LIGHT EMISSION EFFICIENCY

the integrated and peak-height measurements would
be the existence of a tail in the decay curve of a light
flash of the anthracene crystal. Such a tail could pro-
duce a considerable addition to the amount of light
when integrated output is measured but would not
show up in the peak height determinations Preliminary
measurements on anthracene and CsBr carried out by
Grace Marmor Spruch, however, tend to show that the
emission of anthracene observed for the period of 10
milliseconds does not have a tail sufficient to account
for the difference.

As a check, experiments with CsBr(Tl) were per-
formed. With this crystal the integrated intensity isabout
2 to 3 times as great as that of the same mass of anthra-
cene for gamma-rays; the peak heights with a 1-megohm
output resistance are, however, less than one-half
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of the anthracene value.® The light output of CsBr(Tl)
takes place over a much more extended period than
that of anthracene; certainly some light is still emitted
after one millisecond, and this could account for the
difference in peak heights. With longer circuit time
constants, the peak heights of CsBr were considerably
greater than those of anthracene. With anthracene, as
remarked above, such an effect has not been detected;
nevertheless, a very small, but long-time phosphores-
cence, sufficient to account for the above discussed
differences, may exist. There are indications that some
long-time phenomena do occur with anthracene, since
a small but noticeable gamma-ray phosphorescence has
been found, and also an energy storage which can later
be released by light and does not instantaneously decay.

9 Bittman, Furst, and Kallmann, Phys. Rev. 87, 83 (1952).
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A nonstatic solution of the Einstein gravitational equations representing a spherically symmetric cluster
of radially moving particles in an otherwise empty space is obtained. While it has been presumed by Einstein
that the Schwarzschild singularity is physically unattainable as matter cannot be concentrated arbitrarily,
the present solution seems to show that there is no theoretical limit to the degree of concentration, and
that the Schwarzschild singularity has no physical reality as it occurs only in some particular coordinate
systems. Incidentally, it is shown that in case of spherical symmetry the condition of conservation of
gravitational energy of an isolated system of fluid material is equivalent to the vanishing of pressure at

the boundary.

1. INTRODUCTION
/ I \HE Schwarzschild field for a mass particle,

dst= — (14+m/2r)*(dr*+12d6?7? sin®0d ¢?)
(1 —m/2r)dt?

1
(A4m/2r M

has singularities at #=0 and r=m/2. While it is not
unnatural to identify the singularity at the origin of
the spatial coordinate system with the mass particle,
the “Schwarzschild singularity”” at =m/2 (correspond-
ing to the vanishing of gss) has been the subject of
considerable speculation. Considering the field inside
matter, Schwarzschild showed that if one considers an
incompressible perfect fluid (T%*= — pdsé, for 1, k=1, 2,
3; Tst= p=const.), such a singularity corresponding to
the vanishing of gss can indeed be attained if the size
of a sphere of given density be sufficiently large. How-

* Present address: Theoretical Physics Department, Indian
Association for the Cultivation of Science, Jadarpur, Calcutta,
India.

ever, as pointed out by Laue, the assumption of incom-
pressibility is not consistent with the ideas of the theory
of relativity. In order to avoid this difficulty, Einstein!
has more recently examined the problem by considering
a spherically symmetric assembly of particles moving
in randomly oriented circles around a common center
and in arbitrary phases. From the condition that the
geodesics of the particles must be time-like, Einstein
finds that there is a limit to the degree of concentration
of matter, and it then follows that if matter be intro-
duced in this particular form, the Schwarzschild singu-
larity is physically unattainable. Further Einstein has
expressed the view that it is not “subject to reasonable
doubt that more general cases will have analogous
results.” However, the following considerations throw
doubts on this presumption and have led to the present
investigation.

2. FUNDAMENTAL IDEA OF THE PRESENT PAPER

If one considers the cosmologic solution corresponding
to a spherically symmetric cluster of particles falling

1 A. Einstein, Ann. Math. 40, 922 (1939).
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freely towards the center,? one finds that it is possible
to reach any degree of concentration, there being no
singularity except for infinite concentration. Now,
suppose, we cut out a part R of such a contracting field
and place. it in an outside empty space. Outside we
expect to have the Schwarzschild field,® while inside
we expect the cosmologic solution. If the initial value
of the radius of R be greater than that for Schwarzschild
singularity (i.e., the concentration is less than the
critical value required for this singularity), then there
would be no singularity anywhere in the field. As the
interior field goes on contracting, a singularity would
appear in the exterior Schwarzschild solution as the
radius crosses a certain critical value; however, so far
as the interior field is concerned, no such singularity
appears at any phase of its career. Such a situation is
obviously inconsistent, so that either it is impossible to
fit such a contracting field with the outside empty space
for arbitrary concentrations or else the Schwarzschild
singularity is only a property of some particular
coordinate systems and would not appear in other
properly chosen coordinate systems.

