Neutron Capture γ -Rays from Titanium, Chromium, Iron, Nickel, and Zinc

B. B. KINSEY AND G. A. BARTHOLOMEW

Physics Division, Atomic Energy of Canada, Limited, Chalh River, Ontario, Canada

(Received September 10, 1952)

The neutron capture γ -rays emitted by the even-charge elements, from titanium to zinc, have been investigated with the aid of a pair spectrometer.

Titanium emits a very simple spectrum. Two strong γ -rays, 6.756 ± 0.006 and 6.412 ± 0.006 Mev, are produced by capture in Ti⁴⁸. Neither the direct transition to the ground state of Ti⁴⁹, nor the transitions to the ground states of Ti⁴⁸ and Ti⁵⁰ were detected. From chromium the γ -rays corresponding to transitions to the ground state $(9.716 \pm 0.007 \text{ Mev})$ and to the first excited state (8.881 \pm 0.007 Mev) of Cr⁵⁴ are prominent and have intensities of 13 and 35 photons per 100 captures in $Cr⁵³$. The direct transition to the ground state of Cr⁵¹ was not detected. The iron spectrum is dominated by a strong γ -ray with the energy 7.639 ± 0.004 Mev resulting from neutron capture in Fe⁵⁶. This γ -ray is produced in the transition in Fe⁵⁷ either to the ground state or to the excited state at 14 kev. Two weaker γ -rays with nearly equal energies close to 6 Mev are also produced in this isotope. The ground state γ -ray and the γ -rays leading to the first two

INTRODUCTION

 $'N$ earlier communications, $'$ we have reported inves \blacksquare tigations of the neutron capture γ -rays produced by various elements between beryllium and calcium. These measurements were made with the aid of a pair spectrometer. In this paper we describe the results obtained for the even-charge elements: titanium, chromium, iron, nickel, and zinc. The preliminary survey of the γ -ray spectra from these elements was made in 1949, and a few of these results have already been published.² Since that time the apparatus has been modified, and the spectra have been carefully remeasured. The coincidence counting rates have been increased, and this improvement has been used to obtain better resolution. The stability and control of the magnetic field has also been improved, and it has been possible to count coincidences automatically at a series of predetermined values of the magnetic field. The strength of the field, averaged over the orbits of the electron pairs, is known absolutely to 0.05 percent, while relative values are known to 0.002 percent.

Absolute measurements of the intensities of capture radiations were made by comparison with the 9.0-Mev capture γ -ray produced by nickel. In this method, as previously described,¹ use was made of a calculated curve for the variation of the peak coincidence counting efficiency with the energy. Previously published intensity measurements, however, were certainly too high in the 5-Mev region. In the present paper, the intensity measurements were made on the basis of a semiempirical counting efficiency curve and are undoubtedly much more reliable. Full details of the derivation of this excited states of $Fe⁵⁵$ have been identified. Of these, the groundstate γ -ray (9.298 \pm 0.007 Mev) is strong, about 50 photons per 100 captures in Fe'4. A part of the counting rate ascribed to this γ -ray, however, may be due to the γ -ray producing the first excited state of Fe^{58} in a direct transition. The ground state γ -ray in Fe⁵⁸ (10.16 \pm 0.04 Mev) accounts for about 5 percent of all captures by Fe⁵⁷. The nickel spectrum contains an intense γ -ray with an energy of 8.997 ± 0.005 Mev, which is produced in 50 percent of the captures in Ni⁵⁸. Another prominent γ -ray at 8.532 ± 0.008 Mev may represent the transition to the ground state in Ni⁶¹; if so, it accounts for some 80 percent of captures in Ni⁶⁰. From considerations of intensity, five of the remaining nickel γ -rays can be ascribed to transitions to excited states in Ni⁵⁹. In the spectrum of zinc, few discrete γ -rays can be discerned above a background of unresolved radiations. Of these, a very strong γ -ray, with an energy to 7.876 \pm 0.007 Mev, probably producing directly the ground state of Zn^{65} , is emitted in 40 percent of neutron captures by Zn6'.

curve and of the method of energy measurement are given elsewhere.³ Ignoring errors introduced by uncertainties in the values of the thermal neutron absorption cross sections, the intensity measurements from 3 to 5 Mev should not now be in error by more than 15 percent, and from 6 to 8 Mev, by not more than 10 percent. From 8 to 11 Mev, the counting efficiency is much more difficult to estimate, and at the latter energy, the error may be 30 percent.

In the present experimental arrangement, the sample to be studied is enclosed in an aluminum container fitted with Bakelite ends, and is located, as before, in a hole in the concrete radiation shield of the Chalk River pile. A bismuth block, about six inches in length, is placed between the sample and the reactor and prevents unwanted γ -radiation from entering the spectrometer. The center of the pair spectrometer is about fifteen feet from the sample, and two collimators ensure that any point on the radiator of the spectrometer is exposed only to radiations from the central part of the sample. Unwanted radiations produced by the aluminum container, or by the walls of the hole in the pile shield, are thereby eliminated. Those parts of the collimating system which are, of necessity, located in a strong neutron Aux are made of bismuth which emits little capture radiation of its own; the remainder is made of lead.

In the absence of a sample, a low background of unresolved radiations is obtained on which is superposed a coincidence peak near 4 Mev, due to bismuth, and two low peaks at 7.3 and at 7.6 Mev, produced, respectively, by the capture radiations of lead and aluminum. Except in the case of materials of excep-

¹ Kinsey, Bartholomew, and Walker, Phys. Rev. 83, 519 (1951);

85, 1012 (1952); Can. J. Phys. 29, 1 (1951).

² Kinsey, Bartholomew, and Walker, Phys. Rev. 78, 481 (1950).

^{&#}x27;B. B. Kinsey and G. A. Bartholomew, Can. J. Phys. (to be published).

