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In this paper, we have first examined the relationship between
the transformation properties of a (nonquantum) covariant field
theory and its constraints, generating functionals, conservation
laws, and "superpotentials" purely within the Lagrangian formal-
ism and indicated the relevance of these quantities for the problem
of motion of particles (singularities) in the 6eid. This discussion
includes a presentation of actual methods of computation of these
important quantities suitable for a very wide class of theories. In
the second part of the paper, we have discussed the probable
structure of a quantum covariant field theory, both in the Hamil-
tonian and in the Lagrangian formalism. In the Hamiltonian
formalism, it is suggested that those field variables canonically
conjugate to constraints are not observables in the physical sense
nor operators in Hilbert space, and that the states of a system
which alone can be regarded as Hilbert vectors are those con-
sistent with all the constraints inherent in the theory and its
transformation properties. This approach permits the character-
ization of legitimate observables even if the isolation of the
"constraint variables" is not feasible, as in the general theory of
relativity; observables must commute with all the constraints.
They are, thus, invariants under the group of invariant transfor-
mations. It is asserted that this selection of observables, which is
mathematically self-consistent, does not lead to the discard of
quantities of physical interest. On the other hand, all the so-called
paradoxes between constraints (subsidiary conditions) and com-
mutation relations are thereby avoided. In the development of

the Lagrangian quantization, we are proposing a new set of field
equations which are different from the usual ones but which can
be shown to permit the transition to the canonical formulation
if desired. Our proposal is to assert the stationary character of
the Feynman-Schwinger action operator not with respect to all,
but only with respect to those variations that correspond to
invariant transformations. As a result, the number of operator
equations at each point of space-time is finite, though it is different
from the number of equations in the nonquantum theory. These
equations, though considerably weaker than what would be
obtained if the action integral were to be made stationary with
respect to all conceivable variations, are su%cient to yield all the
usual conservation laws and also to permit the transition to the
Hamiltonian form of the theory if desired. Commutation relations
can be obtained for the field variables and their time derivations
on the same hypersurface, simply by requiring that the field
variables and their derivatives be algebraically independent of
each other. The procedure employed breaks down if applied to a
variable that is canonically conjugate to a constraint, an indication
that in the Lagrangian formulation, too, the set of observables
must be selected if paradoxes are to be avoided. Altogether it
appears that the Lagrangian and the Hamiltonian quantizations,
if set up properly, are largely equivalent; but this does not
preclude the possibility that one may be more useful heuristically
than the other.

1. INTRODUCTION

' 'N a number of preceding papers' ' we have ascer-
- tained the properties of field theories that are

covariant with respect to groups of transformations
depending on arbitrary functions. The examination of
such theories is suggested by the physical importance
of such transformation groups in the general theory of
relativity (i.e. , the theory of gravitation) and in the
theory of the electromagnetic field. We found that very
generally invariance of a Hamiltonian principle from
which the field equations can be derived results in the
existence of certain differential identities between the
field equations and of "strong conservation laws. '"

If theories of this type are brought into the canonical
scheme, we found that the canonical field variables
satisfy a certain number of constraints (also known as
subsidiary conditions in quantum electrodynamics) and
that the Hamiltonian functional of such a theory is
determined only up to a linear combination of the
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so-called primary constraints, the coefficients of this
linear combination being arbitrary functions. ' This
degree of arbitrariness is equivalent to Dirac's proposal
to leave a certain number of velocities remain in the
Hamiltonian density. ' Recently we found that all the
constraints play a role in the so-called functional of the
transformation group, which generates the infinitesimal
canonical transformations with. respect to which the
theory is covariant. 4 In fact, the circumstance that this
functional is a constant of the motion and that the
commutator of two such canonical transformations
must again be a member of the group leads to a powerful
and convenient method of determining the structure of
the whole function group encompassing the constraints
and the Hamiltonian.

It had been recognized for some time that the
constraints of the Hamiltonian formalism were related
to the conservation laws of the Lagrangian formalism.
The first purpose of the present paper is to trace out
this relationship in specific detail. The existence of the
strong conservation laws —the vanishing of a certain
divergenc- implies the existence of "superpotentials, "
i.e., a set of quantities of which the components of the
energy-momentum-stress "tensor" form the curl. We
have succeeded in obtaining these superpotentials
directly from the Lagrangian and its transformation
properties (Sec. 2). On the other hand, the transfor-

e P. A. M. Dirac, Can. J. Math. 2, 129 (1950).
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mation law of the Lagrangian may also be formulated
in terms of the generating functional, and Sec. 3 deals
with the relationship between the generating potential
in the Hamiltonian theory and the transformation law
of the Lagrangian in the Lagrangian theory. The
generating functional, and with it the constraints, will
be constructed from within the Lagrangian formalism;
this derivation leads to a considerable simplification of
the expressions given earlier. '

In Sec. 4, we have endeavored to construct a quantum
6eld theory that is covariant with respect to the same
transformation group as the corresponding classical
6eld theory. In the Hamiltonian theory, it appears
fairly obvious what the general scheme must be, because
the pertinent quantum theoretical formations, in par-
ticular commutators, which characterize the structure
of the invariant transformation group, all have their
classical analogs, e.g. , Poisson brackets. However, we-
have attempted to show that from among all the
classical canonical 6eld variables only those may be
considered as Hilbert operators in the quantum field
theory (and therefore as physically meaningful observ-
ables) which commute with all the constraints and
which, therefore, are invariant with respect to the
invariant transformation group.

We have also dealt with the Lagrangian theory,
largely on the basis of the results obtained in the
analysis of the classical Lagrangian theory and the
possibility of introducing canonical transformations
and generators into the Lagrangian formalism. While
we follow to some extent the Feynman-Sehwinger
developments, '~ to relate the unitary mapping operator
U(ts, ti) to the action integral, we have found it im-
possible to adopt field equations exactly analogous to
the classical Euler-Lagrange equations, as Schwinger
does. Instead, we are putting forward, as a conjecture
for the time being, a new set of "field equations" whose
number does not depend on the number of field vari-
ables (as in the classical theory), but on the structure
of the invariant transformation group. Our conjectured
"field equations" lead to the usual conservation laws.
While they may not go over into the usual Euler-
Lagrange equations in the classical limit for all con-
ceivable covariant field theories, they will do so for the
general theory of relativity with electromagnetic field.
Our 6eld equations are obtained by the requirement
that the action integral be stationary with respect to
variations that correspond to members of the invariant
transformation group, but not necessarily to all other
conceivable variations. This requirement, we have
found, leads to relatively simple covariant diGerential
equations for the observables without special assump-
tions concerning the commutation properties of the
infinitesimal variations. Our theory is su%ciently defi-
nite to lead to the Schrodinger equation (or its equiva-

lent in the Heisenberg representation). Thus it appears
to lead to a "Lagrangian" theory that is equivalent to
a Hamiltonian quantum field theory.

8S= 5 L(yA, yA, .)de, (2 &)

where I. is a function of the field variables y~ and their
6rst partial derivatives with respect to the space-time
coordinates.