Einstein and Straus? have shown that in general it
appears from the theory of differential equations that
the cosmologic solution can be fitted to the Schwarz-
schild field ; however, they have not considered whether
the transformations which make the two solutions
continuous are real and have also not considered the
role of the Schwarzschild singularity in this problem of
fit. In the present paper we shall show that it is possible
to obtain a real solution of the gravitational equations
for empty space which is continuous with the cosmo-
logic solution at a time dependent boundary. No singu-
larity corresponding to the Schwarzschild singularity
appears at any phase in the exterior field for any
arbitrary finite concentration in the cluster. The
Schwarzschild singularity thus appears to be only a
property of particular coordinate systems,® and there
seems to be no theoretical limit to the degree of concen-
tration.

2In the usual cosmologic solution for an expanding universe,
the “particles” are running away from the center. However, the
general theory of relativity is indifferent to the direction of time
flux, and we are here considering the solution corresponding, so
to say, to a contracting universe.

3 Any spherically symmetric solution in empty space is known to
be reducible to the Schwarzschild field. R. Birkhoff, Relativity

and Modern Physics (Harvard University Press, Cambridge,
1923), p. 253.

*A. Einstein and E. G. Straus, Revs. Modern Phys. 17, 120
(1945) ; 18, 148 (1946).

5 Some earlier workers also have given.transformations which
become singular at the Schwarzschild singularity, whereby the
Schwarzschild singularity may be abolished. G. Lemaitre, Ann.
soc. sci. de Bruxelles, Ser. I 53, 51 (1933); J. L. Synge, Proc.
Roy. Irish Acad. A53, 84-114 (1950).
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3. FIELD EQUATIONS AND THEIR INTEGRATION
With the isotropic spherically symmetric line element,
ds?= — e*(dr*+r*d0>+7* sin0d %)+ e7d 12, (2)
p=p(r, 1), v=yr,1),
the Einstein gravitational equations give®
=8 Tt= e+ w?/441'v' /24 (u'+ ") /7]
—e7 (i3 —p/2), (3)
Tt ' v ou v')

~+—

— 8w Ty?= -81rT33=e—“(
2 4 2r

i

(=), @
2

s

8rTim —e A 2 D2, )
8r = ~ (i’ —30v'), (6)

where dashes and dots denote differentiations with
respect to 7 and ¢/, respectively.

We now consider that in the region 0<7< 7, we have
a spherically symmetric cluster of particles falling freely
towards the origin. Such a situation is obviously
obtained if we assume” that in this region we have the
well-known solution

a2\ 2
eM:eQ/(1+—.)
4R? for 7<ry, 7

e’=1

where e? is a decreasing function of ¢ alone, =41, 0
or —1, and we take 7, <2R, so that so long as e? is
nonvanishing, there is no singularity in this region.

The coordinate system is co-moving, and the gravi-
tational equations reduce to

0= —ze~0/R—g— 3¢t (®)

8mp=23ze~ 1/ R*+41¢, 9)

where p=T4* is the density=nm, # being the number
density of the particles and m the mass of each particle.
Equations (8) and (9) together give
G+1d=—8mp/3,

so that, p being essentially positive, § is always negative.
Thus ¢ cannot have any minimum?; and the system
once contracting (¢ negative) would go on contracting
to infinite concentration.

(10)

¢R. C. Tolman, Relativity, Thermodynamics and Cosmology
(Oxford University Press, London, 1934); p. 252.

7 With the form of solution assumed, p is a function of ¢ alone.
A spatially nonuniform distribution of particles (retaining spher-
ical symmetry) would, however, lead to the same results so far as
our investigation is concerned.

