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Spin and Angular Momentum in General Relativity*
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In the general theory of relativity, the group of coordinate transformations gives rise to four point-to-point
conservation laws, which are usually identified with energy and linear momentum. In the presence of a semi-
classical Dirac field, it is convenient to introduce at each point of space-time an arbitrary set of four ortho-
normal vectors (quadrupeds, "beine") and to consider the group of "bein" transformations, which then
play the role of local, nonholonomic lorentz transformations. A search for the corresponding conservation
laws leads to terms that have the form of a spin angular momentum and which, in order to be conserved,
must be 'supplemented by terms representing the orbital angular momentum. The technique of the so-called
superpotentials has enabled us to introduce, in addition to the canonical stress-energy, a "contravariant"
stress-energy which contains the usual symmetric Dirac and Maxwell terms and also asymmetric, purely
gravitational terms. It is this set of expressions which enters into the orbital angular momentum. The
techniques presented here are applicable to more general covariant theories, provided the gravitational field
is represented by a metric tensor.

l. INTRODUCTION servation laws. The invariance with respect to linear
displacement yields the conservation of linear mo-
mentum and energy, while the invariance with respect
to the homogeneous Lorentz transformation group
yields the conservation of angular momentum. Now
in the theory of general relativity, the most important
invariance property is the invariance with respect to
general (curvilinear) coordinate transformations. This
is a group of transformations which depends on a set of
four arbitrary fuectiorrs, one for each coordinate. The
conservation law obtained as a result of this invariance,
as stated earlier, is none other than the conservation of
linear momentum and energy. It is true that the theory
is also invariant with respect to linear displacements, a
subgroup of the group of all coordinate transformations.
This invariance leads again to the conservation of linear
momentum and energy. One might think that by con-
sidering other subgroups, say the Lorentz group, other
conservation laws might be found. Such is not the case.
Noether' has shown that in general, conservation laws
obtained in such a way are simply restatements or even
special cases of the general conservation law resulting
from the invariance with respect to curvilinear trans-
formations. Thus it seems that the angular momentum
law will not be obtained by appealing to an invariance
argument in the usual theory.

Our program is not to attempt to derive the angular
momentum from an invariance argument, -but rather to
construct a quantity from the energy-momentum
"tensor" itself which has the properties of the usual
angular momentum. There are several types of quan-
tities which have been used in the past as energy-
momentum tensors. Rosenfeld' considers only the
symmetric matter tensor which describes matter in the
gravitational field equations. Others' ' start with the
canonical "tensor" of a particular field and add terms
which are obtained from the Lorentz covariant angular
momentum law, to make the resu, lt symmetric. These

'HE general definition of the angular momentum
of a field has been discussed within the frame-

work of Lorentz invariance of the theory by several
authors. ' ' In these and other previous papers the con-
servation theorem for angular momentum is a direct
result of the fact that the Lagrangian is a scalar density
with respect to Lorentz transformations.

'tA'e have been interested for several years in the pos-
sibilities of constructing a completely covariant quan-
tum theory containing the gravitational field. ' ' One
of the aspects of this investigation is, of course, the role
of the angular momentum in such a theory. The spin is
a fundamental property of a particle in the usual
Lorentz-invariant theory; it would be surprising indeed
if this property were suddenly lost simply because the
theory is made covariant with respect to more general
coordinate transformations.

Yet it seems that in the theory of general relativity
the concept of angular momentum is not as natural as
it has been in special relativity. In general relativity
the only identity one obtains from the general covariance
of the Lagrangian is the conservation of the energy and
momentum. In Lorentz-invariant theories, there are at
least two separate types of transformations (each de-

pendent on a set of parameters) which lead to two con-
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two methods lead to the same result when applied to a
Lorentz-invariant Lagrangian. However, this procedure
will have to be modihed if the gravitational terms are
included in the Lagrangian. First, the symmetric
matter tensor, as is well known, is not actually con-
served; its covariaet divergence is zero, and purely
gravitational terms must be added to obtain expressions
whose ordinary divergence vanishes. The essential
feature of the procedure of this paper is to 6nd the
proper energy momentum "tensor" and then to con-
struct from it a "superpotential" for the angular
momentum of the total field. The superpotential will

have certain symmetry properties which guarantee the
conservation of the angular momentum which is
derived from it. We shall show the results of applying
this method to the gravitation-electron field.