The transformation properties of L are of some
importance, and we shall specify them more fully than
has been done in the past. '

If we desire to have covariant field equations (the
field equations to transform as densities of weight one
and contragrediently to the field variables), then we
need only choose an invariant as our action integral.
In fact, if we were to construct a new covariant theory,
it is hard to envisage how one could 6nd the correct
6eld equations without using such an invariant action
integral, for the covariance of our field equations and
their compatibility is always assured if they are de-
rivable from such a variational principle. However, the
only known invariant density in the prototype of any
new theory that we might propose, the general theory
of relativity, contains second derivatives of the field
variables. These higher-order derivatives appear in the
Lagrangian in terms that have the form of a pure
divergence. If we desire to go over from the Lagrangian
to the usual Hamiltonian theory, it is desirable to
subtract this divergence from the invariant density.
The field equations will not be altered by this change
in the Lagrangian, as the addition of a pure divergence
to the Lagrangian density does not contribute to the
variation of the action integral as long as the variations
of the 6eld variables are con6ned to the interior of the
four-dimensional domain of integration. Thus, our
Lagrangian density will differ from an invariant density
by a pure divergerice, and we shall always assume that
the precise form of this divergence is known. In the
general theory of relativity, this divergence has im-
portant transformation properties which we shall
describe below [Eq. (2.17)].

We shall assume that our field variables transform
in the following manner:

2. THE SUPERPOTENTIALS

Instead of introducing the components of the metric
tensor as our fundamental field variables, as is done in
the general theory of relativity, we shall characterize
our field variables by the symbol yA (A =1, . , 1V),
where S is the number of algebraically independent
components. These are equal to ten in the general
theory of relativity and four in electromagnetic theory.
We shall further assume that the 6eld equations are
derivable from a variational principle of the form

' R. P. Feynman, Revs. Modern Phys. 20, 367 (1948).' J. Schwinger, Phys. Rev. 82, 914 (1951). 8/A = cA~ $', a+cA~)' —yA, p8$ . (2.2)
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The c& and the c&; are functions of the yz, and their
exact form depends upon the specific transformation
properties of the field variables. The index 0., as well as
all other Greek indices, refers to the space-time coordi-
nates. The index i identifies the arbitrary functions g'

(descriptors) that appear in the transformation law. '
For coordinate-covariant theories, i becomes the Greek
index c. The infinitesimal variations of the space-time
coordinates depend on some or all of the arbitrary $',

(2 3)

where the a;" are constants, 0 and 1.
The complicated character of the infinitesimal trans-

formation law (2.2), (2.3) (more general than the
coordinate transformation law for tensors) arises only
because we want to encompass within our formalism a
wider class of transformations than mere coordinate
transformations. It is necessary to have the variations
of the space-time coordinates depend on the set of
constants a;" since in some cases we are going to vary
the dependent variables y& and the independent vari-
ables x& independently of one another. We have intro-
duced the variation by& because this transformation
law obeys the group property. This requirement is met
if the commutator of two successive infinitesimal b-

transformations is a transformation of the same type.
If this commutator is calculated for a given field
variable, the arbitrary constants that appear in cg,
and c&; will satisfy certain identities. by& is the infini-
tesimal difference yz'(x) —yz(x), i.e., yz' is compared
with y& at a point that has the same coordinate values,
rather than with y~ at the same point in space-time.

We have assumed that our Lagrangian density divers
from an invariant density by a known divergence. The
transformation law of the invariant density is

bK+(Kgp), ,=0, K=L+S;„ (2.4)

where

8L=Q; „
Q'= (LP+S;.c'+ OS'). —

(2.5)

(2 6)

If we now actually carry out the variation indicated
on the left-hand side of Eq. (2.5) and utilize Eq. (2.6),
then it is possible to show that the right-hand side of
Eq. (2.5) will hold only if the following identities are
satisfied:

(L"cp ), ,+a;"L"y&,.
+[c& (8"~L+8"Sp)+c&;, 8"~S~j,=—0. (2.7)

We shall use the Latin indices ~, k, ~ ~ to number the de-
scriptors of the invariant transformation group. Coordinate
indices running from 1 to 3 where needed will be identi6ed by
letters r, s,' Reference 1, Eq. (2.4).

where E, the invariant density, has been separated
into the Lagrangian density, L, and a divergence, S&, ,
The transformation law of the Lagrangian density is
then

In .the general theory of relativity, a coordinate-
covariant theory, they are known as the contracted
Bianchi identities. We shall call them Bianchi identities
even in the more general theory proposed in this paper,
since our generalization is clearly based on the example
of the gravitational field.

As a consequence of the existence of the Bianchi
identities, it is possible to show that the divergence of
the stress "tensor, "T;I', vanishes identically,

T;",„=—0,

T,'= u;"(8"~Ly, , „8„~L)—
cg; L [cA;(r) "L+r) S")+cg;, t) S"j,

(2.8)

even when the field equations are not satisfied. Equa-
tions (2.8) are known as the strong conservation fgws of
our theory. The stress "tensor" is not a geometric
object; for the invariant class of transformations in
which we are interested many of its components do not
transform in any simple manner. One can only say
that the identities hold in every coordinate, gauge, or
"bein" (e-uple) system, and for all other frames of
reference for which the field variables have a corre-
sponding invariant significance. Closer inspection of
these strong laws shows that the first few terms are
similar in form to the conservation laws of energy and
momentum that appear in- Lorentz covariant field
theories, where the conservation lavrs hold only if the field
equations are satisfied ("weak" conservation laws).
For our general theory these laws are

t,~, „=0,
t,'= a,,"(y&„8"~L b„~L)—

[cA (i)APL+ r)ASS)'+cA; t)ArrSi4$

(2 9)

The essential mathematical distinction between weak
and strong laws is that the former arise because of
covariance vrith respect to a finite set of arbitrary
constants, while the strong laws are related to covariance
with respect to a finite set of arbitrary functions. One
can look at the question of strong versus vreak laws
from another viewpoint. It is possible to formulate
strong laws in weak theories, but they will be integral
laws. On the other hand, generally covariant theories
vrill always yield differential strong laws, i.e., they are
satisfied at each space-time point.

Because of Eq. (2.8), it must be possible to write the
strong stress "tensor" in the form

g, =U', t ~l (2.10)

where the U;t& l are antisymmetric in the indices p
and cr. Henceforth, we shall call the U;&I' l the super-
potentials of our theory. For any applications of the
theory they must be explicitly calculated. In the general
theory of relativity this was done by Freud, "but by a
method that is only applicable in this case. We shall

"Ph. von Freud, Ann. Math. 40, 417 (1939).
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noir show that it is possible to find an explicit solution
for the super-potentials.

If we carry out the operations indicated by Eqs.
(2.5), (2.6), the terms will group themselves as the
coeKcients of the various differential orders of the
descriptors, P,
I' ppa$i +Lppfi , (2' p+ P' pa )Pi

Tp —P'=—0 (2.11)
where

M;»~= c&;~8"~S )

L;"=cA,pBA L+a; (e;Sp b, pS')—

+c A,', ,8"'S'+cA,'8"Sp+cA, B"'S'
a, cy gA Sp+ (c,pgAaS c)

p' pa L pa (C pgAaS&)

(2.12)

Since the descriptors and their derivatives at any
one space-time point are arbitrary, their coeKcients
must vanish separately. " For the third-order terms in
the descriptors the coeKcients must vanish when they
are completely symmetrized in the indices p, , p, and 0-,

LcA rl S j(pp ) (2.13)

The parentheses indicate that the expression inside the
brackets is to be summed over six terms .that are
completely symmetric with respect to the indices inside
the parentheses, (@per).