FIG. 1. Coincidence spectrum produced by titanium.

tionally low cross section, these background radiations are of little practical importance; after taking into account the absorption in the sample and in the materials between it and the spectrometer, suitable corrections can be applied to the coincidence spectrum.

The intensity of the fast neutrons in the γ -ray beam from the sample is reduced with a plate of polythene $\frac{3}{4}$ inch in thickness, and the slow neutrons are filtered out by a disk of similar size containing boron carbide. The absorption of the γ -rays, by these filters and the air, is about 10 percent at 4 Mev.

The present measurements were made with gold slits in front of the stilbene crystals used as detectors. The slits were 1 mm wide and 1.5 mm thick and about 23 cm apart. In these circumstances, for a homogeneous γ -ray, the width of a coincidence peak at half-maximum, hereafter called the line width, is about 100 kev at all energies. This slit width represents a satisfactory compromise between the higher counting rates with less

TABLE I. Energies and intensities of titanium γ -rays.

γ -ray	Energy in Mev	Intensity in photons per 100 captures in natural Ti	Probable origin
Α	9.39 ± 0.03	0.1	$Ti48$?
B	0.03 9.19	0.2	
С	0.02 8.27	0.4	
D	7.80 0.04	0.8	
E	0.01 7.38	1.5	Ti ⁴⁹
F	6.756 0.006	53	$\rm Ti^{49}$
\dot{F}'	0.02 6.53	4	T ₁₄₉
G	6.412 0.006	32	T149
Η	0.03 5.65	0.4	
Ĩ	4.96 0.01	3.5	Ti ⁴⁹
\overline{J}	4.88 0.01	5.0	T ₁₄₉
Κ	4.67 0.03	1.4	

resolution obtained with a wider slit, and the much lower counting rate with only slightly improved peak width obtained when the slits are made much narrower.

A tail, produced by the scattering of the pair components within the vacuum chamber, is observed beyond the upper end of each intense coincidence peak. At the point where the tail joins the upper edge of the peak, it is about 5 percent of the peak height; beyond that point, it rises to a maximum of about 6.5 percent and then falls slowly producing a spurious peak. This ghost peak is the result of scattering of the pair components from an aluminum frame in which the slits are recessed. It did not appear in the measurements made with the previous apparatus in which the slits were differently mounted. In the figures illustrating this paper, the spurious peaks are distinguished from the genuine peaks by a broken line, drawn beneath the experimental points (for example, see Fig. 9 near 9.2 Mev).

The method of correcting the coincidence pair spectrum to find the γ -ray spectrum has been described Fire ineurod of correcting the coincidence pair
spectrum to find the γ -ray spectrum has been described
in other communications.^{1,3} In Figs. 2, 5, 7, 10, and 12, the ordinates $\nu(E)$ of the corrected γ -ray spectra are given in absolute units, i.e., the number of photon emitted per unit energy range per capture. The height of a coincidence peak of unit intensity, i.e. , one photon per capture, is equal to 6.7 MeV^{-1} .

TITANIUM

The coincidence pair spectrum from a sample of about 500 ^g of titanium dioxide is shown in Fig. 1. Except for the two very strong γ -rays F and G, few other γ -rays appear in the spectrum and the background of unresolved radiation at the lower energies is low. The energies and intensities of the more intense resolved radiations are listed in Table I. The absolute intensities were determined by comparing the coincidence counting rate of the peak F with that of the 9.00-Mev nickel γ -ray, both γ -rays being emitted from an intimate mixture of titanium and nickel oxides in the ratio of roughly 5:1 by weight. The capture cross section of titanium for thermal neutrons was assumed to be 5.8 barns. The corrected γ -ray spectrum is shown in Fig. 2. This was obtained from the coincidence spectrum by correcting for γ -ray absorption in the titanium sample and in the neutron filters, and by correcting for the counting efficiency of the spectrometer as a function of the energy.

The abundances and the contributions to the total capture cross section of the separate titanium isotopes and the neutron binding energies of the product nuclei are listed in Table II. The neutron binding energies were calculated from recent mass values obtained by were calculated from feedily mass values obtained by
Collins, Nier, and Johnson,⁴ and from measurements on the (d,p) reaction by Harvey⁵ and by Pieper.⁶ Of the five stable isotopes of titanium, it will be seen that only the first four, Ti^{46} , Ti^{47} , Ti^{48} , and Ti^{49} , contribute appreciably to the thermal neutron capture cross section of natural titanium. Of these isotopes, by far the greater part' of the capture cross section is due the more abundant isotope Ti⁴⁸.

An inspection of Table I and Fig. ¹ will show that there is no distinct γ -ray corresponding to any of the neutron binding energies listed in Table II.We estimate that the direct transitions to the ground states of $Ti⁴⁸$ and Ti⁵⁰ produce γ -rays for which the intensities are less than 0.02 photon per 100 captures in natural titanium. Since Ti^{47} and Ti^{49} each contribute roughly 2 percent of the capture cross section of natural titanium, these ground state γ -rays are weaker than 1 photon per 100 captures in the separate isotopes.

TABLE II. Abundances, neutron capture cross sections, and neutron binding energies of titanium isotopes.

Iso- tope	Abun- dance percent	Contri- bution to cross section in percent	From Harvey ^e	Neutron binding energy of product nucleus in Mev From Collins. Nier, and Johnsond	From Pieper ^e
T146 Ti ⁴⁷ Ti ⁴⁸ Ti ⁴⁹ Ti ⁵⁰	8.0 7.8 73.4 5.5 5.3	0.8 ^a 2.1a 95 a 1.6 ^a 0.2 ^b	8.74 ± 0.1 11.05 ± 0.4 8.15 ± 0.05	8.64 ± 0.11 $11.63 + 0.11$ 7.99 ± 0.08 $10.99 + 0.06$	8.04 ± 0.05

^a See reference 7.
^b See reference 25.
° See reference 5.