We have stated that there is no invariance property
of the usual theory which leads naturally to the con-
servation of angular momentum. However, we can
introduce into the theory of gravitation one further
invariance property which on first inspection seems to
point the way toward an angular momentum conser-
vation law. This is "bein" invariance. It is possible to
describe the gravitational 6eM in terms of a system of
"quadrupeds" or "beine. " ' One introduces at each
point of Riemannian space four orthonormal vectors
whose components are diGerentiable functions of the
coordinates. Then the metric tensor components may
be expressed in terms of the 16 components of these
vectors, and the "beine" themselves act as 6eld vari-
ables for the gravitational field. The theory is still
obviously invariant with respect to coordinate trans-
formations, since the "beine" transform as vectors, but,
in addition, it is possible to transform from one system
of vectors to another set by rotating the quadruped
located at each point of space-time by an amount that
may vary with position. Rotation, of course, usually
generates angular momentum, and one might reasonably
hope that such is the case here. Detailed examination
shows that while this procedure does not lead to a
complete conservation law, the identity obtained
yields the contribution of the spin of the electron fieM

to the total angular momentum.

2. CONSERVATION LAWS

For the derivation of the conservation law of angular
momentum, it is assumed traditionally that there is
available a symmetric energy-stress tensor that satis6es
a conservation law of its own. Hence, we find in the
literature a distinction made between the canonical
stress tensor which is obtained directly by the require-
ment that the theory be invariant with respect to rigid
displacernent along each of the four coordinate axes,
and a symmetric stress tensor 0&'.The symmetric stress
tensor is then made the point of departure for.a deriva-

L. Eiaenhart, An Introduction to Differential Geometry {Prince-
ton University Press, Princeton, 1947).

tion of the expression for the angular momentum. The
symmetric tensor 8&" has the further virtue of being
gauge invariant, while the canonical tensor is not. The
canonical tensor is written

, v

(2.1)

bL/8p=0, (2.3)

contain two types of terms, originating in the two
terms of the Lagrangian (2.2),

8L/8 p = SN'/hg„„+ b9R/8 p, (2.4)

which we shall designate for short as the gravitational
and the matter terms, respectively. If we write down
the strong conservation laws for the gravitational terms
only, we obtain

Tgo", „=0) Tg„"=tg„" Fg„"8Q/8f)—(2.5)

where tg is the canonical stress "tensor" obtained from
the gravitational term of the Lagrangian alone. In ob-
taining this expression, we must observe one pre-
caution, though. The expression I' contains second

where 1 is short for the totality of all field variables, and
I is the Lagrangian density.

In a theory that is generally covariant, the expression
(2.1) can be introduced in a natural manner, but it is
impossible to introduce, by a general procedure, a sym-
metric tensor 0&' whose divergence vanishes. What we
shall do in this paper is to derive a quasi-symmetric
expression consisting of two parts: one that depends
exclusively on gravitational terms and which is neither
covariant nor symmetric; the other, "the matter
tensor, " which is covariant, gauge invariant, spin in-
variant, and symmetric. This result is independent of
the special nature of the theory in so far as it does not
concern the gravitational field. But we cannot obtain
our results without assuming explicitly the existence of
a symmetric gravitational tensor g„„which, in the
absence of other helds, satisfies Einstein's held equations
6&"=0.We shall, therefore, assume that the Lagrangian
of our theory has the form

L=I'+K, Q'= —(e'/161r)t) (—g) )E, (2.2)

where R is the curvature scalar, c the velocity of light
and ~ the gravitational constant.

In what follows, we shall establish a relationship
between the canonical and the quasi-symmetric ex-
pressions by means of the so-called strong conservation
laws. 4 These laws are actually identities and hold
whether the field equations are satisfied or not, simply
because of the covariance of the theory with respect
to general coordinate transformations. They will, there-
fore, hold both for the Lagrangian of the whole theory
(2.2) and also for the gravitational term 8' alone. We
shall make use of the latter fact. The field equations,
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derivatives of the field variables, while the canonical
stress "tensor" is defined ordinarily only for Lagrangians
depending on zeroth and first derivatives of the field
variables. To meet this difhculty we introduce, as is
customary, the gravitational Lagrangian $ which
differs from $' only by a divergence but is free of
second derivatives,

$=$'—g», , (2.6)

The variational derivative of the last term on the
right vanishes, and we have, therefore,

gl- —F»P

where the P are the infinitesimal variations of the coor-
dinates. The subscript G in (2.5) obviously refers to the
gravitational field variables.