For the second. -order term, we have likewise

L;p'+L;a'= 0 (2.14)

pip 1= (cA, ii. A—pSp cA,prlApS ).
The Gnal'form of the super-potentials is then

(2.15)

Lrr,.[pal —Irr, &ca+~,p [apl'. (2.16)

The expressions for the super-potentials, (2.16), can
be simplified even further if we restrict ourselves to
the general theory of relativity. In that case the c&;
vanish, and explicit calculation shows that

a.pSrr a.aSp c .agASp+c .a rlA &Sp

—a'yA 8A Sp. (2.17)

It is not clear whether the conditions (2.17) are to be
required for all generally covariant theories. The ex-
istence of these relations certainly simplifjLes the general
theory of relativity as compared with the very general

"J.Belier, Phys. Rev. 81, 946 (1951).

while the Grst and zeroth-order terms tell us that
although the divergence of T;I" vanished, T,& is appar-
ently not equal to the divergence of an antisymmetric
form: comparison of V;&' with L;& shows that V,l"' is
antisymmetric except for the divergence of the coeK-
cient of the third-order term. However, by making use
of the symmetry properties of this term, we can anti-
symmetrize V;&' completely by adding to it the diver-
gence of another skew-symmetric density,

theory dealt with in this paper, especially if we make
the transition to the Hamiltonian formalism. However,
the transition can be made even if (2.17) is not satisfied,
only the general formalism then becomes quite involved.

O'F =BF—8"Fbyg —8~pFbyg, p,

byA, ,= (&yA), ,= &(yA, ,).
(3.1)

This notation is the same as that used in earlier papers. '4
Let us now consider what happens to the Lagrangian

density I. as a result of the infinitesimal transformation

|&yA= fA(yB yB, p) (3.2)

If the Lagrangian density were not to change its value
at all, we should have bI.=O. It is, however, possible
to add to the Lagrangian density a complete divergence,
Q', , without affecting the Euler-Lagrange equations.
We set, therefore,

and hence,

YL=QP, p fABAL fA, p—BAPL, —
fA, p=yB, pal fA+yB, pail fA&

Q =Q (y. .., ,),
(3.3)

f'&'L=yA pilAQp fAB"L yB pBB—fABApL-
+(rlBaQP ilBafAiiAPL)—y (3 4)

This, change in the functional dependence of the
Lagrangian density on its arguments implies that even
though our Lagrangian density originally depends only
on the Geld variables and their first derivatives, the
transformed I. will depend on higher derivatives as
well unless we can choose Qp and fA so that the last
term in Eq. (3.4) cancels, i.e.,

(gA pQrr+ cjAaQp) (gA pf gBaL+ ilAaf gBpL) 0 (3 5)

We shall now consider more particularly that class of

3. LAGRANGIAN FORMALISM AND GENERATING
FUNCTIONAL

In what follows, we shall consider infinitesimal trans-
formations of the (Lagrangian) field variables in the
sense that at any one point in space-time the Geld
variables y~ may be replaced by new field variables
which are algebraic functions of the yg and their Grst
space-time derivations y&, , While eventually we shall
focus our attention on transformations in which the
Lagrangian does not change its form, this assumption
will not be made at 6rst. Given some function F of the
field variables and their derivatives, we shall make a
distinction between two inGnitesimal expressions. We
shall designate by the symbol bF the change in the
value of F at the space-time point with the same
coordinates x&, on the assumption that we are de-
scribing in terms of our new variables the same original
physical situation. We shall designate by the symbol
8'F the change in F as a function of its arguments
y&, y&, , The relationship between these two infini-
tesimal transformations is:
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transformations which will not produce second time
derivatives. In that case, Eq. (3.5) must be satisfied
merely with both p and 0- equal to 4, and we have as a
restriction on both the fA and Q' the following:

if the velocities are changed by amounts that are
arbitrary linear combinations of the u, &,

8vrA = 0, 8jA = S'44,A. (3.12)

gA.Q4 4lA f . ~B—0

4r =a I., 8 =—8/ByA, 4—= 4l/ByA,

which may also be put in the form

(3.6)
We have, therefore, e algebraically independent "pri-
Tnary constraints, " i.e., relationships between 6eld
variables, their spatial derivatives, and momentum
densities that do not involve velocities,

f gA gB J —41A (~Bf Q4) (3.7) g, (yA, yA, , 4r )=0. (3.13)

This restriction may be put into a convenient form
if we introduce instead of the j~ the m" as new vari-
ables. If the matrix,

Because of Eq. (3.12), the u, A are nothing but the
partial derivatives of the expressions (3.13) with respect
to the momentum densities:

pAB —gA *gB I ) (3.8) I~a= ~ag' (3.14)

NgA~ =0 (3.10)

Moreover, if we consider the ~~ as functions of the
velocities yg, then, because

&~~=X»Sy, (3.11)

is nonsingular, all that need to be done is to multiply

Eq. (3.7) by the factor (8jA/84rc) to get

fc= tlc(~BfB Q') 4lc—= 4l/4l4rc; (3.9)

and we come to the conclusion that the class of trans-
formations we have introduced are the cmoeical trans-
formations, with the expression J'(7rBfB Q4)d'—x being
the generating functional. In covariant field theories,
however, the matrix (3.8) is always singular, and hence,

Eq. (3.9) cannot be obtained that easily.
A theory is covariant (not Lorentz-covariant) if there

exists a group of transformations, depending on one or
several arbitrary flnctioes of the four coordinates,
which do not change the form of the Euler-Lagrange
equations. The form of the Lagrangian may also be
considered to remain unchanged under any transfor-
mation belonging to the group. In such a covariant

theory, we can always produce a formally new solution

out of an existing one by carrying out one of the
imvariaet transformations. While this is also true of
Lorentz-covariant theories, the peculiar feature of
covariant theories is that the transformation may leave

the solution unchanged for all values of t=x'~&to, but
change the solution formally for t) to. That means that
the equations cannot determine the solution uniquely
from a set of properly chosen initial conditions; it
must be impossible to solve the equations with respect
to the highest (i.e., second) time derivatives of all the
6eld variables.

The coefBcients of the highest time derivatives are

just the A.AB of Eq. (3.8). We conclude that this matrix
must have (at least) as many null-vectors as the
transformation group of the theory possesses arbitrary
functions. We conclude that there exists e algebraically
independent quantities I;~, i= 1, ~, e,

It is clear that the velocities cannot be uniquely
determined functions of the canonical field variables,
but even if (at one space-time point) values are adopted
for the canonical variables in accordance with the
primary constraints, then in addition to a particular
solution for the velocities, say k~, we have solutions
depending on a set of arbitrary functions zv',

PA=~A(yB, yB, ~, 4r )+w'N, A. (3.15)

~kA g.k (3.17)

Through normalization it is possible to accomplish
further that

4tBttA =0, O' BA'gB= 0, BAgB BBPA =0—. (3.18)

If these conditions are adopted, the chain rule of
differentiation will hold for any functions that depend
on the velocities, and also for any variables that depend
on the momentum densities and the ze' in such a
manner that

Values of the momentum densities are ruled out when
not in accord with Eqs. (3.13). It makes no difFerence
if we add to the functions kg arbitrary linear combina-
tions of the u;~ and also of the constraint expressions
(3.13), because the latter additions vanish for all perti-
nent values of the canonical field variables. We shall
utilize this freedom of choice later to make a desirable
normalization.

