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the logarithmic derivative at the nuclear surface and
thus the phase shifts. Assuming the radius R=r,4}
70=1.48X10"8 cm, and V,=20 Mev the phase shifts
given by this theory are

A0=(—0.367+0.1785),
Al=(—0.209+0.1287),
A2=(—0.069+0.062).

By introducting the above values into Eq. (1), a
theoretical angular distribution for the elastic scattering
of 6.5-Mev protons from copper was determined. This
distribution is shown by the solid curve in Fig. 5. The
distribution does not differ appreciably from those
calculated by Shapiro? for 7.35 Mev using the same
parameters. Decreasing 7o to 1.35 or increasing ¥V,
to 28 Mev does not greatly alter the shape of the
distribution.

Comparing the theoretical distribution with the ex-
perimental, one finds very little agreement. The maxi-
mum at 45 degrees and the rapid decrease in the cross
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section at large angles which appear in the experimental
distribution are not present in the theoretical one. The
appearance of a minimum in both curves constitutes
the only real agreement. .

One may therefore conclude that: (1) definite nuclear
effects are present in the elastic scattering of 6.5-Mev
protons by copper; (2) the observed distribution can-
not be fitted using only real phase shifts, implying that
appreciable nuclear absorption takes place; and (3) the
Feshbach-Weisskopf theory does not appear to describe
adequately the interaction of a 6.5-Mev proton with a
copper nucleus.

The author would like to express his indebtedness to
Professors H. W. Fulbright and J. B. Platt for their
continued interest and valuable advice. He wishes to
thank Dr. J. B. French for many enlightening discus-
sions. The complete cooperation and assistance of
Dr. D. A. Bromley contributed largely to the conduct
of this research.
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An adaptation of Makinson’s theory of photoelectric emission
from metals is used to treat simple one- and three-dimensional
semiconductor models. The probability of excitation from a state
of initial energy e lying near e, the top of an occupied band, is
found proportional to e—e. Thus, the transition probability
vanishes at the top of the band. For a density of states having the
normal form, n~(e;—e)?, the energy distribution of the emitted
electrons contains a factor (eo—e)¥ and is thus concave upward
near the band edge.

For certain simple surfaces, the photoelectric threshold may be
high because transitions requiring low energy are forbidden. It is
pointed out that this feature is an idealization probably not found

I. INTRODUCTION

ECENT experiments indicate that the external
photoelectric effect can give useful information on

the electronic energy structure of solids.! There is
interest in certain monatomic semiconductors and
semimetals, for which photoelectric data are available
in the form of a product #(e) - s(», €). Here the quantity
of interest is », the density of electronic energy states
expressed as a function of the energy e; s is a photo-
electric excitation probability which may be a function

* Presented in part at the Chicago meeting of the American
Physical Society, November, 1950 [see Phys. Rev. 81, 321
1951)]. )
¢ TO)n] summer leave (1949) from Rensselaer Polytechnic In-
stitute, Troy, New York.

! Apker, Taft, and Dickey, Phys. Rev. 76, 270 (1949), and
foregoing papers.

for real surfaces having the usual inevitable irregularities. In a
qualitative discussion, more realistic cases are mentioned. It is
suggested that the results retain the form derived above, although
the high threshold energy disappears.

An energy distribution proportional to (eo—e)* near the band
edge is in good agreement with previous experimental results on
Te and other monatomic semiconductors. With the graphical
methods of analysis previously applied to data on these materials,
the point of view taken above permits more definite location of
the edges of occupied bands. Improved estimates of upper limits
to the density of occupied surface levels are then possible.

of both e and the frequency ».2 In the absence of theo-
retical information, it has not been possible to isolate
n without making questionable assumptions about the
form of s. This paper attempts to improve this situation
by showing that in certain idealized cases s is propor-
tional to ep— € in the vicinity of ¢, the top of the occu-
pied energy band. These restricted conclusions are then
qualitatively extended to more complicated and realistic
situations. .