See reference 4. ^e See reference 6.

⁴ Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952).
⁵ J. A. Harvey, Phys. Rev. 81, 353 (1951).

⁶ G. F. Pieper, Phys. Rev. 87, 215 (1952).

⁷ H. Pomerance, Phys. Rev. 88, 412 (1952). We are indebted to Dr. Pomerance for the privilege of seeing his results before publication.

FIG. 2. Corrected γ -ray spectrum of titanium.

From Table II, it is clear that the neutron binding energy of $Ti⁴⁹$ is close to 8.05 Mev. This energy lies near the middle of the broad peak C in Fig. 1, which clearly represents the contribution of several unresolved γ -rays. If the ground-state γ -ray in Ti⁴⁹ is present, and there is no clear evidence in Fig. 1 for its existence, it must contribute a peak coincidence counting rate of less than 2 counts per minute, which corresponds to an intensity of less than 0.2 photons per 100 captures in Ti⁴⁸.

The main feature of the titanium spectrum is the presence of the two very strong γ -rays F and G, both of which must originate in Ti⁴⁹. Between them lies a small peak F' , which, on account of its intensity, must also come from Ti⁴⁹. The γ -rays I and J, and probably also E and K , are produced by this isotope.

From a study of the (d, p) reaction, Pieper⁶ has shown that excited states exist in Ti⁴⁹ at 1.40, 1.74, 2.45, and 3.14 Mev. If the energies of the γ -rays F and G are added to the energies of the first two of these excited states, we obtain 8.16 and 8.15 Mev, respectively, in fair agreement with the neutron binding energies listed in Table II. It seems probable, therefore, that the γ -rays F and G derive from transitions to the first and second excited states of $Ti⁴⁹$ found by Pieper (see Fig. 3). Transitions to the third excited state are not found. The group of γ -rays I, J, and K may originate in transitions to a group of levels near the fourth excited state at 3.14 Mev. The γ -rays E and F' have not been identified though their high intensities suggest that they are emitted by $Ti⁴⁹$. It is possible that they represent transitions to low-lying levels not detected in Pieper's experiments.

Two excited states in Ti⁴⁸, at 0.98 and at 2.31 Mev, are known from the decay⁸ of Sc^{48} and V^{48} ; these states have also been produced⁹ in the reaction Sc⁴⁵(α , p)Ti⁴⁸. Assuming that the neutron binding energy of $Ti⁴⁸$ is 11.63 \pm 0.11 Mev (from Table II), γ -rays producing these states directly will have the energies 10.65 ± 0.11 and 9.32 ± 0.11 Mev. There is an indication in Fig. 1 of a γ -ray at an energy of about 10.6 Mev, although the statistics are not good enough to establish its existence

⁸ W. C. Peacock and M. Deutsch, Phys. Rev. **69**, 306 (1946); also C. T. Hibdon and M. L. Pool, Phys. Rev. **67**, 313 (1945); C. E. Mandeville, Phys. Rev. **64**, 147 (1943). ⁹ E. Pollard, Phys. Rev. **54**, 411 (1938).

FIG. 3. Decay scheme for the capture γ -rays from Ti⁴⁹. The level energies are those obtained by Pieper.⁶ Other possible levels, inferred from the capture γ -ray spectrum, are indicated by. broken horizontal lines.

with certainty. Probably one of the γ -rays A or B, represents a transition to the second of these two states. There is little doubt that these weak γ -rays are produced by titanium, for a spectrographic analysis of the sample material revealed no impurities in sufhcient concentration to account for the weak radiations with energies about 7.5 Mev.

The γ -rays which contribute to the broad peak at C have not been identified. Some of the γ -rays in Fig. 1 must be produced by capture in Ti⁴⁹, but no details of the positions of the excited states in Ti⁵⁰ have been published, and such radiations therefore cannot be distinguished.

CHROMIUM

The sample consisted of about a kilogram of chemically pure chromic oxide. The coincidence spectrum of the neutron capture γ -rays is shown in Fig. 4, and the energies and intensities are listed in Table III. In previous measurements, no chromium γ -rays were detected between the energy of peak A and 12.4 Mev.

Since the peak B in the chromium spectrum overlaps that produced by the 9.00-Mev nickel γ -ray, the absolute intensities of the chromium γ -rays were measured by comparing the peak coincidence counting rate of the γ -ray B with that of the 9.30-Mev γ -ray B of the iron spectrum, using an equal mixture of Cr_2O_3 and Fe_2O_3 . The chromium capture cross section was assumed to be 2.90 barns. The corrected chromium spectrum is shown in Fig. 5.

Natural chromium possesses four stable isotopes, Cr^{50} , Cr^{52} , Cr^{53} , and Cr^{54} , of which only the first three contribute appreciably to the thermal neutron capture cross section in the natural element, Theabundances and the contributions of the various isotopes to the cross section,¹⁰ together with the neutron binding energies of section,¹⁰ together with the neutron binding energies of the product nuclei are given in Table IV.

The neutron binding energy of Cr⁵¹, obtained from the Q of the reaction¹¹ $V^{51}(p,n)Cr^{51}$, is 9.07 \pm 0.09 Mev. This value can be checked by subtracting the neutron binding energy of $Cr⁵²$ from the sum of the binding energies (21.4 Mev) of two neutrons in $Cr⁵²$ obtained from the mass measurements.⁴ For the former, Sher, from the mass measurements.⁴ For the former, Sher
Halpern, and Mann,¹² find 11.80 \pm 0.25 Mev. A more accurate value can be deduced from the ^Q of the reaction, $V^{51}(p,n)Cr^{51}$; the neutron binding energy⁵ of V^{52} , 7.3 Mev; and the energy¹³ of the decay of V^{52} , 4.2 Mev. The value obtained is 12.2 ± 0.1 Mev. When this is subtracted from the binding energy of two neutrons in $Cr⁵²$, the neutron binding energy of $Cr⁵¹$ is found to be 9.2 ± 0.2 Mev.