In Eq. (3.15), we may consider the yA as functions
of the canonical fmld variables plus the functions m'.

In this sense, we may introduce partial derivatives of
the velocities with respect to the momentum densities
and with respect to these new arguments ze'. We may
and shall require that

AAcBc jB+v'An B=4A 4'A= 8A w'. (3.16)

In this set of conditions, the changes in the momentum
densities by which the newly defined partial derivatives
are multiplied are automatically consistent with the
constraints (3.13). Hence, Eqs. (3.16) hold irrespective
of the normalization of the functions kg mentioned
above. From them it follows that

the momentum densities will not change their values psAg P 0 (3.19)
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p pg gg pg (3.20)

which will have the same value as F* and will satisfy
condition (3.19).

We shall now return to Eq. (3.6). Even though the
matrix A. is singular, we shall obtain the relationship
(3.9). We assume that we have defined the derivatives
of the velocities with respect to the momentum densities
in accordance with Eqs. (3.16) and (3.18) and also that
the functions Q' and fA all have been made to satisfy
the condition (3.19) with the help of the procedure
indicated in Eq. (3.20). Now we may multiply Eq.
(3.6) by BcjA, with the result,

Equation (3.19) represents no real restriction on the
functional dependence of P, because it may always be
satisfied by the addition of an appropriate combination
of the constraints. That is, if some function Ii* does
not satisfy Eq. (3.19) initially, we may construct Ii,

original situation. This calculation leads, of course, to
the determination of 8'S, the change in S as a function
of its arguments. According to Eq. (3.3), this change is

s'S=
~x=-

X4 =ti

(Q' Vr
AfA—)d3X

8'S= &—g8 I'I d p
— gI. d'g,

(3.25)

LA =gAI (gA pL)

where 1.~ is short for the left-hand side of the fmld
equations. If we favor the x4-directions by choosing a
domain of integration which spatially extends to
inhnity and which extends between two x'= constant
surfaces, then Eq. (3.25) becomes

8gQ4 HB—gfg = 0

Integrating by parts yields

(3.21)
j/2

)~fALAd4x. (3.26)
~ x4 =t& x'

(3.22)
3r&f~ Q4 p'A4—lAQ4=0 ii'ABAfii Q. ——

If we multiply Eq. (3.6) by N, A, we obtain the further
relationship,

BC/Bw'= Q (3.23)

6S= &d

It is interesting to note that the generating functional
is not simply proportional to the integral of Q', as one
might have suspected. It is possible to have canonical
transformations that do not change the value of the
action integral, i.e., transformations in which Q is zero.
This type of transformation is, of course, what is
commonly called a point transformation (in configur-
ation space), a transformation in which the transformed
field variables are independent of the time derivatives
of the original held variables. In that case, the gener-
ating functional is linear in the canonical momentum
densities, a well-known fact; this special case is also
consistent with Eq. (3.22).

The change in the action integral may be calculated
either as the change if the physical situation remains
unchanged and the values of the held variables are
changed in accordance with Eq. (3.2); the four-dimen-
sional action integral then changes by the amount,

S"L=S'L+ ~Ah"y A, S"~A=—0,

and as a result

8"II= —6"L+ vr A6"jA = —O'L

g+f IA

(3.27)

(3.28)

To summarize these results, Eq. (3.25) indicates the
role of a four-"vector" as the generator of a canonical
transformation in the Lagrangian formalism if all four
coordinates are treated on the same footing; while
Eqs. (3.27) and (3.28) show the relationship to the
single generating functional of the canonical formalism.

Among all the canonical transformations, there is a
set of transformations that leave the form of the
Lagrangian invariant. These transformations are those
in which 6'L vanishes (or equals a divergence, this
latter possibility .being of no consequence). According
to Eq. (33) we have

If the held equations are satisfied, the second term
vanishes, of course, and the change in action equals
the diGerence between the generating functionals at
the two time surfaces.

It remains to determine the change in the Hamil-
tonian functional as a function of its arguments. Just
as we denote by 5' the change in a quantity when the
values of y& and y& are held hxed, we shall introduce
another symbol, 8", to denote changes of quantities
in which y~ and m" are held fixed. We have, then

8$ '
Q p 5Pclicx3cx3 g 844

Ns

(3.24) Q= YL= (Q p fAaA pL), f—AI."— (3.29)—
For a transformation that does not change the form of
the field equations we have, therefore

Or, we may determine the change in S if under the
transformation (3.2) we consider a new physical situ-
ation in which the transformed field variables have the
same values as the untransformed field variables in the

fAL"=(Q' fA~"L), .= C', ,— (3 3o)—
Among all the transformations satisfying Eq. (3.30),
there are some that correspond to a general invariance



property of the theory and which by themselves form
a significant subgroup. The term "invariant transfor-
mations" ordinarily applies to the members of that
subgroup. In the case of invarient transformations, we
call generating functionals more particularly the (three-
dimensional) integrals over C3, defined by Eq. (3.30).
In the future we shall write this functional as

The time derivative of C (the generator of the invariant
infinitesimal transformation) then vanishes if we assume
that there are no variations of the Geld variables on
two-dimensional spatial surfaces at infinity; for if we
integrate the divergence of C& over all of space and
discard two-dimensional surface integrals, we get

C—= ~C4d 3x. (3.31) J .»C». iPx= C'4d'x= dC—/dt.

It remains to indicate the relationship between
variations of the "path" (i.e., the field), which involve
changes in the actual field, and transformations, which
involve changes in representation. In a variation, the
frame of reference remains Gxed, and the values of the
field variables are changed as functions of the four
coordinates. But actually, no frame of reference can
be identified without its contents, and thus the two
operations are physically and mathematically equiva-
lent. There is, however, a distinction between the
trivial statement that the action integral 5 under a
transformation changes only by a surface integral (that
is how we arrange its transformation properties), and
the requirement that the integral be stationary under
an arbitrary variation. The difference is that in the
first instance we change L by 6L, which leads to the
result (3.24) and does not involve restrictions either on
the original field or on the functions fg. In the second
instance, we ask for the change in 5 while we consider
L a fixed function of its arguments y&, y&, , This
change is obtained if we subtract from the expression
(3.24) the contribution that is due to the change of L
as a function of its arguments, O'L, i.e., the expression
(3.25). The requirement that the difference should

also be a divergence, regardless of the choice of the
variations fg,

E&d p,

(3.32)

leads to the Geld equations L =0.
Ke now proceed to examine the group of invariant

variations described by (2.2) and (2.5). Under these
transformations the C' of (3.30) take the form

C'= &"'L(u*'5', .+~~'$' —y~, .[3,'$')
+a,'(LjS»,„)g'+8S», (3.33)

or, more simply,

Cp= —U fpelqi —[ pgi (3.34)

where [ and U;[»'] are defined by (2.9) and (2.16).
It is easily seen from (3.34), or more directly from

(3.30) that when the field equations are satisfied, the
divergence of C& vanishes,

(3.35)

However, the generating functional contains arbi-
trary functions (the descriptors) and their time deriva-
tives. Thus, the coefficients of the various orders of the
time derivatives of the descriptors, $', in C and dC/dt
vanish. In the Lagrangian form of the theory these
coeScients will vanish identically or as a result of the
field equations. In the Hamiltonian theory those coeK-
cients that were formerly field equations do not appear
as any of the Hamiltonian, equations of motion, but as
secondary constraints. The appearance of these missing
equations in the generating functional, where they
mush vanish, insures the complete equivalence of
both formalisrns.