There have been many attempts to develop a satis-
factory theory of the external photoelectric effect at
surfaces of simple metals.® A recent and elegant treat-
ment of the problem has been given by Makinson.t His

2 Apker, Taft, and Dickey, Phys. Rev. 74, 1462 (1948).

3 For a review and recent theory, see K. Mitchell, Proc. Roy.

Soc. (London) 146, 442 (1934).
4R. E. B. Makinson, Phys. Rev. 75, 1908 (1949).
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approach may be summarized briefly as follows: Free-
electron wave functions of the metal are perturbed by
light falling on the surface. This interaction gives rise
to an excited state described by a wave function con-
sisting of plane waves propagating away from the
surface in both directions. Thus, the volume photo-
electric effect® is excluded. An auxiliary wave function
is introduced for mathematical convenience, and simple
manipulation yields the amplitude of the excited wave
moving away from the metal into the vacuum. The
resulting contribution to the photocurrent arising from
the electrons that were initially in an infinitesimal
region of momentum space dk is

dJ < E(k, »)D(r)dk. 1)

Here E is an excitation probability involving the initial
and auxiliary wave functions, the x component of the
vector potential (the x direction is the surface normal),
and the wavelength of the excited wave in the metal.
D is the transmission coefficient of the surface barrier
for the photoelectrons in question, which have a wave-
length 27/ in the vacuum. One of the most valuable
features of Makinson’s work is the separability of E and
D in a general way. For real surfaces, it is practically
always conceded that D=1 when escape is energetically
possible.’

After some modification, this theory for metals may
be applied to simple models of semiconductors. The
free-electron wave functions must be replaced by func-
tions appropriate to the periodic potential in the
emitter. This will be done here for initial states. The
effect of the periodic field on the excited electrons is
considered briefly in the subsequent paper.

The optical properties of nonmetals are more complex
than those of simple metals, since the light wave is
affected in a different way in the important region
near the surface. For the free-electron model used by
Makinson,® it was possible to assume that the action
of the incident light involved no appreciable absorption
by the electron system. More complicated effects may
occur in nonmetals and some real metals since absorp-
tion is important in the spectral regions involved.”
Detailed consideration of optical phenomena must
depend, then, on the particular substance investigated.
The present paper attacks an aspect of the emission
problem which, we believe, is not influenced in character
by these details. The following crude point of view is,
therefore, adopted: The dielectric constant is assumed
to change abruptly at the surface to a positive value,
and the three components of the electric vector are
assumed to behave as in Makinson’s work.® The abso-
lute magnitude of the result will not be significant.

. ;4% Herring and M. H. Nichols, Revs. Modern Phys. 21, 245
( 6 R)E B. Makinson, Proc. Roy. Soc. (London) 162, 367 (1937).

7 See, for example, W. H. Brattain and H. B. Briggs, Phys. Rev.
75, 1705 (1949), for data on Ge.

8 R. F. Miller, J. Opt. Soc. Am. 10, 621 (1925) has shown that

the real part of the dielectric constant is of the order of +3 at the
pertiment frequency in Te, a material of interest here.
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However, the dependence of the excitation probability
on initial energy should not be greatly affected.

II. AN EXAMPLE IN ONE DIMENSION

For purposes of illustration, we first consider the
behavior of electrons at the surface of an idealized one-
dimensional crystal.® In the region £<0, we assume a
periodic potential with an average value that is nega-
tive. Taking the surface at x=0, we set the constant
potential in the region #>0 equal to zero. In the
periodic field, we choose two superposed Bloch running
wave functions in the form

or(x) = ur(x) exp(—ikx)+ Auy*(x) exp(+ikx), x<0,

2

to describe electrons of negative total energy. At x=0,
this must be matched to the function

e1(x) =B exp(—px), x>0. 3)
We find

A=c(—p+ik—ad)/(p+ik+d*), 4)
B=u;(0)(+2tk—d+d%)/ (p+d*+ik), ©®)

c=ux(0)/ux*(0), d=ui'(0)/u1(0).