The neutron binding energies of $Cr⁵³$ and $Cr⁵⁴$, given in Table IV, were calculated from the mass measurements. Since the activity of $Cr⁵⁵$ has not been identified with certainty, its binding energy cannot be calculated;

TABLE III. Energies and intensities of chromium γ -rays.

- ¹⁰ H. Pomerance, Phys. Rev. 76, 195 (1949). "R. V. Smith and H. T. Richards, Phys. Rev. 74, 1257 (1948).
-
- ¹² Sher, Halpern, and Mann, Phys. Rev. 84 , 387 (1951). "
²³ R. Bouchez and G. A. Renard, J. phys. et radium 8, 289 ¹³ R. Bouchez and G. A. Kenard, J. phys. et radium 8, 289 (1947).

FIG. 4. Coincidence spectrum produced by chromium.

however, this binding energy is not relevant to the present work, for the contribution of that isotope to the cross section of natural chromium is negligible.

The energy of the γ -ray A is very close to that of the neutron binding energy of Cr⁵⁴. The difference between the energies of the γ -rays A and B is 0.835 \pm 0.005 Mev. The error in this difference is smaller than the error in either γ -ray measurement, because it depends only on the statistical errors, the systematic errors in the measurement of the magnetic field disappearing in the difference. This difference is in excellent agreement with the energy of the γ -ray produced in the decay of Mn^{54} , which is 0.835 ± 0.015 Mev, according to Deutsch and Elliott.¹⁴ We conclude that the γ -ray A is emitted in the direct transition to the ground state of Cr⁵⁴ and that the γ -ray B is emitted in the transition to the first excited state. Both A and B are very strong γ -rays, and together account for half of the captures in Cr⁵³. No other excited states of Cr⁵⁴ are known, and it is not possible, therefore, to identify any other γ -rays in Fig. 4 with capture in Cr⁵³.

It can be seen from Fig. 4 that a 9.1-Mev γ -ray, cor-

TABLE IV. Abundances, neutron capture cross sections, and neutron binding energies of the chromium isotopes.

Isotope	Abundance percent	Contribution to cross section in percent ^a	Neutron binding energy of product nucleus in Mev
\sim r 50 $C - 52$ \sim -53 Cr^{54}	44 83.7 9.5 2.4	24.5 20.5 55	$9.07 + 0.09$ $7.76 + 0.11b$ $9.70 \pm 0.20^{\rm b}$

^a See reference 10.
b See reference 4.

¹⁴ M. Deutsch and L. G. Elliott, Phys. Rev. 65, 211 (1944).

responding to the ground-state transition in $Cr⁵¹$, would be superposed on the spurious peak caused by the γ -ray B. There is no evidence for such a γ -ray at this energy, and if it exists, its intensity is less than one photon per 100 captures in $Cr⁵⁰$. The positions of four excited states in Cr⁵¹ have been determined by Stelson, Preston, and Goodman¹⁵ in their study of the neutron energies of the reaction $V^{51}(p,n)Cr^{51}$. If the neutron binding energy of $Cr⁵¹$ is assumed to be 9.07 ± 0.09 Mev, it follows that the γ -rays producing these states in direct transitions should have energies of 8.29 ± 0.11 , 7.90 \pm 0.11, 7.65 \pm 0.13, and 7.54 \pm 0.13 Mev. From Table III it will be seen that these energies are in rather good agreement with the energies of the γ -rays C, D, D' , and E. If this identification is correct, then the intensities of the γ -rays C and D are both about 30 photons per 100 captures in $Cr⁵⁰$. Now the neutron binding energy of Cr^{53} is 7.76 \pm 0.11 Mev; with an equal validity, therefore, it is possible to identify one or the other of the γ -rays D or D' with the ground-state transition in that isotope. It is clear that much more accurate measurements on the neutron binding energies and on the level energies of the chromium isotopes are

¹⁵ Stelson, Preston, and Goodman, Phys. Rev. 80, 287 (1950).

FIG. 6. Coincidence spectrum produced by iron.

required before these radiations can be identified with certainty. *

IRON

The coincidence spectrum of the neutron capture γ -rays from a very pure sample of metallic iron¹⁶ are shown in Fig. 6, and the energies and intensities of individual γ -rays are listed in Table V. The absolute

TABLE V. Energies and intensities of iron γ -rays.

γ -ray	Energy in Mev	Intensity in photons per 100 captures in natural iron	Probable origin
Α	10.16 ± 0.04	0.1	Fe ⁵⁸
B	9.298 0.007	2.7	Fe ⁵⁵ , Fe ⁵⁸
С	8.872 0.010	0.5	Fe ⁵⁵
D	8.345 0.011	0.8	$\rm Fe^{55}$
E	7.639 0.004	36	$\rm Fe^{57}$
F	7.285 0.009	3.5	Fe ⁵⁷
G	6.369 0.009	0.4	
$_{H}$	6.015 0.007	5.6	$\rm Fe^{57}$
I	5.914 0.010	5.2	Fe ⁵⁷
.1	4.968 0.011	0.5	
Κ	4.81 0.02		
L	4.44 0.03		
M	0.03 4.21	$\overline{2}$	
\overline{N}	3.86 0.05	0.5	
O	3.43 0.03	2.0	

* Note added in proof: McFarland, Bretscher, and Shull [Bull Am. Phys. Soc., 27 (No. 5) 7 (1952)] have reported measurements on the Cr⁶²(d,p)Cr⁶³ reaction, from which it follows that the energies of the γ -rays leading to the ground state and to the first
excited state of Cr⁵³ are 7.93 and 7.39 Mev, respectively, in good agreement with the energies of the γ -rays D and F.
¹⁶ We are indebted to the Division of Physical Metallurg

