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Extension of Makinson's Theory of Photoelectric Emission to a Periodic Potential
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The results of Makinson s treatment of the transition probability for photoelectric emission for a free-
electron model has been extended to Bloch wave functions in a periodic field. The particular application of
these results to the case of electrons at the top of a 6lled band has been developed, thereby filling in some of
of the details of the preceding paper.

'AKIXSON' has shown that for a free-electron
- ~ metal the probability for photoelectric emission

for the kth electron is given by the product of D the
transmission coeKcient of the surface barrier for the
excited electron, and E(k, v) which plays the role of an
excitation function and determines the probability that
the kth electron absorbs a photon of frequency ~. This
function is proportional to the square of the component
of the incident light normal to the surface and to the
square of a particular integral which is linear in the
wave function of the unexcited electron. This integral
1V(k, v) is given according to Makinson's notation by

X(k, v) = (X„A' x„'A—)/ f et+ies}dx)
J

where @s is the wave function for the unexcited electron,
x„ is an auxiliary wave function with an energy cor-
responding to that of the electron after a photon of
frequency v has been absorbed, and e& and e2 are the
real and imaginary parts of the dielectric constant. The
direction of x is taken to be perpendicular to the
surface (x=0) of the metal.

Though Makinson's original treatment was limited
to a free-electron model, this limitation is not an essen-
tial one. The purpose of the present paper is to apply
the development to the corresponding wave functions
appropriate to the problem of photoelectric absorption
at the surface of an insulator or semiconductor. In such
physical situations, the periodicity of the potential
inside the solids cannot be ignored and the wave func-
tion cannot be represented simply by plane waves. The
more generalized functions necessary here can be
expressed in terms of a double Fourier series in the
primitive translational vectors of the surface whose
coefficients are functions of x. All functions used in
calculating the excitation function for a particular
electron have the same properties with respect to the
surface translations.
'-; For the wave function of the unexcited electron, one
uses expressions equivalent to those in Eqs. (8), (10),
and (11) of the preceding article. ' Inside the crystal

' R. E. B. Makinson, Phys. Rev. 75, 1908 (1949).
s H. B. Hnntington and L. Apker, Phys. Rev. 89, 352 (1952).

one has

@g,(r) =exp(ik, 9)p„exp(—iK„9)
XLP„(A„„expf —i(l.„+k.)x}

+A„*exp(i(L„+k,)x})+S„(x)g. (2)

Nere x measures distance perpendicular to the surface
and y is a vector lying in the plane of the surface. The
symmetry of the wave function with respect to the
surface translations is determined by k,.The translation
vectors of the lattice reciprocal to the surface net are
represented by the E, and the L„are 2xe divided by
d, the shortest unit translation perpendicular to the
surface. The functions S (x) falls rapidly to zero for
x—+—~ going from the surface into the solid. These
functions are required to 6t the surface boundary con-
ditions, whereas the A„are determined by solving
the Schrodinger equation for the interior of the solid.
Outside the solid for x)0 one has, assuming a uniform
potential,

@s(r)= exp( —ik, .9)p s exp( —p x—iK 9), (3)

where the p and s are constants.
Similar expressions for the wave functions of the

excited electron can be constructed. Inside the solid,
one has

es(r) =exp( —ik, 9)
XQ exp( —iK 9)LC (x)+T„(x)j, (4)

where the T decrease rapidly going into the crystal
and the C each represent one or more plane waves of
the type exp(iqx) modulated by a function periodic in d.
For a free-electron metal, the value for q was deter-
mined uniquely to be (k,s+(Ss'm/k')v)&; but for the
more general case under consideration, multiple values
of q (even for the same m) may exist which satisfy the
conditions for conservation of energy and momentum
parallel to the surface. Whether or not such complica-
tions occur depends on the complexity of the Brillouin
zone structure. Multiple values of q will be most prob-
able for multiple-leaved surfaces in the same energy
range. Outside the crystal one has

es(r)=exp( ik, 9)IQ„—B ex.pi(r„x—K .9)
+P 't exp( —r 'x —iK .9)j. (5)

The unprimed summation includes only those values of
surface momentum which leave enough normal energy
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for the electron to escape. The primed summation
includes the remaining (larger) values of K,.