The terms that vanished identically now become the
primary constraints of the Hamiltonian theory. There
are also those expressions of the field variables and the
momentum densities that vanish and continue to do so
in the course of the motion only if the missing Geld
equations are satisfied. In the Hamiltonian theory
these field equations are called the secondary con-
straints. Furthermore, if particles are present as singu-
larities of the field, the primary constraints will continue
to be satisfied in the course of time only if restrictions
are placed on the motion of these bodies. The number
of such restrictions per particle (they appear in the
form of two-dimensional surface integrals that vanish
when the field equations are satisfied on the surface of
integration) is equal to the number of arbitrary func-
tions that appear in the transformation law for the
field variables. In electromagnetic theory, a gauge
invariant theory, there is but one restriction, the
conservation of charge. In a coordinate covariant theory
there are four restrictions, the conservation laws of
energy and linear momentum for particles. We shall
now examine the generating functional in detail to see
how these restrictions arise.

We write C in the form

C= I L
—U, [~]g'+(U;["], t )P)d'x (3 37)—

and its time derivative

dC
U .[44]ji+ (U .[48] [.4 U, [44])ji

dt

(U, [48] g.4)(i)d3x (3 3g)
8t
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where j' stands for the time derivative of $'. We know
from our previous considerations that the various terms
in (3.37) and (3.38) vanish separately. The Erst equation
tells us that

and
U. t44] p

U ~4'] —t;4=0.

(3.39)

(3.40)

(3.39) are the primary constraints of our theory. (3.40)
are the missing 6eld equations, the secondary con-
straints.

From (3.38) we deduce that

U. [44] U. f4@] t.4 (3.41)
d

(3.42)

The first of these equations states that the primary
constraints will continue to be satis6ed in the course of
time only if the secondary constraints vanish. Equation
(3.42) will vanish identically if the 6eld equations are
satisfied everywhere. However, if we integrate (3.42)
over space and convert the expression into a three-
dimensional divergence by means of the weak conser-
vation laws, (2.9), we get from Gauss' law:

V;~"~ndS+f3 e ,dS 0. =
dt

(3.43)

If the 6eld equations are satis6ed on the surface of
integration, but not everywhere inside (at the position
of particles), then Eq. (3.43) (which will still hold)
represents restrictions on the motion of these particles.
We define the conserved particle qualities by the
surface integrals,

U ~4]n,dS. (3.44)

The restrictions (3.43) are in the form of conservation
laws which state that the rate of change of the particle
characteristic T, depends upon the amount of field Aux

t that passes through the surface. Thus, in the most
general case, the particle and 6eld are in constant
interaction and such qua1ities of the particle as energy
and linear momentum are strongly dependent on the
motion of the 6eld.

Since the motion of particles should be completely
determined by a knowledge of the field equations on
any hypersurface surrounding the particle, the values
of the sums of the two surface integrals in each of
Eqs. (3.43) should not depend on the surfaces of
integration chosen. The proof of this independence is
most easily accomplished by showing that the three-
dimensional divergence of the integrand of (3.43)
vanishes when the 6eld equations are satis6ed. Then
it immediately follows from Gauss' law that the inte-
grals are independent of the surfaces of integration.

As a consequence of the strong conservation laws it
is possible to show that when the fieM equations are
satished

(3.45)

The divergence of this expression certainly vanishes,
and since the right-hand side is the integrand of (3.43),
our proof is complete.

4. QUANTUM FIELD THEORY IN THE
CANONICAL FORMALISM

In attempting to quantize covariant field theories,
we have been guided by the assumption that the basic
structure of the transformation group should remain
unaffected by quantization. This assumption has been
justi6ed by the history of quantum theory to date. In'
every successful quantum theory all invariance prop-
erties, such as symmetry properties, Lorentz covariance,
and gauge covariance have been the same as in the
corresponding classical theory. This is true even for
theories involving spinors. %hile the spin has, strictly
speaking, no classical analog, the covariance group of
the spin 6eld is the same as that encountered in similar
classical theories. Merely the representation is different.
But that means that commutators and other combi-
nations of individual transformations lead to the same
transformations as they do in nonquantum theories.
That is why we are convinced that it is at least reason-
able to modify the classical results obtained in previous
papers very slightly if at all, as far as the transformation
theory is concerned.

Prior to the formal simplification of Feynman's
I.agrangian quantization' by Schwinger, ' we concen-
trated primarily on quantization through the canonical
formalism. Whether direct quantization of the La-
grangian theory leads to an appreciable simpli6cation
remains to be seen.

In the classical theory, a covariant theory in the
canonical formalism comprises a Hamiltonian and a
number of constraints, classihed as primary and second-
ary constraints. The group of invariant transformations
is generated by functionals that are three-dimensional
integrals over generating densities, the latter being
linear combinations of the constraints. The constraints
are multiplied by arbitrary functions, the descriptors,
which characterize each individual transformation, 4 in
such a manner that the highest-order constraints are
multiplied by the undifferentiated descriptors, and the
primary constraints by the highest time derivatives
that occur. Under any of these invariant transforma-
tions, the Hamiltonian density remains unchanged in
value, but it will add a linear combination of the
primary constraints whose coeKcients depend on the
descriptors. The totality of the constraints by them-
selves form a system of involutions; together with the
Hamiltonian they form a function group. For the
transition to the quantum theory, it appears essential
that Poisson brackets are not merely formal expressions
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but that they have a natural group-theoretical signifi-
cance; they represent the group-theoretical commutator
of two infinitesimal transformations.

It may then be said that not only the Hamiltonian
but each one of the constraints generates an infini-
tesimal canonical transformation which leaves the form
of each constraint and of the Hamiltonian unchanged
(modulo some 'constraints). Among these, the members
of the original invariant transformation group form a
subgroup which adds to the Hamiltonian only primary
constraints. Furthermore, the primary constraints by
themselves form another subgroup which, however,
adds to the Hamiltonian higher-order constraints.

It is to be assumed, then, that the transformation
theory of the quantized theory will run exactly along
the same lines. Instead of with canonical transforma-
tions we shall have to deal with unitary transformations.
Poisson brackets mill have to be replaced by commu-
tators of the corresponding Hermitian operators. In
that respect, then, we must require that the commuta-
tion rules between the Hamiltonian density and the
various constraints be exactly the same as between
their nonquantum ana1ogs.