Department of Mines and Technical Surveys, Ottawa, for the provision of this sample,

intensities were measured by a comparison of the counting rates of the 7.64-Mev γ -ray (peak E) and the 8.53-Mev γ -ray of nickel in a mixture of iron and nickel oxides. This procedure was chosen because the 9.00-Mev nickel γ -ray which is usually used for comparison has an energy too close to that of the 9.30-Mev iron γ -ray (peak \overline{B}). The 8.53-Mev nickel γ -ray, however, lies between two peaks in the iron spectrum, and only small corrections need to be applied to allow for the contribution of the spectrum of the one element to the counting rate produced by the other. The capture cross section of iron was assumed to be 2.43 barns. The corrected γ -ray spectrum is shown in Fig. 7.

Iron has four stable isotopes, $Fe⁵⁴$, $Fe⁵⁶$, $Fe⁵⁷$, and $Fe⁵⁸$. The abundances, the contributions⁷ to the total thermal neutron capture cross section, and the neutron binding energies are listed in Table VI. The greater part of the neutron capture cross section of natural iron is due to Fe⁵⁶, and therefore the stronger γ -rays in the iron spectrum can be ascribed to capture by that isotope.

The dominant features of the coincidence spectrum are the very strong peak E , and the weaker, but higher energy, peak B. The energy of the γ -ray E(7.639 \pm 0.004 Mev) is in very good agreement with the neutron binding energy deduced from the Q value of the stronger of the two high energy groups of protons found by Harvey⁵ in the (d,p) reaction. The Q values of these two groups are 5.42 and 7.11 Mev. The intensity of the stronger shows that it is derived from $Fe⁵⁶$, and therefore the neutron binding energy of Fe^{57} is 7.65 \pm 0.10 Mev, in agreement with the energy of the γ -ray E. Harvey has shown that the weaker group of protons corresponds to the production of $Fe⁵⁵$ in its ground state and that the neutron binding energy obtained (9.34 ± 0.05 Mev) is consistent with the neutron binding energy of that nucleus deduced from disintegration data. It is also consistent with the value 9.24 ± 0.10 Mev deduced from mass measurements' and the Q of the $Mn^{55}(p,n)Fe^{55}$ reaction.¹⁷ These results are in good agreement with the energy of the γ -ray B, which, we conclude, represents the direct transition to the ground state of $Fe⁵⁵$.

The γ -rays with energies above that of E must be due to capture in $Fe⁵⁴$ or $Fe⁵⁷$, because the highest energy produced by capture in Fe⁵⁶ is that of the γ -ray E, and the energy produced by capture in the heavier even isotope Fe⁵⁸ must be lower. The weak γ -rays, C and D , correspond to transitions to the first and second excited states of $Fe⁵⁵$ (see Fig. 8). This can be seen from Table VII. The first column contains the positions of the excited states of Fe⁵⁵ found by Stelson and Preston¹⁷ from a measurement of the energies of the neutrons

TABLE VI. Abundances, neutron capture cross sections, and neutron binding energies of the iron isotopes.

Isotope	Abundance percent	Contribution to cross section in percent		Neutron binding energy of product nucleus in Mev
Fe ⁵⁴ Fe ⁵⁶ Fe ₅₇ Fe ⁵⁸	5.9 91.6 2.2. 0.3	.5.1 ^a a 2.0 ^a 0.5e	$7.65 \quad 0.10b$	$9.34 + 0.05b$ $9.24 + 0.10c$ d 7.62 0.13 ^c 9.8 04 ^c
	^a See reference 7. ^b See reference 5.			

 $\frac{b}{c}$ See reference 5.
 $\frac{d}{c}$ See reference 4.

^e See, reference 25.

in the $Mn^{55}(\rho,n)$ Fe⁵⁵ reaction; the second column contains the position of the excited states found by Deutsch and Hedgran¹⁸ from the study of the decay of $Co⁵⁵$; and the third column, the differences in the energies of neutron capture γ -rays. The errors in these energy differences are the root mean square values of the sums of the statistical errors of measurement; as in the case of the two most energetic chromium γ -rays, the systematic errors are approximately the same for each γ -ray and disappear in their differences. For the first two excited states, there is quite close agreement between the energies obtained by the different measurements. The third excited state of $Fe⁵⁵$ near 1.4 Mev, which, according to the neutron measurements, may consist of two or more closely spaced levels, could be excited directly by a γ -ray with an energy of about 7.94 Mev. This energy lies near the upper end of the scattering tail of the peak E , and consequently, the detection of a weak γ -ray in this position is difficult. If this γ -ray is present, the counting rate produced by it must be less than 5 counts per minute, which at this

2.5 2.0- IRQN l.5 v(K} tQ- α 5 Mev A lQ

FIG. 7. Corrected γ -ray spectrum of iron.

energy, is equivalent to an intensity of less than 4 photons per 100 captures in Fe⁵⁴. The energy of the γ -ray F is equal to that expected from a transition to the fourth excited state of Fe⁵⁵ at 2.08 Mev. The intensity of this γ -ray, however, would seem to be rather high; a more probable alternative explanation of F is given below.

We return to a consideration of peak B . The sum of the intensities of B , C , and D together corresponds to about 80 percent of the neutron capture rate in Fe⁵⁴. If the peak B is produced only by the direct transition to the ground state in $Fe⁵⁵$, it occurs very frequently, viz., in about 50 percent of all captures in Fe⁵⁴. This intensity, however, is an upper limit, for it will be shown below that the peak B may contain a contribution from Fe⁵⁸.