We may write

Tg„"= tg»" Fg» "8G/—8f
~g» +2gxp~G/~guru

= ~g."—(—g) 1G.".

(2.9)

G„" stands for the Einstein tensor, with one index
raised,

(2.10)

~$/~p= &$'/sp. (2.7)

The canonical stress tensor tg in Eq. (2.5) is then
understood as having been formed from the Lagrangian
$. The Fg„" in Eq. (2.5) is defined by means of the
transformation properties of the field variables. In an
infinitesimal transformation of the field variables, we
set

(2.8)

of a field whose Lagrangian is a scalar density, such as
the matter fields, it has the form":

U~'"»', = (&—K/~ p, i)F~,». (2.14)

U Pv] —U P» u
Ph (2.15)

The energy-momentum derived from this set of modified
superpotentials will also be conserved and will be taken
to be the "contravariant" form of the energy-mo-
mentum. The conservation law now reads

{q»v+]&»gnv+ Ug[x»] g»p &)

= (1» +Tg»") = Ug~"&'" g
——0. (2.16)

Here, we have grouped two terms together as 7g&";

this expression represents the gravitational terms in
the "contravariant" energy-momentum. Note, however,
that rg»" is not symmetric in its superscripts (though
K»" is) and that

We shall have no occasion to use the explicit expression
for the gravitational superpotentials. It should perhaps
be emphasized that there are superpotentials for each
of the terms introduced into the Lagrangian. Here we
have introduced only the gravitational superpotentials.
Later, when a definite expression for the matter tensor
is needed, superpotentials associated with the other
terms in the Lagrangian will be introduced.

In order to obtain a conservation law for a "contra-
variant" energy-momentum tensor, we note that it is
the antisymmetry property of the superpotentials which
leads to a conservation law. We can, therefore, raise
and lower the index not involved in the antisymmetry
with the help of the metric tensor to obtain the new
expression

Because of the set of field equations (8L/Bg»„=0), Eq.
(2.9) may also be written in the form (v'»"+rg»") =0 (r»"+rg»") WO (2.17)

g» $g» + K» p (2.11)

where K»" is the matter tensor density defined (as usual)
as

v'»" =—2829/8g», . (2.12)

The brackets indicate antisymmetry in the super-
scripts. The actual expression for the gravitational
superpotentials was obtained by Freud. " In the case

-' Ph. Freud, Ann. Math. 40, 417 {1939).

It is now clear from Eq. (2.11) that Tg„» may be inter-
preted as the total energy-momentum of all fields
present, and is the combination of the energy-momentum
tensor density of the matter fields with the canonical
energy-momentum of the gravitational field.

Because of Eq. (2.5), it is possible to introduce a set
of "superpotentials" related to the Tg„"in the following
way:

(2.13)

glP.p,] [vr] U' [Xp]vgo U' [Xp,]egv (2.18)

and define the angular momentum as

Ql [v~] —P'Pu] fv~]
& (2.19)

Then, as before, because of the antisymmetry of
W&"»'&"' in LXp], we have

Qe[v~] —P (2.20)

' R. Schiller, Ph. D. dissertation, Syracuse University {1952)
{to be published).

In special relativity, the energy-momentum may be
symmetrized so that both lines of Eq. (2.17) turn into
equalities. Here the energy-momentum will be left
unsymmetric as will be discussed below.

Using the Ug["», we can now construct a super-
potential of a quantity which will reduce to the angular
momentum of special relativity in the limit of a Rat
metric. We define
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In terms of the energy-momentum

Qs["']= (V'~"x V—'~'x")+ (rg~"x r—o~ x")
+, (Pg[sp]v Ug(vis]s) (2 21)

The extra terms involving Uz are necessary because of
the unavoidable asymmetry of the gravitational
energy-momentum 7.&&". The only reason for requiring
that any stress tensor in classical mechanics be sym-
metric is to insure that there will be no net torque on
the material in the absence of external forces. Here we
make up for the fact that the energy-momentum is not
symmetric by redefining the torque in (2.21). For the
limiting case of zero gravitational field, UG goes to zero,
and the angular momentum assumes the same form as
in Lorentz covariant theories.