The construction of the auxiliary function depends
upon the purpose for which it is to be used. To calculate
the probability that the electron will escape with par-
ticular momentum parallel to the surface (k„+Ki)h,
one takes for inside the solid

x.(r)=e pf (k.+K) 9}
X[P;exp( —iq,x)N, (r)+ V(r) j, (6)

and for outside the solid

x„(r)= exp(i(k, +Ki) y}ttGie'"~*+Hie '"~*+@(r)j (7. )

The summation over i takes care of possible multiple
values of q. V(r) has the periodicity of the surface and
falls o6 rapidly toward the interior. The e; have the
periodicity of the lattice and are individually normalized

so that the integral of the amplitude squared over the
solid gives unity. The function v has the periodicity of
the surface and dies oQ' rapidly at large distances from
the crystal. The quantity r measures the normal
momentum of the escaping electron and can be found
from the relation

(h'/2rN) [(kp+Ei) g+ rim kp' k,—'j= h—v ep, (8—)
where ~o is the energy difference from the bottom of the
filled, band to the vacuum level and the energy level

of the kth electron is approximated by the free-electron
formula.

According to Makinson's Eq. (4), the relation
between P and 8 can be expressed as

V'e, + ( +(k,y~, )'—(g 'm/h') V,(r)}e,
(4~ie/c—h)(a.y, '+ik~(~, k2+c4k3)+44~~'} (9)

U~(r) is the periodic potential of the lattice as referred

to the vacuum level. The u, a„, and u, are the com-

ponents of a vector field equal to the amplitude of the
time-varying vector potential of the incident light. One

multiplies Eq. (9) through by x„and integrates over

g, y, and s using an extinction factor e~ inside the

solid, where d is positive. Two applications of Green's

theorem to the left side of Eq. (9) so modified reduces

it to the sum of a volume integral, which vanishes by
virtue of the fact that y„ is a solution of the Schrodinger

equation for the excited electron, and a surface integral

over the boundary of our space. The part of the surface

integral over the x—y and x—s planes vanishes if one

employs the usual periodicity requirements as boundary
conditions for exp( ik, —g). At the surface x= —m,
the integral vanishes because of the extinction factor.
At x=+~, one is left with only 2ir,BiHi per unit area
from the surface integral. For the volume integral on

the right, the terms involving a„and-a, give a negligible

contribution, and a is inversely proportional to
ei(x)+is~(x), where we have assumed that the dielectric
constant is independent of y and s. The integrations

over y and 2 can now be carried out making use of the
orthogonality of factors containing diBerent K,. The
remaining integration over x becomes (after integration

by parts) proportional to a modified form of Eq. (1):

" Z.(x,.~.-'-~.-. ')/L (*)+'"(*)jd* (10)

Outside the solid, there is only one term in the sum-
mation over nz, Pqi is si exp( —pi@), and x„i is the
square bracket term in Eq. (7). Inside the solid, the
8I, are the square bracket terms in Eq. (2) and the

are the mth Fourier components of the expressions
in square brackets in Eq. (6).

For the case where there is only one q, , Makinson's
results obtain practically unmodified [(M(k, i ) is
represented by Eq. (10) rather than (1)$.With multiple
values for q, the transmission coefEcient of the barrier
is no longer simply defined. One can extend the
Makinson formalism to these cases by introducing a D,
defined as the average transmission coefFicient for equal
flux into each of the f states with diferent q, and an
average value for q namely q. As a result the quantity
D/q which appears in Makinson's (7a) is replaced by
fD/q Since it .is customary to treat electrons excited
to the conduction band as essentially free, the case of
multiple q's is probably physically unimportant.

From the standpoint of physical interest also, atten-
tion should be centered on transitions for minimum
(k,+K ), since there is no experimental evidence of
electrons coming oG with large components of mo-
mentum parallel to the surface.

Our main concern in extending the Makinson treat-
ment to Sloch-type wave functions is to apply it to the
electrons at the top of a filled band. The preceding
paper' was given to the consideration of this problem
and it is convenient to use its expressions for Pq as
given in Eqs. (8), (10),and (11)of reference 2. The most
significant change is that there k refers to the wave
number vector of the hole rather than of the electron
as in Eqs. (2) and (3) of this paper. For states near a
zone boundary, the additional relation given by Eq.
(9) of reference 2 also holds approximately. It has been
shown that for small k, the s, the S and (1—A) are
proportional to k (unless an accidental resonance
exists). Consequently every part of pq is either directly
proportional to k, or contains a factor (1—A) sin(k x).
Those with the sin(k x) factor give contributions pro-
portional to k, after' the integration over x(0 in (10)
has been carried out. It follows that cV(k, v) will be
proportional to k, and the transition probability for
photoelectric emission from the top of the band is
proportional to k '. Consequently, the transition prob-
ability averaged over an equi-energy contour in k space
is proportional to the hole energy, and the contribution
to the photocurrent from states in an infinitesimal shell
at such a contour will be proportional to the 2 power of
the hole energy. This result holds for elliptical as well
as spherical energy contours.
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