The γ -ray responsible for the bump B' has an energy about 100 key less than that of B and cannot be interpreted as the transition to the ground state in Fe⁵⁵ in view of the good agreement in the energy differences obtained with the γ -ray B in Table VII. It will also be shown below that B' cannot be produced in Fe⁵⁸. We conclude that B' indicates the presence of a low-lying excited state in $Fe⁵⁵$, possibly connected with the emission of the 95-kev radiation observed by Deutsch and H edgran¹⁸ in the decay of $Co⁵⁵$.

Excited states are known^{18,19} to exist in $Fe⁵⁷$ at 0.014 Mev and at 0.131 Mev. Although the energy of the γ -ray E is in agreement with that deduced from the strong proton group found by Harvey in the (d,p) reaction, it is not clear from the present measurements

TABLE VII. Excited states of Fe⁵⁵.

From Stelson and Preston ^a in Mev	From Deutsch and Hedgran ^b in Mev	γ -ray differences in Mev
0.42 0.94 1.36 2.08	0.935 1.41	$B-C$ 0.425+0.009 $B-D$ 0.953 0.011 γ -ray not detected B-F 2.013±0.010

^a See reference 17.
^b See reference 18.

¹⁹ L. G. Elliott and M. Deutsch, Phys. Rev. 64, 321 (1943).

 17 P. H. Stelson and W. M. Preston, Phys. Rev. $\bf 82,$ $\bf 655$ (1951). 18 M. Deutsch and A. Hedgran, Phys. Rev. $\bf 75,$ $\bf 1443$ (1949).

FIG. 8. Decay scheme for the capture γ -rays from Fe⁵⁵, Fe⁵⁷ and Fe⁵⁸. The level energies on the left are obtained from the γ -ray measurements, those on the right from the results of other authors (see text). Two levels, whose presence is inferred from the γ -ray spectrum, are shown in the level scheme of Fe⁵⁷.

whether E represents the direct transition to the ground state or the transition to the first excited state of Fe⁵⁷, for the line width used in the present measurements does not allow of the resolution of two γ -rays separated by only 14 key. The proton group found by Harvey, however, is of exceptional width, and he has interpreted his results as showing the presence of an excited state at 0.36 Mev. This energy is equal to the difference between the energies of the γ -rays E and F, 0.354 ± 0.005 Mev, and the latter γ -ray, therefore, is very probably the direct transition to that excited state. A direct transition to the excited state at 0.131 Mev must be very infrequent by comparison with the intensity of the γ -ray E, for the width of peak E is normal and there is no evidence for the presence of any γ -ray between E and F.

The γ -rays producing the peaks at H and I in Fig. 6 are of such a strength that it is clear that they must both arise from the capture of neutrons in Fe⁵⁶. The transitions represented by these γ -rays and those of lower energy cannot be identified with certainty for no details of the positions of the higher excited states of $Fe⁵⁷$ have yet been published. However, it is very probable that these γ -rays produce directly excited states at 1.73 and 1.62 Mev, respectively. Between the peaks H and F there is a continuous background part of which may be due to γ -rays emitted by highly excited states.

From the mass measurements, the neutron binding energy of Fe^{58} is found to be 9.8 ± 0.4 Mev. The energy of the γ -ray A, 10.16 \pm 0.04 Mev, is in agreement with this value, and we identify this γ -ray, therefore, with the direct transition to the ground state in that nucleus. Its intensity, 0.10 photon per 100 captures, is equivalent to 5 photons per 100 captures in $Fe⁵⁷$.

An excited state is known¹⁴ to exist in Fe⁵⁸ at 0.805 ± 0.012 Mev; we should expect, therefore, to find a γ -ray corresponding to the direct transition to this state with an energy of 9.35 ± 0.04 Mev. From natural

iron, such a γ -ray would be hard to distinguish from the γ -ray B, the ground state transition in Fe⁵⁵. The γ -ray B' cannot be confused with this transition for its energy is certainly too low.

Neutron capture in Fe^{58} accounts for only 0.5 percent of the total absorption cross section. The neutron binding energy of Fe⁵⁹ may be calculated from the neutron binding energy¹² of $Co⁵⁹$ and the decay energies¹⁴ of Co⁵⁸ and of²⁰ Fe⁵⁹. Assuming that the latter quantities are 2.30 and 1.56 Mev, respectively, the neutron binding energy of $Fe⁵⁹$ is found to be 6.4 \pm 0.2 Mev. Another value for the same quantity can be found from the masses of Fe⁵⁸ and Ni⁵⁸, the neutron binding energy of Ni⁵⁹ and the decay energy²¹ of Ni⁵⁹ and of $Fe⁵⁹$: it is 7.2 \pm 0.4 Mev. These values are too inaccurate to permit the identification of any of the iron γ -rays with the ground state transition in Fe⁵⁹.

NICKEL

In the previous investigation of nickel, no γ -rays were detected between 9.0 and 14.0 Mev. Consequently, when studying the nickel spectrum again with the improved apparatus, we have only examined the spectrum from 3 to 9 Mev. The coincidence spectrum obtained from a kilogram of chemically pure $Ni₂O₃$ is shown in Fig. 9, the corrected spectrum in Fig. 10. Table VIII contains the energies and intensities of the γ -rays observed. The absolute intensities were obtained by comparison of the relative intensities with that of the 9.00-Mev γ -ray, for which the absolute intensity had been previously determined³ by direct comparison with the 2.75-Mev γ -ray of Na²⁴. The intensities are based on capture cross sections of 0.54 and 4.80 barns for sodium and nickel, respectively. Below 5 Mey no distinct peaks can be detected on the continuous unresolved background. As in the iron spectrum, this background is low, the γ -rays in Table VIII accounting for some 75 percent of the total energy emitted.

TABLE VIII. Energies and intensities of nickel γ -rays.