where
V'= h'~V"s 4', s—=k.h."+rA. (3 6)

In all that follows bein indices will be written with
Latin letters, and coordinate indices will appear with
Greek letters. The bein vectors h&„are defined so that

(3.7)

(Greek indices are raised or lowered by g„„or gl'" and
Latin indices by g „or s] ".) s] „ is the Minkowski
Rat-metric tensor. The practical importance of the bein
is that it is possible to find a particular representation
of the f field such that for all bein and coordinate
systems, the p' are constants, and are given by the
original Dirac-Pauli matrices

3. ANGULAR MOMENTUM OF THE ELECTRON FIELD
+s+k++i+s 2~ks (3.8)

~= k&&( g)'*(&4'vV;. —i4 '..vV+2~—4'4). (3 1)

The p& are matrices satisfying the generalized anti-
commutation law

v"v"+v"v"= 2g"", (3.2)

In this section we will consider the matter tensor
density EI"" by itself and derive an expression for the
angular momentum of a Dirac field. Originally W&" is
defined as —2(8K/8g„„). But as El"" represents the con-
tribution of the nongravitational fields, it is preferable
to express v'&" in terms of the "matter" field variables
(including the electromagnetic field). This expression
for K&" can be obtained in a similar way to Rosenfeld. '
First, however, we shall summarize brieQy the results
of introducing, in a covariant way, a spinor field into
a curvilinear metric.

The Lagrangian for the original Dirac electron may
be generalized quite easily so that it is a scalar density
with respect to general coordinate transformations. It
then becomes

In the bein notation it is easier to find a closed ex-
pression for the spin connection coeKcients in terms
of the bein gravitational field variables. (We need this
expression because the F~ appears in the Lagrangian,
and we need to know how it depends on the field
variables. )

The analog to Eq. (3.4) now becomes

S
v'+rim' —v'ri=o, (3.9)

which is a linear expression for the I"~ and does not
contain the partial derivatives of y' (which vanish).
Since the p' generate a hypercomplex number system
(sedenions), any spinor of rank 2 may be represented by
a linear combination of the y' and their various
products. It turns out that the only nonvanishing terms
are of the zeroth and second degrees. The bein
Christo8el symbol in Eq. (3.9) is determined as
follows:

and P,.„is defined to be

(3.3)

jgm —
jism I, hs hm+J t, hk 0

lu I
"

h „h &h~&,

(3.10)

where the comma is ordinary partial diQ'erentiation and
the spinors, 1„,are the coefficients of connection of the
spinor field. They satisfy the equation

are the usual coordinate Christo6el
PO

symbols. The solution of Eq. (3.9) becomes then
p, .=-, .+ t, +r,, —,r, =o, (3.4)

ri s. ' 'V 7 +&s'il
el

(3.11)

and the are the usual Christoftel symbols.
p

These equations may also be mritten in terms of the
bein (or quadruped) gravitational variables. The
Lagrangian mill then be

~= 2&~( g)*'(&4!VV;. &4'.V V—+2~4'4')s —(3 5)

where @iare four real numbers and equal to —i/4 trace-
(r &) .They are not determined by Eq. (3.9) and are usu-
ally interpreted as representing the electromagnetic po-
tentials. The pi transform as vectors with respect to
coordinate transformations and are invariant under bein
transformations. In this paper we shall set all trace
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hm
JI

Qm

bS bS
g~,+ g, = &.4 (3.13)

Since (8/bh 4)(@+K}=0, then

bK bK
jg m — P~~) tt

bh „ bh
(3.14)

Having set the electron field in the general framework
which we use, we now return to the direct discussion of
its contribution to the angular momentum of the
theory. In the discussion leading up to Eq. (2.5), we
mentioned that each part of the Lagrangian had a set
of identities related to the invariance of the Lagrangian
density function with respect to coordinate transforma-
tions. Equations (2.5) and (2.11) summarize the iden-
tities obtained for the gravitational part of the total
Lagrangian. Since the electron Dirac Lagrangian func-
tion given in Eq. (3.5) is also a scalar density for such
transformations, the process which led to (2.5) and
(2.11) will lead to a new set of identities pertaining to
the electron field. Writing, thus, Eq. (2.5) and (2.11)
for the matter fields, we have

Pir[ 4)
4 „— t))1„4+Fir„—4bK/bl, (3.15)

which then becomes

bK BK BK
~(a) "+ h'. , + k

Alp Bh ~, 4 Btp, 4

terms equal to zero as we are not concerned with the
electromagnetic field.