In the full formulation of the quantized theory, there
arises a well-known difhculty, which is somewhat more
serious in an essentially nonlinear theory than in a
theory like quantum electrodynamics. That difhculty
is that there appears a discrepancy between the com-
mutation relations on the one hand and the constraints
on the other. Briefly, there are, classically speaking,
variables that are canonically conjugate to constraints.
Now it is a well-established principle that if two oper-
ators have a c-number commutator, then neither of
them possesses discrete eigenvalues nor normalizable
eigenfunctions. On the other hand, physical situations
must be characterized by wave functionals (Hilbert
vectors) that are eigenfunctions of every constraint,
belonging to the eigenvalue 0,"A possible way out of
this paradox is to build up the Hilbert space from only
those states that satisfy all constraints and to make it,
thus, deliberately, a small subspace of the functional
space of all conceivable wave functionals without
regard to constraints.

Clearly, this subspace contains all states that can
possibly characterize a physical situation. It is also
certain that the continuous unitary transformation
generated by the Hamiltonian does not lead outside
this sub space, though this operator induces some

~ The remark by G. Wentzel in his QNun/entheorze der 8'ellen-
felder (Franz Deuticke, Wien, 1943},p. 111, that while it is not
permissible to set a constraint operator equal to zero outright,
one may restrict oneself to Schrodinger functions which are made
to vanish by the application of a constraint operator, refers to
the general function space of all conceivable wave functionals,
whether they satisfy the constraints or not, and holds, therefore,
only without regard to normalizability. On the other hand,
unless there exists a norm and with it the concepts of Hermiticity
and unitariness, Dirac brackets are generally meaningless, and
one cannot ascribe a precise meaning to the expectation value of
a dynamical variable.

motion throughout the "big" functional space as well.
All unitary transformations generated by any of the
constraints map the Hilbert space on itself, and this
includes those particular unitary transformations form-
ing the group of transformations with respect to which
the (quantized) theory is to be invariant.

But how does transition to the smaller space solve
our difficulties? It does so by severely restricting the
number of linear operations that may properly be
called Hilbert operators. A Hilbert operator must map
at least a dense set of states belonging to the Hilbert
space into that same Hilbert space. But that will be
the case only for such linear operations in the "big"
space that commute with all constraints (modulo the
constraints themselves). If we adopt this condition as
a necessary property of all Hilbert operators (this
condition can be sensibly formulated as a restriction
only in the "big" space; operators not satisfying it will
simply not be defined on the subspace), our difficultie
will be removed for the simple reason that the trouble-
some operations canonically conjugate to constraints
are not Hilbert operators in our sense! The constraints
themselves reduce to zero operators. They do not
represent significant physical quantities.

Our new convention saves us from formal embarrass-
ment. Will the elimination of a large number of oper-
ations from consideration not embarrass us as physi-
cists, by eliminating the mathematical description of
physically meaningful quantities?

In answer, we find that the observables not ruled out
are invariants, quantities that remain unchanged under
all the infinitesimal transformations with respect to
which the theory is assumed to be invariant. For
electrodynamic quantities, for instance, commutability
with the subsidiary conditions of quantum electro-
dynamics implies gauge invariance. And truly, any
quantity that can be given a well-defined numerical
value must be an invariant ~

Frequently, it appears that we operate with non-
invariant quantities as if they were directly observable,
such as a particular component of a four-vector or
tensor. On closer examination, we must admit that
such a quantity has a meaning only with respect to a
specified frame of reference. But how do we determine
a particular frame of referenceP Generally, we define a
frame of reference in terms of physical realities; we
speak of a "laboratory frame of reference, " etc. A
(local) frame of reference is, for instance, frequency
defined in terms of a prevailing local velocity. This
local velocity is, however, the time-like eigenvector of
the matter tensor (if observed in a particular fashion).
If we observe the scalar product of some four-vector
(e.g. , electric charge-current density) with this local
velocity vector, we actually measure an invariant that
depends in a complicated fashion, but uniquely, on
both the matter tensor and the charge-current vector.
We have gone through a number of examples to con-
vince ourselves that any physically observable quantity
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is an invariant, but this point is so obviously of major
importance that it should be more fully investigated.
Suffice it here to say that the point of view we have
adopted is a generalization of and consistent with
accepted practices in quantum electrodynamics and
elsewhere.

So far, we have indicated the general form of a
quantized covariant field theory. While we have not
assumed the introduction of parameters, their intro-
duction' ' does not lead to serious modifications. Most
important, the Hamiltonian becomes itself a con-
straint. There is, therefore, no "motion. " Any state
that obeys all constraints is a solution of the Schrodinger
equation, provided we do not permit it to change in the
course of "time. " This apparent freezing is, however,
a purely formal result of the introduction of parameters.
The Hilbert operators in the parameter formalism are
-perforce all constants of the motion, and the distinction
between Schrodinger representation and Heisenberg
representation disappears. In the parameter formalism
the same physical quantity, observed at two diferent
times, simply appears as two distinct operators.

A conjecture we made some time ago, ' to the effect
that the ordinary coordinates might turn into quantum-
theoretical observables in a parameter formalism cannot
be maintained. The coordinates do not commute with
the "parameter constraints'" and are, therefore, not
Hilbert operators. In fact, parametrization does not
add to or subtract from the observables of the param-
eter-free theory. " It is a matter of purely formal
convenience whether or not they should be used in any
investigation.

Suppose a classical canonical covariant field theory
is available. Can its quantum-theoretical analog be
obtained by a definite algorithms At present the
answer is no. Primary constraints are generally of very
simple structure, and it is possible to construct them
by simple symmetrization with respect to the position
of the momentum densities, which occur only linearly.
They will satisfy among themselves the same commu-
tation relations as their nonquantum analogs. The
Hamiltonian is generally quadratic in the momentum
densities, and so are the secondary constraints. It will
be necessary to discover such an arrangement of factors
in the Hamiltonian that the higher-order constraints,
which are essentially defined as commutators between
the primary constraints and the Hamiltonian, will in
turn satisfy the correct commutation relations with the
primary constraints and with the Hamiltonian. We
have not yet carried out a specific example to show
how difficult a problem it is to discover the right
arrangement or whether this arrangement is in fact
uniquely determined. "

's R. Penfield, Phys. Rev. 84, 737 (1951).
"In informal discussion, J. L. Anderson has suggested that the

sequence of factors be settled by the introduction of "locally
geodesic" variables and retransformation to ordinary physical
variables. This suggestion is closely related to a recent paper by
3, S, DeWitt, Phys. Rev. 85, 653 (1952).

s s
b'U=-S'S=- S'Ld4x,

h k~

We adopt O'S rather than bS on the right-hand side,
because all operators and matrix elements are defined
in terms of "a complete set of commuting operators, "
by assumption the field variables yz(x', x', x') for any
fixed x4. For an invariant transformation, in which the
Lagrangian as a function of its arguments, i.e., the
form of the theory, does not change, the elements of
the matrix U do not change, either.

