose
inhomogeneous term is F„*(r2,n.—O)g„(r1) will be
designated by X (r1, r2).

A stationary expression for —1/4~a can be found
using Eq. (16) with the following replacements:

drl dr2 p(rl rl )~(r2 r2 )2V(r12)

of the Hamiltonian the expansion coeKcients must
contain singularities such as 8 functions. If we assume
that the Hamiltonian is spherically symmetric, it will
be sufhcient to consider the expansion of sin(kpr) in
terms of the eigenfunctions of the ordinary differential
operator

—d2/dr2+ V(r) (A. 1)

00

P 22„(r)N„(r')+—
~ P(r, k)P(r', k)dk= B(r—r'),

~~p

we get the expansion

sinkpr =P u„(r) sinkpr'u„(r') dr'
n

2
+— ~ p(r k)dk Q(r', k)sinkpr'dr'.

X~p ~p

Now the expansion coefIicient in the continuum spec-
trum is

Let u„(r) be the discrete eigenfunctions and g(r, k)
be the continuum eigenfunctions of (A.1); that is

[d'/dr'+ k' V—(r)]$(r, k) =0.

We have the asymptotic formula p(r, k) sin(kr+g),
where g is the phase shift. Put

p(r, k) = sin(kr+g)+w(r, k).

Then w(r, k) will approach zero as r becomes infinite.
From the well-known relation,

+4V(r12)1 (rl r2 rl r2 )V(&12 ))
x~4 p, y~% „,

'(rl)4'p(r2) k~F (r1 & C')4' (r2) ~

sin(kpr')P(r', k)dr'=
~~

sin(kpr')sin(kr'+g)dr'

(41)
00

+— ' sin(kpr') w(r', k)dr'
p

Similarly one can find the stationary expression for
—1/421 P as follows: The second term is a well-behaved function of k, but

for the first term we have

E +drl'dr2'LB(r1 ——r2') 8(r2—r2') 2 V(r12)
sin(kpr') sin(kr'+ g)dr'

+4V(F12)&(rl r2 rl r2) V(r12 )j 2I'" p
(42) Pb(k kp)+b(k+kp)]—2 k

x—+%p, y—A„ =k cosg ——sing
k k' —kp'

a~;(r1)pp(r2), b—+F *(r2, 2r —C)q4(rl).
sing=cosgb(E —Ep) ——,(A.2)

xE—E
APPENDIX

p

We shall show that when a plane wave exp(ikpr cos8)
is expanded in terms of a complete set of eigenfunctions if we put k'= E, kt)' ——Ep. This coefficient is singular.