When the potential inside the crystal is constant, u; is
constant, ¢=1, and d=0. In this case, we have the
familiar Sommerfeld model of a metal. Equations (4)
and (5) then express two well-known results: (1) the
standing plane waves describing the free electrons inside
the metal have very closely a node at x=0 when % is
small; (2) the coefficient B which measured the ampli-
tude of the wave function in the vicinity of the surface
is proportional to .

Mitchell® and Makinson* have shown that this same
proportionality to % appears in the matrix element M
for photoelectric emission from the state £ in a Som-
merfeld metal. Thus, in Eq. (1) Makinson’s excitation
function E becomes proportional to M?« k?, which is
proportional in turn to the kinetic energy of the metallic
electrons in question; hence E vanishes linearly with
kinetic energy at the bottom of the Fermi band. (The %
vector of the light wave is neglected as small in this
treatment.)

Except in one instance, a similar argument may be
applied to the more complex case of electrons in a
potential that is periodic rather than constant. We
consider electrons near the top of an occupied band in
a semiconductor. We take % to be the wave number
vector of the “hole” (or of the envelope of the Bloch
wave function). It can be shown by perturbation
methods® that in this case

wux (%) = uo(x) +ikv(x), (6)

9 We are indebted to Professor H. Bethe for generalizing this
argument.

0 F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 352; J. Bardeen, J. Chem.
Phys. 6, 367 (1938).

where
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where w#o(x) is the wave function for the state at the
top of the band. The question arises as to how far into
the band the perturbation treatment is valid. For one
case, at least,! it appears to have a sufficiently wide
range of validity to be of interest here.

We may apply (6) in (5) and find that B is propor-
tional to % except for one rare case. This occurs when
the surface is so located that

—2p=d*+d=2uy'(0)/1u,(0),

where terms of order k% are neglected in the last ex-
pression. Then A =c¢ and B=2u,(0), which is not pro-
portional to k. At the surface, a resonance occurs
between the modulational (short wavelength) part of
the interior wave function and the damped exterior
wave. A node in the envelope of the Bloch function is
no longer required in the neighborhood of the surface.
Because of the highly special surface condition required
to produce this phenomenon, we shall look upon it as an
artificiality and shall not consider it further here.

Except for the rare case above, then, the amplitude
of the wave function at the surface of our periodic one-
dimensional crystal behaves in the same way as that
at the surface of a Sommerfeld free-electron metal. In
place of the wave vector of the free electron in the
metal, we substitute the wave vector % of the “hole”
corresponding to the state in question near the top of
the occupied zone in the periodic structure. We find
that the amplitude of the damped part of the wave
function outside the crystal surface (as measured by
the constant B) is proportional to k.

We may now apply Makinson’s technique in an
approximate way and calculate the transition prob-
ability for photoelectric emission from this one-dimen-
sional system. For simplicity, we neglect the effect of
the periodic field on the wave functions of the excited
states and treat these electrons as practically free
inside the crystal. Thus, we may use excited wave
functions 6 and auxiliary functions x, identical with
Makinson’s [see Egs. (4) and (5), reference 4]. The
part of the integral in Makinson’s Eq. (6) which lies
outside the metal involves the damped wave function.
It is, therefore, proportion to B and so to k. Inside the
metal, the wave function can be written

or=[(1+A4) coskx—i(1—A) sinkxJuo(x)
+[(144) sinkx+i(1—A4) coskxJkv(x). (7)

When integrated with a traveling wave, which is
slightly damped as. it goes into the metal, sinkx-u(x)
gives a contribution proportional to k. From Eq. (4) it
can be seen that (14 A4) varies as %. It follows, therefore,

1 P, M. Morse, Phys. Rev. 35, 1310 (1930). This point is most
clearly displayed in Morse’s Fig. 5, which shows the Fourier coef-
ficients for the functions that we symbolize here by #. At the top
of the lowest zone, a relation like (6) holds over the range in which
the quantities o, b_1, involving Morse’s first two Fourier coef-
ficients, are linear in &.