γ -ray	Energy in Mev	Intensity in photons per 100 captures in natural nickel	Probable origin
A	$8.997 + 0.005$	35	Ni ⁵⁹
B	8.532 0.008	14	Ni ⁶¹
\overline{C}	8.119 0.010	2.8	
D	7.817 0.008	6.5	Ni ⁵⁹
E	7.528 0.011	4	Ni ⁵⁹
\overline{F}	7.22 0.02	0.5	
G	7.05 0.02	0.5	
\boldsymbol{H}	6.839 0.010	9	Ni ⁵⁹
\overline{I}	6.58 0.02	2.0	
\overline{J}	6.34 0.02	0.6	
Κ	6.10 0.02	1.0	
L	5.99 0.02	0.3	
\overline{M}	5.82 0.02	3	$Ni59$?
N	5.70 0.02	0.4	
O	0.02 5.31	1	

²⁰ Deutsch, Downing, Elliott, Irvine, and Roberts, Phys. Rev. 62, $3(1942)$.
²¹ J. J. G. McCue and W. M. Preston, Phys. Rev. 84, 384 (1951).

FIG. 9. Coincidence spectrum produced by nickel.

Nickel contains five isotopes of which only $Ni⁵⁸$, $Ni⁶⁰$, and Ni⁶² contribute appreciably to the cross section of the natural element. The abundances, the contributions to the thermal neutron capture cross section, and neutron binding energies are given in Table IX. The contributions to the cross section were calculated from the results obtained by Pomerance.¹⁰ results obtained by Pomerance.

The neutron binding energy of $Ni⁵⁹$ may be deduced from Harvey's measurements' of the energy balance in the (d, p) reaction. The result obtained, 9.01 ± 0.10 Mev, is in good agreement with the energy of the γ -ray A. In the absence of any evidence of γ -radiation with energies above that of A, we conclude that this γ -ray represents the direct transition to the ground state in Ni⁵⁹. It is emitted in 50 percent of all captures in Ni⁵⁸. There is no evidence for a γ -ray leading to the first excited state²² of Ni⁵⁹ at 0.33 ± 0.05 Mev; if it is present, its intensity must be less than 0.5 photons per 100 captures in Ni⁵⁹.

The energy of the γ -ray B (8.532 \pm 0.008 Mev) is close to the neutron binding energy of Ni" deduced from the masses of $Ni⁶⁰$ and $Ni⁶¹$ (see Table IX). This value, however, disagrees with the tentative binding energy (7.5 Mev) of Ni⁶¹ found by Sherd, Halpern, and energy (7.5 Mev) of Ni⁶¹ found by Sherd, Halpern, and
Stephens.¹² In a previous communication, we have iden

TABLE IX. Abundances, neutron capture cross sections, and binding energies of nickel isotopes.

Isotope	Abundance percent	Contribution to cross section. in percent	Neutron binding energy of product nucleus in Mey	
Ni 58	67.9	а	9.01 ± 0.10 ^c	
Ni ⁶⁰	26.2	\mathbf{a} 16	0.34 ^d 8.31	
Ni ⁶¹	12	0.5 ^a	0.23 ^d 10.46	
$\rm Ni^{62}$		\mathbf{a}	6.0 \bullet	
N;64	- 0	Ո 4Ե	5.5	

^a See reference 10.
^b See reference 25.

^o See reference 5.
^d Deduced from the results of Collins, Nier, and Johnson, see reference 4.
• Deduced from mass measurements and the decay of Ni⁸³ (0.05 Mev).
^f Deduced from the mass measurements and the decay

~ P. H. Stelson and W. M. Preston, Phys. Rev. 86, ⁸⁰⁷ {1952).

tified the γ -ray B with the ground-state transition in Ni⁶¹. This identification would appear to be correct, for the energy of the γ -ray B is in agreement with the neutron binding energy of $Ni⁶¹$ deduced from the Q of the reaction $Ni^{60}(d, p)Ni^{61}$ recently measured by of the reaction $Ni^{60}(d,p)Ni^{61}$ recently measured by
Hoesterey.²⁸ The γ -ray B, therefore, like A, is exceptionally strong, and is produced in about 80 percent of all neutron captures by Ni⁶⁰.

The γ -rays D, E, H, and I cannot be emitted by Ni⁶² or Ni⁶⁵ since their intensities separately exceed the contributions of either $Ni⁶¹$ or $Ni⁶⁴$ to the cross section of the natural element; they cannot be emitted by $Ni⁶³$ since their energies exceed the neutron binding energy of that nucleus. Moreover, if the γ -ray B is indeed emitted by Ni⁶¹, the combined intensity of the remaining $Ni⁶¹ \gamma$ -rays is only about 2 photons per 100 captures. This difference, which may be in error by a factor of two, is equal to the intensity of the γ -ray I, but is less than that of D , E , or H . We conclude, therefore, that the γ -rays D, E, and H, and perhaps also the γ -ray I, are all emitted by Ni⁵⁹.[†] Together with the

FIG. 10. Corrected γ -ray spectrum of nickel.

²³ D. C. Hoesterey, private communication.

²³ D. C. Hoesterey, private communication.
† Note added in proof.—All of these assignments may be incorrect, for, according to McFarland, Bretscher, and Shull {see note added in proof, page 380), the first excited state of Ni⁸⁹ is 0.42 Mev and the second at 3.08 Mev. These results suggest that

Fro. 11.Coincidence spectrum produced by zinc.

 γ -ray A, these radiations then account for about 80 percent of the captures in Ni⁵⁸.

Three excited states are believed to exist²⁴ in Ni 61 at the energies 0.655 ± 0.003 , 0.939 ± 0.004 , and 1.015 ± 0.004 Mev. Direct transitions to these states would produce γ -rays with the energies 7.877 \pm 0.008, 7.593 ± 0.009 , and 7.517 ± 0.009 Mev. Since the combined intensities of these γ -rays must be, at most, about two photons per 100 captures, they cannot be detected'with certainty in the presence of the stronger radiations D and $E.t$

Because of the small contributions of both Ni⁶¹ and Ni⁶⁴ to the thermal cross section, no radiations produced by capture in these isotopes can be identified.