Following closely the arguments of Sec. 3, we now
set 8'L equal to

5L=Q'' (~'L f~) —(~"'L f~ )—
(~"'L f )—j,. (L'f )—

LA —gAI (gA pL)

In this equation, "symbolic" products of operators are
indicated by braces and dots and are to be understood
so that the factor f~ is to be inserted in each product
at the point where the partial derivative of L with
respect to one of its arguments produces a vacancy.
It follows that

O'U = —— C'dQ p
—— (L~ fg) d4x, .

h k~ (53)
C~= (8"L f&) Q~— —

if we make no assumptions concerning the 6eld equa-
tions.

It is tempting to assume that for all conceivable
transformations the volume integral on the extreme
right-hand side must vanish and that this be the
natural form of the quantized field equations, in view
of Eqs. (3.31).But unless the choice of fz is restricted,
such a requirement is much too stringent. It would be
equivalent to a "double-operator" equation at each
space-time point. In other words, if we call an ordinary

5. LAGRANGIAN QUANTIZATION

One of the purposes of characterizing canonical
transformations within the Lagrangian formalism in
Sec. 3 was to prepare a formulation that would be
sufhcient to quantize in the Lagrangian formalism. We
are here reformulating Schwinger's ideas~ with this end
in mind. In all that follows it is understood that
equations involving operators are to be read as equa-
tions for the matrix elements leading from one fixed
surface to another.

We shall assume that the elements of the unitary
matrix U(ts, t&) lead from one hypersurface in space-
time belonging to the coordinate value t~ to another
hypersurface that belongs to the coordinate value
x4=t2. In a parameter formalism, x' must be replaced
by the parameter t. For any transformation, invariant
or otherwise, we shall set
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@{LA.P Bv~ }dP 0 (5.7)

Finally, we may choose P(xv) so that only a small (cap)
surface element can contribute. We finally arrive at
the result

(5.8){LA.pA Bv~B} 0

operator a "Hilbert tensor of rank 2," then the require-
ment that the expression (L" fA) should vanish for
arbitrary fA would represent a Hilbert tensor equation
of rank 4. Such a theory would obviously have little in
common with quantum field theory as we know it.
(Exactly the same argument may be carried out, with
the same results, in quantum mechanics. )

Instead, we propose to require that (LA fA) vanish
only for such choices of fA that correspond to invariant
transformations. This proposal can be justified as
follows. First of all, this choice is itself an invariant
requirement, since every invariant transformation maps
the set of invariant transformations on itself. Second,
with this mild requirement we obtain all the conser-
vation laws that are associated with the invariant
transformations of a given theory; thus, the major
results of Schwinger's paper' will hold. Third, among
the invariant transformations is, of course, the motion
in the course of time, i.e., a coordinate transformation
in which only x4 (or t) changes. For this particular
transformation, the generating density becomes directly
the Hamiltonian density, and thus the Schrodinger
equation is obtained.

Thus, for a theory that is generally covariant we
should have

{L"gyA}= {J." (FA B—vyBp „—yA „p)}=0. (5.4)

In this expression, the choice of the "descriptors"
(which we shall assume are c-numbers) is arbitrary. '
We separate into a complete divergence and, in addi-
tion, a set of terms that are multiplied by undiffer-
entiated descriptors,

{LA,gyA}
—{LA.pA& vp

P({LA.PA~BvyB}v+ {LA.,yA, &}) (5 5)

In view of the assumption that the theory is covariant,
it follows from the structure of the Lagrangian alone
that the expression computed must be a divergence,
though it is not a consequence of the theory that it
must vanish. However, we may infer that the second
term vanishes, i.e., that the Bianchi identities are
satisGed, purely as a result of the transformation
properties of the Lagrangian:

{LA FA "yB} v+{L yA, „}—=0. (5.6)

We may not infer, but we shall assume that Eq. (5.4)
holds, and that means that the first term on the right-
hand side of Eq. (5.5) must vanish. If we integrate
this expression over a four-dimensional domain, we

may convert it into a surface integral and find

More generally, we may conclude from Eq. (5.3) that
for invariant transformations, where O'L vanishes, our
conjectured Geld equations,

{L' fA}=o (5 9)

are equivalent to the requirement that the divergence
C p vanishes. In a covariant theory, in which Cp is
given by an expression like (3.34), Eq. (5.9) leads to
the requirement,

T,' t;v=—0= {LA cA;v}. (5.10)

Furthermore, if the difference between the strong and
the weak "stress tensor" vanishes, it follows that the
weak stress tensor by itself satishes a conservation law,

t;», „=0. (5.11)

In a simple theory like the theory of gravitation, where
the Cg, vanish, the weak stress tensor belonging to the
coordinate descriptors is given by the expression

={8A L yA, „} Lb„v. — (5.12)

We can now show that t4' is the Hamiltonian density.
If we carry out a coordinate transformation in which
@=1 on one space-like three-dimensional surface (f~),
but vanishes on the other (ti), we have, because of
Eq. (5.3),

8'U= —— ~ C4d'x
&~x =~,

C'= {8A L jA } L=H——
(5.13)

This last equation is the Schrodinger equation. It shows
at the same time how the Lagrangian and the Hamil-
tonian are related to each other, including the sequence
of factors. The usual rule, that the time derivative of
an observable is determined by its commutator with
the Hamiltonian, also follows directly from Eq. (5.13).

%'ith the assumptions made, it is possible to work
out commutation relations. These commutation rela-
tions will be between the field variables and their time
derivatives and do not involve by themselves momen-
tum densities (which we have not introduced). These
commutation relations are obtained as follows. We
determine the generating functions for each of the
invariant transformations of the theory and use them
to calculate the changes in the various Geld variables.
These changes will appear on both sides of the equation
and wi11 generally depend on the descriptors or on
derivatives of the descriptors. The requirement that
these equations should not lead to restrictions on the
descriptors and their derivatives, nor permit a determi-
nation of the time derivatives of the Geld variables in
terms of the field variables themselves, or some similar
restriction, leads to the commutation relations.

Generally, there will be some relations that cannot
be satisfied. In such cases, it will turn out invariably
that the variables involved are "constraint variables"
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and therefore not true observables. This circumstance
shows that in the Lagrangian formalism the Hilbert
space will be very similar to (and as involved as in) the
Hamiltonian formalism described in the beginning of
this section.

Two examples will suKce. First, consider a problem
in ordinary quantum mechanics. Assume the problem
possesses a Inixed quadratic Lagrangian of the form,

29 gjc) (5.14)

where gA, ~ and V are independent of the velocities. A
brief calculation shows that the Hamiltonian will be:

H = ,'q'g, &q'-+ V. (5.15)

We now attempt to determine the velocities by the
standard procedure. The resulting equation is

q = (IA q jf»q+qR»l q q j
2h (5.16)

Li", q"j=—Lq", q"j

If the form gA& is nonsingular, the last equation will
lead to no algebraic restriction on the velocities only
if we assume

(5.17)

This relationship is equivalent to the usual commuta-
tion relation between qi, and pi. On the other hand, if

g~~ is singular, then each of its null vectors corresponds
to a "constraint variable, " and the commutators
involving them cannot be determined in a satisfactory
manner.

As a second example take the commutation relations
of the electromagnetic field in the vacuum. The gener-
ating function of a gauge transformation is

C=—g"f d'x
4~~

(5.18)

We can derive the equation

I y"(x')
& y, (x)]P, ,(x')d'x', (5.19)

4~5~

which leads to

4' x, „x'
4m'

8„'8(x, x'), (5.20)

but does not lead to any de6nite commutation relation
involving @4.