We shall now resume our undertaking to express the
matter energy-stress tensor density in terms of the bein
variables. After a short calculation, we have

bS bS ag., bG &$
h'y))„(+ h."),))k.„(3.12)

~g ), ~h ~ ~gp), ~g),~

where the second equation follows from Eq. (3.7).

have the equation

( &."+t~:},.=0, (3.17)

where the E„I' is now the generalized bein expression for
the energy-momentum tensor, (3.16).

It is probably pertinent to remark here that the
tensor K4" defined by Eqs. (3.14) and (3.16) is sym-
metric by virtue of the fact that the matter field equa-
tions are satisfied. This is a direct result of the in-
variance of the Lagrangian with respect to the choice
of any particular bein system. Di6'erent bein systems
are related to one another by orthogonal bein trans-
formations.

From here on, we shall change our viewpoint slightly.
When heretofore we have used Greek indices for coor-
dinate components, it was not implied that there
existed an underlying orthogonal be in system. In all
subsequent formulas, even when coordinate indices are
used on spinors, it will be understood that some
orthogonal quadruped system has been chosen to which
all spinors are implicitly referred. In other words, from
now on, we shall take

+m (3.18)

A~=h~ A". (3.19)

It is desirable to eliminate those terms in Eq. (3.16)
which contain the partial derivatives of the electron
Lagrangian with respect to the gravitational variables.
They are hard to evaluate as they stand, and it is
possible to eliminate them by the use of certain iden-
tities. In order to take advantage of this method,
however, it is necessary to put the expression for K&"

into a form in which its tensor character is explicit.
Rosenfeld' has done this. His expression is

&K
k.+4';.

&K
Kb44+ U~ "4' —

), (3 2o)

and assume, as a matter of course, that the y are the
constant Dirac matrices chosen in (3.8). The y are no
longer field variables. Of course, the usual notation for
ordinary vectors and tensors is still the same as before:

+pt „
(lPt „

BK
Py) P=

Bh),
(3.21)s„-h ..The subscripts in parentheses on the Ii's show that

each 6eld variable has its own set of F's, the type of F
being indicated by the letter. V~f"»„ is the same ex-
pression obtained before in Eqs. (2.13) and (2.14), but
with the Dirac Lagrangian understood. It must also be
remembered that there are two distinct sets of terms in
U~f"»„—those containing derivatives with respect to
the gravitational variables, and those with derivatives
with respect to the matter fields. By a similar argument
to that which leads to (3.13), it may be shown that the
t0„4 used in Eq. (2.5) is not changed when it is ex-
pressed in terms of the bein variables. Hence we still

We will need to work with a particular antisymmetric
expression of the U's:

g&ftt&l = U f&w]~ U' f»ltt

BK
(h4 g~"—h" g~4}

Bh" ),

+ (J"(4)."g'"—~(t)."g'"} (3 22)

—K8„4+V~("4',
, ),. (3.16) The terms in question now are
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The program is to eliminate BK/Bh, b from this ex-
pression also, and we do this by means of an identity
due to the bein invariance of the electron Lagrangian.
We speak now of the transformation

rotation coeScients allows us to write the two identities

~K i~K
{Pabg e gaea b}+ [~e~b ~b~e]P

bh- 4 b

bh, =e'h b, (3.23) 1
+-at[~'v. —v.v'j

4. $ptwhere the e~ are the Lorentz transformation coef-
6cients which satisfy the relations

[v v' —v'v 34
~K 1 8

{Qabg e Pgaeg b}+
e'.c,=8,', e"+e'=0, e'=e'cg-. (3.24) g/ga „4gp„

(3.29)

The possibility is left open here for the "amount of
ro tation" of the bein vectors to be a function of position
in the space. Under this transformation the variation
of the matter part of the action becomes

q
-~K ~K ~K

bI= ' lh, + g+b$t
bh .