8 A. Einstein, The Meaning of Relativity (Methuen and Company,
Ltd., London, 1950), fourth edition, p. 113,
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We next consider the field in the empty space 7> 7.
The metric tensor must satisfy the field equations with
T,#=0 and along with the first derivatives must be
continuous with (7) at r=7;. Equation (6) gives on
integration, e~”i?= ¢(f), where ¢(f) is a function of ¢
alone. The condition of continuity now requires ()
=¢? so that we have

e pt= ¢ (11)
Using this result in Eq. (5), we get
0= —e+#(u"+5u"+2u'/1)+ 26
Now, with the substitution®
ert=¢  x=logr, (12)
the above equation becomes
0%/ 9x* =1E+ 16 8% (13)
and, on integration, we get
(08/ 9x)° =184 T6 P&+ K, (14)

where K is apparently a function.of ¢ alone.
The corresponding equation in the region 0<r<n
would be
(08/ 0x)?= 18416 ¢* £ —3mpt", (15)
the function corresponding to K being here put equal
to zero to avoid a singularity at the origin. Now the
continuity of u and p’ lead to the continuity of £ and
(8¢/9x)?. Consequently, from (14) and (15),

27 pss e39/2
_ _( 5 (16)

SUEEE——— |
3 (1—|—zr 2/4R?)3
It is easy to see from (8) and (9) that pe??/?is a constant

independent of time as well, so that K also is a constant.
Equation (14) can be put into the Weierstrass form

(0y/0u)*=4y*— q2y—gs, 7y
where
- K& 1 ' 1
y=— 2’ q2= )
g2 12K 12K4 (18)

gs= —(1/6°K*+¢/4),

The solution can now be expressed in terms of Weier-
strass’s elliptic function,

u=K%logr.

y= @(u——uﬁ—c, g2, q3)y (19)
where

wm=Ktlogr, and c¢=p7(y),

y: being the value of y at »=r; determined from (7),
(12), and (18).
Thus, in view of Egs. (11) and (12), the field in the
empty space 7>, is given by
er=g/r,  er=(4¢/48)?,
® M. Wyman, Phys. Rev. 70, 74 (1946).

(20)
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with £ given by (18) and (19). It is easy to see that (20)
satisfies all the field Eqgs. (3)-(6) and the necessary
boundary conditions. For, if one substitutes from (20)
and (14) in (3), one finds that the necessary and
sufficient condition that 7! should vanish is that K

must be independent of . This condition, as we have

already noted, is satisfied. With (3), (5), and (6) now
satisfied, (4) is satisfied in view of the divergence
identity.

The choice of ¢ in (19) and the ﬁxmg of K by (16)
have already ensured the continuity of u and u'. If
therefore the clocks on the two sides of the boundary
be synchronized,!® 4 and 4’ would also be continuous.
Equations (11) and (6) then show that » and »" are
also continuous.

4. TRANSFORMATION TO THE SCHWARZSCHILD
FORM AND SINGULARITIES OF THE FIELD

If we make the transformation
(4m/2r)'rP=¢,
£ 4|

8rét’ ) y (21)
lgl@@—2m))  w(@—2m)

where m=—2K, the solution (20) goes over to the
Schwarzschild form (1) in 71 and ¢. (It is easy to verify
that dt; is a perfect differential.)t It may be noted that
the Schwarzschild singularity 7,=m/2 corresponds to
£=2m, and the transformation becomes singular there
and is no longer real for £<2m.

We next investigate the singularities of our field; the
region 0K7<r; is obviously free from singularities
except when e? vanishes (infinite concentration). In
the exterior field, the continuity of p and u’ insures
that at r=r, the left-hand side of (14) is positive and
that £ is an increasing function! of #. It is not difficult
now to see that £ goes on increasing and becomes
arbitrarily large at a finite value of 7, giving rise to a
singularity of e*. However, if one calculates the proper
distance of the singularity from the origin defined by -
Sore*2dr or the proper volume enclosed within the
singular sphere, both these quantities are found to be
infinite. Further, considering the transformation (21),
this singularity (§—>c) corresponds to the infinite
sphere in the Schwarzschild coordinate system. Thus,
although occurring at a finite value of 7, the singularity
does not appear to be anywhere in the finite region.

10 A time scale has already been chosen in the region » <7, by
taking ¢’=1, because the general solution is ¢’=f(¢). Hence, to
make the- t1me scales on either side of the boundary identical a
suitable transformation of the time variable in the region >,
may be necessary. This does not, however, affect Eq. (11).

t See H. P. Robertson, Trans. Am. Math. Soc. 29, 481 (1927),
especially p. 492. The author is indebted to the referee of the
Physical Review for this reference.

