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A Theory of the Deviation from Close Packing in Hexagonal Metal Crystals*
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A mechanism is proposed to show how the Fermi surface interacts with the Brillouin zone boundaries.
The direction and relative magnitude of the variation of the c/a ratio for hexagonal crystals from the ideal
value for close packing are predicted as a function of the electron-atom ratio, and these predictions are com-
pared with values of lattice parameters which are reported in the literature.

I. INTRODUCTION

HEN the metallurgist discusses crystal structure

~

~

in metals, he usually thinks in terms of the
packing of hard "spheres, " and yet it is a long known
fact that often the lattice axial ratio c/a shows varia-
tions from the value to be expected from this ideal model.
The reason for these variations, at least at low tempera-
tures, lies presumably in the origins of the cohesive bind-
ing energy of these metals since nature demands that the
crystal assume that configuration which gives rise to a
minimum crystal free energy or, at absolute zero, to a
maximum cohesive binding energy. The customary cohe-
sive energy calculation for metals is the cellular method
of signer a,nd Seitz. ' In this method, however, one
requires the one-electron wave functions which describe
the vg, lence electrons to be spherically symmetric about
any nucleus. Bardeen' maintains this restriction in his
correction for the eGective mass of the binding electrons
in the Fermi energy term. Unless an angular dependence
is introduced into the valence electron wave functions,
however, this method is unable to investigate how a
variation in the axial ratio from the ideal value can
lower the total free energy of the crystal.

Jones' has considered these disto'rtions for the case
of h.c.p. crystals with an electron-atom ratio, hereafter
designated z in this paper, greater than 1.75, i.e., for
the divalent metals and the ~- and q-phases of the
P-brass type alloys. In these crystals the ideal axial
ratio for the close-packing of "spheres" is c/a=1. 633.
He argued that when the Fermi surface of the valence
electrons overlaps a Brillouin zone boundary in a par-
ticular direction in reciprocal space, the electrons with
wave numbers corresponding to the overlapping region
exert a force to expand the lattice in the corresponding
direction in the lattice space. Jones took the zone shown
in Fig. 3 as the first Brillouin zone for the h.c.p. lattice
and therefore argued that since overlap must occur
through the A faces when s)1.75, the e-phase (c/a
&1.633) is to be expected whereas for values of s
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approaching two the rt-phase (c/a) 1.633) may appear
due to overlap through the 8 faces.

This explanation, if correct, is only applicable to
metals and alloys whose electron-atom ratios are large
enough for overlap to occur through at least one set of
zone faces. There are, however, many hexagonal metals
with low z whose axial ratios show similar variations
from their ideal value. Barrett and Trautz4 have re-
ported a low temperature h.c.p. phase in lithium where
z=1. They found that lithium transforms martensiti-
cally from the b.c.c. phase to a f.c.c. phase if cold
worked at low temperatures, or spontaneously to an
h;c.p. phase with axial ratio' c/a= 1.563 at lower tem-
peratures. Among the transition metals and rare earths
there are many instances of h.c.p. structures all of
which have axial ratios which are less than the ideal
value 1.633. Due to a demotion of the outer s-electrons
in the formation of the crystal lattice, the value of z

in these metals is approximately one. Since the density
of states in the unfilled d- or f-bands of these metals is
much larger than that in the s-band, it is diAicult to
determine how the s electron-atom ratio is varying as
these elements are alloyed with one another. Although
there are no de6nitive experiments as to the variation
of the axial ratio with z in these h.c.p. lattices with low

z, one nevertheless wonders by what mechanism the
axial ratio should be less than the ideal value for all the
h.c.p. lattices with approximately one valence electron
per atom. Since the Fermi surface is completely con-
tained within the first Brillouin zone, Jones's ideas are
not applicable.

Owen and Edmunds' have examined the i-phase of
the silver-zinc system and found it to be complex
hexagonal with an axial ratio which varies from 0.7450
to 0.7383 as z increases from 1.46 to 1.5. Since the
surface of the Brillouin zone for this structure is not
reached until s= 1.56, the variation in c/a with s cannot
be explained by zone overlap.