1
+-4'[v'v —v v'3

4 W'b

K, X

18
{~"xg " ~"xg "}+ [V"-V" V"V"3—

48/, g

After multiplying the second of these identities by
he, h"b, and using Eq. (3.7), we see that

BK
+ — bh, +

Bh,, p

~K aK
BP+g t

~Au ~4't, s-. s

d4x= 0. (3.25)
8

+ ltd~"v" -v"v"3 —=o (3.3o)

8/=of; Sent= fto, — (3.26)

where 0- is some spinor of second rank. Then we must
have

This equation gives rise to two independent identities:
that due to the volume integral, and that due to the
divergence or surface part. This is because the de-
scriptors of the transformation may be taken zero on
the surface, thus making the volume integrand zero;
but since the combination is also zero, then the surface
contribution must also be zero. In order to obtain the
identities themselves, we need the expression for g
and Aft. Assume

1 8
+-P[v"v"-v"v"7

4
(3.31)

Here F~~) „&=0 because the infinitesimal coordinate
transformation does not change P; only a bein trans-
formation aGects the f field. The V~&b&'" thus assumes
a particularly simple expression

It is now possible with the help of Eq. (3.30) to eliminate
BPP/BPi, „in Eq. (3.22), and that equation now becomes

18K
[v"v"-v"v"j4

48/, b

g~i 0 ~l ~m+~~l (3.27) p~[&el~ —i{g~le~l Z~Pvl+gef»l} (3.32)

from which, by assuming a solution quadratic in the p,
~ ~&= 4:&sj7 7'. (3.28)

Incidentally, here we have the same situation we had
in the expression for the F~. That is, there is a trace
term omitted which we have set equal to zero. As it
stands now, Eq. (3.28) contributes no traces to F&, and
hence the electromagnetic fields once set equal to zero
remain zero. This also shows how the electromagnetic
interaction terms may be incorporated into the spinor
fields, and at the same time remain independent of the
electron field. "If we put the expressions for the varia-
tions into Eq. (3.25), and remember the antisymmetry
of the e;;, see (3.24), then the arbitrariness of the

The expression U~~"»" itself now contains no partial
derivatives of ~ with respect to the gravitational
variables, and is quite easy to evaluate.

At this point, it remains only to carry out the opera-
tions indicated in the definition of Z"&&"' with the elec-
tron Lagrangian. With reference to (3.5), after a short
calculation, we have

~"'""'=—l' &(—g)'gatv"[ "v"—v" "34
-l~.~(-g) berth"~"-v"v"]&V, (3.33)

and

U l"r l„=—'ich( —g)&gt{2yt8„&—2ye5„"

-Lv"~ ~ ~'3v, }O. (3.34)

~ See for a fuller discussion of this point E. Schrodinger, Preuss. Because of the terms in U~&"»„ in the expression for the
Akad. Wiss. Berlin, Ber. 11—12, 105 (1932). matter energy-momentum tensor density, that quantity
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has become somewhat complicated: it takes the form

~."=l' &( g)—'{0"7%. 4'—;. "4) l —&( g)—'*4', {Lv"7" 7"—7"jv.+27"a." 27—"a.")4
——:~~~(—g) V'{Lv"v"—v"v"]v,+2m%"—2v"a,"jA (3»)

It should be emphasized that for our use the complete
expression is necessary for the matter tensor. It will be
remembered that in the special relativity theories the
U part is added only to make the energy-momentum
symmetric, and that if it is deleted entirely, the inte-
grated energy and momentum is unchanged. In those
theories the covariant divergence becomes an ordinary
divergence and may be integrated out. In this generally
covariant theory, however. Gauss' law may not be used
in the same fashion for this term, and the entire
expression, (3.35), must always be used.

We should like now to write down the expressions
representing the angular momentum of the electron-
gravitation field. In this connection we must bear in
mind that the only unique aspect of the energy-
momentum or the angular momentum is the total, or
integrated, value taken over the whole three-dimen-
sional space at some particular time to. This is because
one may add to the four-dimensional density expression
any divergence-less expression, and it would still be
"conserved. "In addition, it is easy to demonstrate that
the integrated form of all such expressions gives identical
values. But first we shall obtain the integrated ex-
pressions themselves. In order to obtain them, we
integrate Eq. (2.20) over some four-dimensional region.
We specialize the region to be a cylinder between two
time surfaces, with the sides of the cylinder taken to
spatial infinity, where the electron field is assumed zero
and the metric Hat. Designating the region by V4, we
have

then

2-surface

+ "V['4][""],d'x, (3.39)

J vx r{q 4vxx g 4xxv)d3x (3.40)

ol

[ aK aK aK
P'"x"+Pt'" x"— P'"x"

J an't 4 alp, 4 at/, 4

xv+ P [r4]v xx P[n4]x xv td3x (3 41)
a[t, .