12 A proportionality of this type for “almost-free” electrons in a
one-dimensional periodic structure was first proposed, to our
knowledge, in unpublished work by H. Brooks.
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that the part of the matrix integral arising from the
region inside the metal is also proportional to &. Hence,
the excitation function E in Makinson’s Eq. (8) is
proportional to £2.

On the basis of this application of Makinson’s
methods, we conclude that the transition probability
for photoelectric emission from a state near the top of
an occupied zone in our one-dimensional crystal is pro-
portional to the energy of the hole formed by the
transition. In the symbols used here (and in reference
2), the probability is proportional to e;— ¢, where € is
the energy at the top of the band and e is the energy
of the state in question.’

III. THREE-DIMENSIONAL CASES

Consideration of real semiconductors involves prob-
lems that are necessarily three-dimensional. (In the
foregoing section, any mention of the density of states
would have been pointless because momenta parallel to
the surface were either excluded or treated like those
of free electrons.) Though the variety of possible situ-
ations is large and the detailed analysis is complex, it is
possible to show that the character of the result in
Sec. II is preserved in passing from the one- to the
three-dimensional crystal.

The surface of the semiconductor is taken to be the
plane x=0. Inside the crystal the wave function has
the form

é1(r) = exp[ —i(kox+k, - @) Jui(+, 1)
+A eXP[i(kxx_kp'Q)]”k(_, l’)+S(1’), (8)

where ¢ is the component of r parallel to the surface
plane, i.e., p=(y*+2%* The quantities k, and %, are
the components of the wave number vector of the hole
respectively parallel and perpendicular to the surface.
The three-dimensional analog of Eq. (6) is

ur(, 1) = uo(r)+k(£)-v(r), ©)

where k()=k,%%., and is valid for a limited range
at the top of the band.

In Eq. (8), the last term, S(r) is a surface-type
function possessing the periodicity of the surface but
falling off rapidly toward the interior of the semicon-
ductor. The introduction of this function is important
to fit boundary conditions. It can be expanded as a
series of functions all corresponding to the same energy
as the wave function in the volume:

S(l’) = Zm Sm(x) eXP[—i(kp‘i' Kp+ Km) : 9]- (10>

Here K, refers to the p-components of the free-electron
k for the state at the top of the band. The K,, are the
translation vectors of the two-dimensional space recip-
rocal to the semiconductor surface. The S,.(x) decrease
rapidly as a function of x going into the solid.

18 This result differs from that assumed by V. Weisskopf and
L. Apker, Phys. Rev. 60, 170 (1941) and from that tacitly assumed
by E. U. Condon, Phys. Rev. 54, 1089 (1938).
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Outside the metal, the wave function has the form
¢(r)=2n sn exp[—par—i(K,+Ku)- o], (11)

where the K,, are the same set of vectors as the K,.
The s, and the p, are constants.

One method for determining a finite number of the
constants S,, and s, would be to satisfy boundary con-
ditions for a continuous wave function and a con-
tinuous normal derivative at a finite number of points
on the surface. In general, a straightforward procedure
would be to work with a number of inhomogeneous,
linear equations equal to the number of unknown
quantities. One could obtain a solution for 4, the s,,
and the S,.. However, it is more illuminating for our
purpose to consider (1+4) as an unknown and to
solve our equations in terms of (1—A4). From the form
of Egs. (7) and (9), it is apparent that wherever (1—A4)
appears it will be multiplied by .. It therefore follows
in our solution that (14 A4), the s, and the S, will all
be proportional to k., if our set of linear equations is
linearly independent. The possibility of linear de-
pendence has been noted already in our one-dimensional
example. There this contingency appeared as a reso-
nance effect, when a particular relationship between the
wave functions inside and outside the surface was
satisfied. Except when this occurs, the important ampli-
tudes in the wave function are proportional to k. in
three dimensions as well as in one.