1 Actually the condition of continuity ensures the continuity of
(1/£)(8£/3r), this requires that £ and (3%/9r) are of the same sign,
but their individual signs are undetermined. A negative value of

£ leads to the same results physxcally and so for simplicity we
restrict our considerations to the positive sign of £.
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In the next section we shall see that such a singularity
occurs in the nonstatic form of even the Euclidean field.

The form (20) for e shows that e vanishes if £
vanishes. We next investigate whether any singularity
of this type is present. From (14), we get

(& 2+3QZE"/ 8)é+qqt%/8

Ex 16 £1 gx (4Ez)

In the above equations, the subscript x indicates
differentiation with respect to wx, and the subscript 1
indicates the value of the quantity at the boundary
r=r;. Equation (22) gives at any particular time the
behavior of £ (or rather of £/¢,) as we go away from 7.

Let us consider the asymptotic value of £/£, as
£¢—, We have, from Eq. (22),

().l ()

Since, from (14), (¢/£,) vanishes as £« , we get, after
eliminating § with the help of Egs. (10) and (16),

i et Car T

— =—1 — +-{ —+ . (22)
(Ez (o0 ) q 4f 2 ‘l;l Ea:
Weno'gethat

£ 1(1- 2712/4R2)_
( ) T2 (14z /4R

=

and
S qq rt E“dé

(22)

© df

Va3
(D),
8 4£x 1

£1 Ez

£5(£2)1

(say), (23)

where «, as defined, is evidently a constant.

It is easy to see, from Eq. (9), that if we trace the
history of the contracting cluster backwards in time,
then for z=—1 or =0, we can go-to arbitrary large
values of £. For z=-1, there is a maximum of &
determined by the zero of ¢. We get for this maximum
value of &, from Egs. (9), (16), and (23),

(£12) max=2m/(1—4a?) > 2m.

Hence, in all cases, the solution (7) allows a state at
which £2=2m. At this state we have

@ dg @ 64d¢ 8
f -—<f = . (23a)
0 & Ju 4 14)%8
Also, from Egs. (14) and (23), when §2=2m,
(£2)1=|q| &5/4, 2m/Ef=@/16a2%  (23b)

Substituting from (a) and (b) we find that the quantity
within the brackets in Eq. (22’) is definitely negative
for a2>1/24. Thus for a2>1/24, and §2=2m, (E)g._,w
is of the opp051te sign of ¢, whereas for £=§;, £ is of
the same sign as ¢. Hence for o2>1/24, and £.2=2m, £
must have a zero for some value of £> §;.
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We can next generalize this result for arbitrary values
of a and £;. For we have, from Egs. (22) and (23),

Gpdg 1

16ds &3 4o

where £, is the value of £ on the spherical surface at
which £ vanishes. From this we find that d¢,/dt is
always finite except for e2=0 (when the field in the
region 0K 7< 71 becomes singular) and hence, since for
a?2>1/24, and £2=2m, we have a finite value of &,, £,
will have a finite value at all stages provided o?>1/24.
Similarly, considering £, as a function of the parameter
a, we find that £ will have a zero for all values of « as
well.

It is thus clear that our solution, given by (20) has
a singularity corresponding to the vanishing of q.
However, it cannot be identified with the Schwarzschild
singularity for it differs in two important respects.
Firstly, this singularity does not in general occur at
£=2m and in fact, as a little consideration shows, it
does not even occur at any fixed value of £. Secondly,
while our singularity occurs for all concentrations, the
Schwarzschild singularity appears only when the con-
centration exceeds a certain critical value. In the
coordinate system which we have used, our singularity
apparently is a surface separating a contracting space
(£ negative) in the neighborhood of the contracting
cluster from an outside expanding space (£ positive).
However, when the solution is transformed to the
static form, the singularity disappears. This suggests
that the singularity has no physical reality.

Thus, in our solution there is no singularity at
£=2m (the Schwarzschild singularity). Further, our
use of the co-moving coordinate system insures the
vanishing of the coordinate velocity of the particles
whose world lines are thus parallel to the time axis.
Hence, no question of exceeding the velocity of light
arises and, unlike the situation in Einstein’s cluster,
there appears to be no theoretical limit to the degree of
concentration.

5. CASE OF ABSOLUTELY EMPTY SPACE

In case the space is absolutely empty, K in Eq. (14)
is zero and Eq. (14) on integration gives, for £ vanishing
at the origin,

g=2ar/(a—§r*/4),

where ¢ and ¢ are two arbitrary functions of time. The
solution now becomes

=40/ (= FR/A, o=/
If one makes the transformation,
v'=2ar/(a®— ¢*/4),

et |
=——|q[rd7+e"/2
2|

- (a®+ ¢*r*/4)ds,
gla
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the line element goes over to the pseudo-Euclidean form
ds?= — (dr"4r?d0?+7"? sin20d %)+ di".