ZINC

The γ -rays emitted from a sample of about 2 kg of very pure zinc metal¹⁶ are shown in Fig. 11 and are listed in Table X. In the preliminary investigation, the γ -ray spectrum was explored to a maximum energy of 10 Mev, and, therefore, in the recent and more detailed investigation no attempt was made to search above the energy of the γ -ray A. Table X contains only the more prominent of the numerous γ -rays which make up the zinc spectrum. Of those coincidence peaks which cannot. be resolved by the present instrument, e.g., C, F, G , etc. , the energies listed in Table X are those of the

components of highest energy. The absolute intensities were measured by comparing the counting rate of the peak E with the counting rates of the two nickel peaks ^A and B. A composite source was used, consisting of three similar zinc plates, about $\frac{1}{2}$ inch in thickness, each sandwiched between two sheets of nickel of 0.¹ g per cm'. The capture cross section of zinc was assumed to be 1.06 barns. The corrected γ -ray spectrum is shown ln Fig. 12.

Zinc possesses five stable isotopes, of which only four contribute to the total thermal neutron cross section, that due to Zn^{70} being negligible. The abundances, the contributions to the thermal neutron capture cross section, and the neutron binding energies are listed in Table XI. The contributions to the cross section of Zn^{64} and Zn^{68} are known from activation experiments.²⁵ The separate contributions of Zn^{6} experiments.²⁵ The separate contributions of Zn^{66} and Zn^{67} have not been measured. The neutron binding energy of Zn^{65} was calculated from the masses of Zn^{64}

²⁵ Seren, Friedlander, and Turkel, Phys. Rev. 72, 888 (1947).

part, at least, of peak B (which, however, is of normal width) is caused by Ni⁵⁹. If this is the correct interpretation of B , it does not follow that the γ -rays D, E, H, and I, are produced by Ni⁵⁹. The peaks D and E could be produced by Ni⁶¹, for it will be noted that the difference between the energies of these γ -rays is very close to the difference between the energies of the first and second excited states of Ni⁶¹ quoted above.

²⁴ Owen, Cook, and Owen, Phys. Rev. 78, 686 (1950); Boehm, Blaser, Marmier, and Preiswerk, Phys. Rev. 77, 295 (1950).

and Cu⁶⁵, and the energy of the decay²⁶ of Zn^{65} (1.34) Mev). The result obtained $(8.14\pm0.06$ Mev) is in fair agreement with the value obtained by Harvey from the (d,p) reaction (7.92 \pm 0.05 Mev). The neutron binding energies of Zn^{67} and Zn^{68} , listed in Table X, were obtained from mass measurements. The neutron binding energy of Zn^{69} was obtained from the masses⁴ of $\mathbb{Z}n^{68}$ and $\mathbb{Z}n^{70}$ and the (γ,n) threshold²⁷ of $\mathbb{Z}n^{70}$, 9.20 ± 0.20 Mev.

TABLE X. Energies and intensities of zinc γ -rays.

γ -ray	Energy in Mev	Intensity in photons per 100 captures in natural Zn	Probable origin
A	± 0.03 9.51	0.07	Zn^{68}
B	9.12 0.01		Zn^{68}
B^{\prime}	8.98 0.01	0.2	$\rm Zn^{68}$
С	8.58 0.03	0.2	Zn^{68}
\overline{D}	0.02 8.31	0.6	Zn^{68}
E	7.876 0.007	10	Zn^{65}
\boldsymbol{F}	0.03 7.19	2.0	
G	6.94 0.02	2.7	
G'	0.03 6.65	0.5	
$_{H}$	0.02 6.49	1	
I	6.26 0.03	0.3	
J	6.03 0.02	0.8	
K	5.77 0.02	1	
L	0.02 5.48	2.5	
M	5.23 .0.03	0.7	
Ν	4.84 0.04	1.6	
Ω	4.14 0.03	1.2	

The agreement between the energy of the γ -ray E and the neutron binding energy of Zn^{65} obtained, by Harvey, suggests that this γ -ray is the product of the transition either to the ground state or to some lowlying state in that nucleus. If this identification is

²⁶ Mann, Rankin, and Daykin, Phys. Rev. 76, 1719 (1949).

²⁷ Hanson, Duffield, Knight, Diven, and Palevsky, Phys. Rev. 76, 578 (1949).

TABLE XI. Abundances, neutron capture cross sections, and neutron binding energies of zinc isotopes.

* See reference 4.
^d See reference 27.
* National Bureau of Standards Circular No. 499 (1950).

correct, the γ -ray is of exceptional strength, for it must be produced in 40 percent of all neutron captures in Zn^{64} . However, the possibility that this γ -ray is caused. by capture by Zn^{67} is not excluded; capture by this isotope must be frequent, for the product nucleus Zn^{68} is certainly responsible for the emission of the γ -rays A, B, B', C , and D .

The existence of the γ -ray A with 9.51 \pm 0.03 Mev is indicated but not well established in Fig. 11.Its energy is equal to the calculated neutron binding energy of $Zn⁶⁸$ and, therefore, may be produced in the transition to the ground state in that nucleus. The γ -rays B, B', C , and D probably represent transitions to low-lying excited states in Zn⁶⁸.

Although the positions of some of the excited states of Zn^{67} are known from the decay of Ga^{67} , it is not possible to identify any of the γ -rays of Table X with transitions in this nucleus for most of the capture γ -rays are only partially resolved and their energies cannot be measured with sufficient precision. Similarly, none of the γ -rays in $\mathbb{Z}n^{69}$ due to capture by $\mathbb{Z}n^{68}$ can be identified.