In passing, we note the following fundamental dif-

ference between this situation and that for a simple
metal. An electron occupying an energy state inside a
Sommerfeld metal has a definite momentum parallel to
the surface. It appears externally as a photoelectron
with this same momentum, since there is no binding
in the surface plane. Simple wave functions describe the
electron adequately on both sides of the surface and
and match at the interface. On the other hand, an
electron in a three-dimensional crystal does not have a
definite momentum parallel to the surface. Rather, it
possesses a distribution of momenta (all leading to the
same reduced momentum) determined by the crystal
potential. The individual terms in the initial wave
function outside the surface [see Eq. (11)], however,
are associated with respectively distinct momenta, and
each has a different damping constant perpendicular
to the surface. A series of these simple functions must
be used to match the internal wave function. Likewise,
for the excited functions, for each traveling wave
representing a freed photoelectron a series of functions
inside the metal are needed for boundary fitting. All
these functions will have the same reduced momentum
parallel to the surface.

One of us has extended Makinson’s treatment to the
case of the periodic potential* in three dimensions by
using the expressions for the unexcited wave function
¢ [see Egs. (8)—(11), inclusive], the excited wave func-

1 See the following article for details of this treatment, H. B.
Huntington, Phys. Rev. 89, 357 (1952).
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tion 6k, and the auxiliary wave function x, appropriate
to the periodic field.
~ On the basis of this work, we have come to the fol-
lowing conclusions:

(1) The matrix element M is proportional to k,, and
the transition probability is proportional to %.? as in the
one-dimensional case.

(2) For certain simple surfaces, important transitions
may be forbidden. As an example, we may consider the
(100) surface of a simple cubic crystal. The lowest
Brillouin zone for such a structure is a cube in free-
electron k space with sides at k,, %,, k,=K/2, where
2w/K=a, the lattice constant. The states of highest
energy in this zone lie at the corners of the cube. Thus,
k,~2k.=K/2. Now the periodicity of the simple (100)
surface is such that the crystal may absorb only
momenta sZK in the y and z directions, where s has
integral values. Thus, transitions from initial states
near the band edge to final states having zero or very
small momentum parallel to the surface are not per-
mitted, since a momentum transfer of the type AK/2
would be required. In the extension of Makinson’s Eq.
(5a) to three dimensions, the integrations over y and z
automatically impose these restrictions.

Hence, the photoelectrons must emerge from the
surface with y and 2 momentum components at least as
large as #K/2 and with a corresponding amount of
kinetic energy. This means that the photoelectric
threshold energy will be greatly increased, because this
kinetic energy might otherwise be available in the
x direction to overcomé the surface barrier. This situ-
ation is, thus, quite different from that involving a
simple metal, in which all of the initial energy may be
used to overcome the surface barrier and for which
photoelectrons consequently emerge with zero kinetic
energy when ejected by quanta having the threshold
energy.

These restrictions on the momentum parallel to the
surface depend on the presence of a highly regular and
especially simple surface structure. They probably
would not appear in practice, therefore, since real
surfaces do not possess such perfect configurations.
Thus, a slight deviation from a (100) surface orientation
immediately introduces periodicity on a much larger
scale. This permits the absorption by the crystal of
smaller quantities of momentum. A final state with y
and z momenta very close to zero may, thereby, be
permitted. Obviously, the probability of this kind of
process may vary widely for different types of surfaces.

If the momentum restrictions described above for a
simple surface should actually exist, they would be
simple to detect experimentally, since only photoelec-
trons with kinetic energies of several electron volts
would be emitted. Thus, a concentric-sphere phototube
would show saturated currents even with large retarding
fields. This would be difficult to overlook. It is not
surprising, however, that it has not been observed.
Apart from the ideal surfaces and special zone struc-
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tures required, other influences such as electron inter-
actions could mask the effect. We note further that
forbidden transitions do not arise when the state of
highest energy lies at the center of the zone (in a
reduced-zone scheme).

To obtain the excitation probability s(», €) mentioned
in the introduction,? we must integrate the transition
probability in % space over the shell of constant energy
e. In the case of our simple cubic crystal, for instance,
this shell is composed of small spherical octants centered
at the corners of the cubical zone.!® After excitation, the
electrons in the crystal occupy relatively small portions
of a much larger spherical shell centered at the origin
in free-electron k space. (At this point, we neglect the
zone structure in the case of these higher energies.) A
fraction of these excited electrons can emerge as photo-
electrons. If we consider values of 4» appreciably larger
than the threshold energy 4», required for emission from
the state ¢ at the top of the band, the value of this
emergent fraction will be a slowly varying function of
e near . (It will drop to zero when ey— e=A(r—»o).)