It is interesting to note that in this transformed form
of even the pseudo-Euclidean field, one has a singularity
atr=2|a|/|¢| where e* becomes infinite. This confirms
our conclusion of the preceding section that this
singularity has no physical significance. It appears only
because the infinite space is mapped out in a finite
coordinate region.

Singularities, of the type g«s=0, may or may not be
introduced into this solution as ¢ and ¢ are perfectly
arbitrary functions of time.

6. CONSERVATION OF GRAVITATIONAL ENERGY
OF AN ISOLATED SYSTEM

In this section, we are giving up the idea of a cluster
of particles and consider instead a general spherically
symmetric distribution of fluid material. We have seen
that (20), with £ defined by (14), is a solution of the
field equations for empty space if K be a constant.
Thus, any constant value of K gives rise to a solution.
Further, from the transformation to the Schwarzschild
form it is seen that the constancy of K means the
constancy of the gravitational mass. Hence, for an
isolated system in empty space, the gravitational energy
must be conserved. It will now be shown that in the
case of spherical symmetry this condition is equivalent
to the requirement of the vanishing of the pressure at
the boundary. For this purpose, it is more convenient
to use the spherically symmetric line element in the
form

ds?*= — eMdr?—r}(d0?+sin?0d ¢?) -+ e*d?2. (24)
The gravitational equations are'
N | 1
87Ty = e"‘(—--}——) ~, (25)
r 7 r?
Ao 1
81rT44=e""(——*—)+'—, (26)
r 7 7?
8rTu=N\/7, 27
JONY v N —y
—8rT3= —8rl =M ———F—— )
4 4 2r
A MR
—e‘"(————i———). (28)
2 4 4
Equation (26), on integration gives
e r=1—2m/r, (29)
where
m="4m f T4v2dr. (30)
0

12 Reference 6, p. 251.
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Now, the condition to fit with the external space shows
that sm(r;) is the gravitational mass of the system,
71(?) being the coordinate of the boundary of the sphere.
The rate of change of gravitational energy of the system
is given by

dm d7’1

—= ’erl'

di dt

+ 1y,

or, in view of (30), (29), and (27),

dm d7'1
—_—= 4#712(T44——— T41) .
dat dt

However, if p be the pressure and p the density of the
fluid,®

Tit= pe*(dt/ds)*+ pe’(dt/ds)*— p,
Tt = pe*(dt/ds)(dr/ds)+ p(dt/ds)(dr/ds)e?,

so that the above equation gives
d’i’ﬂ/dt"—‘ - 47['7’12P1d7’1/dt.

This is analogous to the classical relation that the
rate of change of energy of an isolated system is equal
to the rate of work done by the system. Thus, for a
nonstatic field [A#0, (dr/di)#£0],1 the condition of
conservation of the gravitational mass is equivalent to
the requirement of the vanishing of pressure at the
boundary.

7. CONCLUDING REMARKS

It is interesting to note why our cluster can go on
contracting indefinitely, while there exists an upper
bound to the concentration in the case of Einstein’s
cluster. The null sphere [r=m(24V3)/2] lies beyond
the Schwarzschild singularity (r=m/2), so that the
Einstein particles, moving in circles, are constrained to
lie beyond this singularity. In our case, however, for a
radially moving particle, it is known that it can cross
the Schwarzschild singularity in finite proper time and
without attaining the velocity of light.

As is clear, there is a singularity at a finite time, the
whole region 07 <7y collapsing to zero volume. What
happens after that, our equations cannot say.!® It
appears, indeed, that while we can trace the history
of the birth of a particle, we cannot tell what happens
when the particle is actually born. This perhaps can be
attributed to the fact, as remarked by Einstein,!® that
the general theory of relativity would break down
under such stringent conditions.

¥ P. G. Bergmann, Infroduction to The Theory of Relativity
(Prentice Hall, Inc., New York, 1947), p. 129.

1 In case A=0 at the boundary, the conditions at the boundary
are the same as in the static case and one gets the continuity of
pressure in the usual manner.

u J% L. Synge, Proc. Roy. Irish Acad. A53, 84 (1950), especially

. 107.
P 15 Reference 6, p. 438.
16 Reference 8, p. 118, footnote.