Now U~['&]" is a tensor density, so

0 1

P [a4]v J I, P [P4]v+.pl
U'~(~4] 0

0' =i)2) 3.

The second term on the right is zero by the symmetry
assumed in the V[ &"&" function. Hence, for all those
functions V[4"[""] which fall off faster than 1/E2
(assumption of no radiation), the integrated value of
the angular momentum is uniquely defined.

From Eq. (2.21), the matter contribution to J""may
be written

Q~["» d4X=O (3.36)
+ p[n4]v U]tr [&4]" (3.42)

which because of Gauss' law, can be turned into

Jv'k r fl4[vj]$3x — fl4[vx]dax (3.37)

giving

[ aKJ vX P; vxx

alp, 4

aK aK
f;kxv+Pt;v

aip, 4 ajtt 4

4[j Xj V[4a] fv» (3.38)

When y4[""] is integrated over the infinite three-space,

J""is now the total angular momentum of the field, and
is an invariant with respect to arbitrary coordinate
transformations carried out within the region V4, with
the sole restriction that in any transformation, the new
coordinates go over into the old ones on the boundary
of V4. Now it can be seen that if we add to Q4[""] some
expression whose divergence vanishes y'[""], then it
may be represented as the divergence of an antisym-
metric quantity (a curl),

8 p
f$; x xv+ P [rr4]Pxx

a][t,

~[~4]Pxu U' [x4]v+ P [v4]x

l p

(P [r4]vxx P [n4]xxv) d8x (3 43)

The spatial divergence term in the integrand may be
converted into a two-surface integral, but the original
region V4 was chosen so that the contribution is zero.
(The U~['4]" contains electron field functions, which
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BK BK
+P;v xX f];X

B]tt 4 4

will be assumed to fall off faster than 1/R3. ) The 4-com-
ponent is zero again because of the antisymmetry of
the U function. Thus we have, finally,

BK BK
P' "x"— P' "x"

IB]t' 4 Bf 4

is flat, (3.45) degenerates precisely to the Lorentz-
invariant angular momentum in general use. '

The expression of (3.45) in terms of the bein com-
ponents has a particular significance.

BK BK

B$, 4 B$, 4

BK BK
+P$; vv X] P ] Xvv

B]t ],4 Bf 4

( 3

+U' [a4]]]
)

xX

0 0]t]

x"
i

~p ) (i 3

J
~l p

x" ~k' h" U
~p

+P [x4]v P [v4]x d3x (3 44)

By using the expression (3.34) then the last equation
becomes

BK BKj vX l, PvXX PXXv
I Blv', 4 Bi/4,

BK BK
+P$;v xX ]t ];X

B]t t 4 Bpt 4

( u . iX
+U34['4]]]~ X"—t X"

[( ~p l~p )

+-:3~I (—g)'][tv'(v"v'- v"v")][ d'x. (3.45)

To J~"~ must be added the gravitational contribution:

J vX — (& 4vXX & 4XXv+ U' [X4]v P [v4]X}d3X (3 46)

It is interesting to compare (3.45) with the quantity
used in the special relativity theories. In the limiting
case where the gravitational field is zero, and the space

+'3~&(—a)'0 tv't v"v' —v'v "31 d'*. (3.4&)

Equation (3.47) breaks into three parts. The first four
terms are the usual orbital momentum terms, and the
last term is the direct analog to the spin, provided we
use the bein representation. This last term contributes
the usual value of ~~A to the total angular momentum,
since the p' matrices involved are simply the constant
Dirac matrices. But the third term represents a cor-
rection to the usual expression of the orbitc/ momentum
(since it is seen to be proportional to the coordinates)
which is due to the curvature of the space.

4. CONCLUSION

In conclusion, then, we have found a generally
covariant representation for the angular momentum
of a physical field which includes a matter field in
addition to the gravitational field. A semiclassical
discussion of the Dirac electron field shows that the
intrinsic angular momentum of the electron has the
expected value of ~k. The orbital momentum is a direct
generalization of that of the usual theory, with some
added terms that may be traced to the nonQatness of
the space in the vicinity of the electron.