Thus, the energy distribution of the photoelectrons
from initial states near the band edge is dominated by
only two rapidly varying factors. One is the density of
states, which goes to zero like (eo—€)?. The other is the
excitation probability s(v, e) which is proportional to
eo— €. We conclude that the energy distribution goes to
zero like (eg— €)%

In the graphical method of analysis used in reference
2, this result leads to a value § for the parameter .6

IV. DISCUSSION OF THE RESULT

In this paper we have used a highly simplified ap-
proach to a very complex problem. We have neglected
the detailed behavior of optical phenomena and the
effect of zone structure on excited states, in the belief
that the character of the result would in general not be
affected. From this viewpoint, we shall proceed at once
to direct comparison with experiment.

The result obtained here is in good agreement with
available data on Te, since it arrives theoretically at
the 3 power dependence on energy shown by the
function N/E~mn(e)s(v, ¢) for this element.? (The same

15 As pointed out by W. Shockley, Phys. Rev. 78, 177 (1950),
equal-energy surfaces need not be spherical in general.

18 An assumption made in using this method was that an excited
electron had a probability of escape which varied linearly with the
kinetic energy E of the external photoelectron. This is a reasonable
first approximation when the excited electrons are uniformly
distributed over a spherical shell in free-electron % space. If the
shell is only partially occupied, as in the present case, the escape
probability may exhibit structure. Then higher powers of E may
become more important. This, however, does not affect the con-
clusions of this paper.
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dependence is shown by the high energy portion of th
energy distribution N.) ‘

There is a further possibility that the very small tail
found on the energy distributions for Te is due to
thermal lattice vibrations!? (see Figs. 4 and 5, reference
2). If such be the case, we have interpretations of all
the effects observed for Te. This requires that the
upper limit estimated for the density of surface levels
on Te in reference 2 be revised downward by an order
of magnitude. There is no need to postulate superposed
energy distributions from patches with different Fermi
levels. This was done, in the previous work, for the case
in which the transition probability was tentatively
assumed to be independent of energy. The patch phe-
nomenon or surface levels might still be of some im-
portance for Ge and B. For these materials, the experi-
mental results were less clear-cut than for Te. The
energy distributions were roughly parabolic in form at
higher energies. From the present point of view, how-
ever, these other effects need only explain the difference
between the exponents 2 and £ instead of that between
2 and % as formerly. Thus, the high estimated surface-
state densities associated in reference 2 with exponents
m smaller than § are not required.

Finally, we note that the data on the function N/E
for As, Sb, and Bi' can be interpreted more satisfac-
torily as overlapping § power characteristics than as %
power characteristics. The behavior shown by each of
these elements arises because the occupied band overlaps
the conduction band. If the band edges have the normal
form, one expects the density #(e) of occupied states to
show a sharp minimum slightly below the top of the
occupied region and near the lower edge of the con-
duction band. The photoelectric data on the product
n(e)-s(v, e)~N/E did not show such a behavior,
although a plateau was observed in the case of Sb. If
the transition probability s has the form suggested in
this paper, the product sz for a semimetal is composed
of two % power characteristics. These overlap and
produce a composite characteristic without a sharp
minimum. This interpretation is in better agreement
with the observations than is the assumption of a
transition probability independent of energy.

We are indebted to Dr. R. E. B. Makinson for the
privilege of reading his recent paper before publication
and for supplying a copy of the thesis on which it was
based. We wish to thank Professor H. Bethe for valu-
able discussions, particularly of the material given in
Sec. ITI. We are grateful to Dr. Harvey Brooks for his
unflagging interest and critical comments, and to Dr.
Malcolm Hebb for many illuminating conversations.

17W. Shockley and J. Bardeen, Phys. Rev. 77, 407 (1950).