It appears very definitely that in the Lagrangian
formalism, too, the quantum state of the system, or the

matrix U, for that matter, must not depend on the
"constraint variables, " i.e., the variables canonically
conjugate to the constraints. There is another argument
which makes this result appear reasonable. It has been
pointed out previously that the variables canonically
conjugate to constraints will change in the face of one
of the invariant transformations, the remainder not.
That means that the value of one of the "canonical"
variables, or, rather, its probability distribution at
some time $2, depends only on the state of the system
at another time t~, but the distribution of a "constraint"
variable both on the state previously and on the frame
of reference chosen. Since the choice of frame of refer-
ence in this context involves no physical activity on the
part of the observer (such as modifications of his
measuring instruments), but rather his "state of mind, "
the matrix U can hardly give information on "con-
straint variables. " Thus, we come to the conclusion
that our original. assumption, that the 6eld variables
y& represent a complete set of commuting operators,
must be modi6ed in that all those combinations of yz
that are canonically conjugate to the constraints must
be excluded.

6. CONCLUSION

We have conjectured that the 6eld equations of a
covariant quantized theory are not simply the analogs
of the Euler-Lagrange equations of the nonquantum
theory, but of the form (5.9), where f~ stands for the
most general invariant by& of the theory. If this
conjecture should turn out to be correct, then the
resulting Lagrangian quantum 6eld theory will be
equivalent to a canonical field theory (because there
will exist a single "Hamiltonian" functional generating
the motion), but possibly more manageable. The total
number of algebraically independent "field equations"
(5.9) is determined not by the number of field variables
but by the structure of the transformation group of the
theory. In the case.of coordinate-covariant theories,
we are led to the set of 16 equations (5.8); in theories
of the electromagnetic field the gauge group generates
4 equations. In the case of the general theory of rela-
tivity and. in the case of electrodynamics, it can be
shown that in the classical limit these relations are
exactly equivalent to the usual Euler-Lagrange field
equations, but it is conceivable that in a theory in
which the number of 6eld variables greatly exceeds the
number of field equations of the type (5.10) such a
correspondence breaks down. We have not yet examined
this question in any detail.

The significance of the conjectured equations (5.8)
or (5.10) is closely related to the so-called secondary
constraints. While in a Lagrangian theory the primary
constraints are empty, the st:condary constraints are
not, but represent certain of the conjectured field
equations, e.g. , (L~ F~P 'yii)f, which are free of second
time derivatives. We may, conversely, obtain all of the
Eqs. (5.8) from the secondary constraints simply by
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giving the three-dimensional surface with respect to
which they are formed every possible orientation.

In our Lagrangian theory, the commutation relations
between the y& and the y& are not determined com-
pletely. As a result, the Hamiltonian, though formally
it generates the motion, actually does not determine
the time derivatives of all 6eld variables. Preliminary
examination shows, however, that the variables whose
time derivatives remain indeterminate are precisely
the ones whose time derivatives are also indeterminate
in the classical theory, those which in the Hamiltonian
theory are canonically conjugate to the-primary con-

straints. In a nonlinear covariant theory, the separation
of those variables whose time derivatives are indetermi-
nate from those which are completely determined is a
mathematical task of almost insurmountable difFiculty.
In all probability, the construction of the HiIbert space
of permissible states and legitimate observables will be
just as dificult in the Lagrangian formalism as it is in
the canonical formalism (see Sec. 4).

In future work we plan to pursue the application of
both the Hamiltonian and the Lagrangian theory to
actual physical theories and to ascertain the usefulness
of either.
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Existence of the P-meson of vector type which is neither a m- nor p-meson and which transmits the P-decay
of nuclei has been tantatively assumed, the results thus derived being compared with experiments on p-decay.
The difterences between the P-meson theory and the phenomenological Fermi theory lie in the natural
deduction of the vector interaction as well as the introduction of new nuclear matrix elements which are
characteristic of the meson dipole. The selection rules for the Al.-forbidden transitions are involved in these
matrix elements, the orders of which are expected to be that of the unfavored parity transitions in each
degree of forbidden transitions, The observability of a free P-meson is also discussed.

1. THE MESON THEORY OF I1-DECAY

'HE theory of P-decay, originally formulated by
Yukawa, ' predicted the virtual emission and

reabsorption of charged mesons in the p-decay of
nucleons. After the two mesons, m and p, were dis-

covered, one was not successful in identifying either of
them as an intermediary agent of nuclear P-decay, in

spite of extensive analyses. ' ' Recently, Friedman and
Rainwater' showed that a free x-meson will not decay
into an electron and neutrino with a probability more
than 1/1419 times the probability of n.—tt decay.
Sasaki, Hayakawa, and the present author' once pro-
posed the existence of a vector meson, which is neither
m nor p, and could be the agent of Vukawa's original

' H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935), third
series; S. Sakata, Proc. Phys. Math. Soc. Japan 23, 291 (1941);
24, 843 (1942); 25, 86 (1943); H. A. Bethe and L. W. Xordheim,
Phys. Rev. Si, 998 (1940).

'Taketani, Nakamura, Ono, and Sasaki, Phys. Rev. 76, 60
(1949); Nakamura, Fukuda, Ono, Sasaki, and Taketani, Prog.
Theor. Phys. 5, 740 (1950).' H. Yukawa, Revs. Modern Phys. 21, 474 (1949).

4 J. Steinberger, Phys. Rev. 76, 1180 (1949).' M. Ruderman and R. Finkelstein, Phys. Rev. 76, 1458 (1949).
6 H. L. Friedman and J. Rainwater, Phys. Rev. 84, 684 (1951).
7 Sasaki, Nakamura, and Hayakawa, Prog. Theor. Phys. 3, 454

(1948).

idea, that of transmitting the nuclear force and P-decay.
We have named it the P-meson. Tanikawas and
Caianiello' suggested the meson theory of P-decay
through a v-meson, the former assuming it to be
pseudoscalar while the latter taking it to be vector.
However, it is almost certain that the fate of these
theories will primarily be dependent on the p-ray
analysis. To clarify this point, we shall derive the
p-meson theory in some detail.

For the purpose of this discussion, the p-meson is

assumed to be of vector type, as in the Fermi theory the
tensor interaction is indispensable in the explanation of
the results of the recent experiments on the P-ray spectra
and p —y angular correlations. "Its mass and coupling
constants with nucleons and leptons will be tentatively
taken arbitrary, not referring to those of any observed
meson. Taking Konopinski's"" Hamiltonian for the
vector meson theory of P-decay, we have, in the case of
an allowed transition, (as regards notation, see refer-

T. Tanikawa, Prog. Theor. Phys. 3, 315 (1948).' E. R. Caianiello, Phys. Rev. 81, 625 (1951)."C. S. Wu, Revs. Modern Phys. 22, 386 (1950); I. Shaknov,
Phys. Rev. 82, 333 (1951);"E. J. Konopinski, Revs. Modern Phys. IS, 209 (1945).

'2E. J. Konopinski and E. Uhlenbeck, Phys. Rev. 60, 308
(1941).