Several alloys with z-values in the neighborhood of ~3

have h.c.p. structures. In Table I are listed some of the
experimentally recorded axial ratios. It is at once noted

4 C. S. Barrett and O. R. Trautz, Am. Inst. Mining Met. Engrs.
1?5, 579 {1948).' C. S. Barrett, Phase Transforrnations in Solids (John Wiley gt
Sons, Inc. , New York, 1951),p. 343. Edited by R. Smoluchowski
et al.' E. A. Owen and I. G, Edmunds, J. Inst. Metals 63, 291 (1938).
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that there is a progressive contraction of the symmetry
axis with increasing electron-atom ratio. For values of
s in the range 1.2&s&1.4 the axial ratio is greater than
1.633 and decreases relatively slowly with increasing s.
The axial ratio continues to decrease continuously to
values of c/a&1.633 for s)1.4. In this range of s,
therefore, the crystal transforms ccptinuously from an
q-brass phase to an e-brass phase as s increases. When
h.c.p. alloys with s values approaching two change from
the e-brass phase to the g-brass phase, on the other
hand, the phase change is discontinuous and a mixture
of the two phases can appear simultaneously in the same
lattice. Is it possible for the same mechanism to cause
a continuous change from the g-brass to the e-brass
phase when s= 1.4 and a discontinuous change from the
e-brass to the g-brass phase for higher electron-atom
ratios? Again Jones' ideas cannot apply, at least for
values of @&1.4, since any overlap of the A faces,
according to his mechanism, would force a distortion
to c/a& 1.633.

The seemingly anomalous value of c/a in the gold-
mercury system has been reported by two independent
investigators. Pabst7 6rst reported a narrow, homo-
geneous h.c.p. P-phase about s='1.25 with c/a= 1.647.
He found that as s varied from 1.2 to 1.34, the axial
ratio increased from 1.638 to a maximum value of
1.647 in the neighborhood of s=1.25, and then de-
creased slowly to 1.645 at x=1.34. Stenbeck, on the
other hand, reported a practically constant value of
c/a=1.647 for values of s from 1.19 to 1.33. He was
unable to find the maximum value in the c/a ratio at
s=1.25 reported by Pabst. According to his measure-
ment, the homogenous P-phase extends from s'= 1.21 to
a= 1.27. He was not able to detect any ordering in his
sample.

Typical of the measurements on alloys which show a
discontinuous change from an e-brass to an q-brass
phase at high values of s are those of Owen and Pickup'
on the copper-zinc system. They found that as s varies
from 1.76 to 1.87, the axial ratio of the e-brass phase
decreases linearly from 1.570—1.554, that as s varies
from 1.87—1.91 the axial ratio remains constant, that in
the range 1.91&a&1.96 both the ~- and the g-phase are
present, and that as s increases from 1.97 to 2.0, the
axial ratio of the p-phase increases linearly from 1.804
to 1.856. It will be seen that the forces which are re-
sponsible for these distortions are considerably more
complex than the simple considerations of Jones.

Burne-Rothery and Raynor" have pointed out three
of the experimentally important factors in any con-
sideration of crystal structure in metal alloys, vis. , size
factor, electro-chemical factor, and electron-atom ratio.

r A. Pabst, Z. physik. Chem. , B3, 443 (1929).' S. Stenbeck, Z. anorg. u. allgem. Chem. 214, 16 (1933).' E. A. Owen and L. Pickup, Proc. Roy. Soc. (london) A140,
179 (i933).

"W.Hunre-Rothery and G. V. Raynor, J. Inst, Metals 66, 191
(1940).

TABLE I. Experimentally recorded axial ratios of some h.c.p.
alloys.

Alloy

Ag Al
Ag Cd
Ag Sn
Ag Hg
Ag Sb
Cu Si
Au Hg

1.45-1.85
1.46—1.55
1.43-1.59
1.44-1.45
1.4 —1.64
1.35—1.4
1.21-1.25-1.27

c/a

1.625-1.588~ b

1.619-1.608O

1.630—1.616d

1.630—1.617'
1.634—1.617'
1.635-1.633 I
1.638—1.647—1.645"
1.647-1.647-1.647 '

a A. Westgren and A. J. Bradley, Phil. Mag. 6, 280 (1928).
b W. Hofman and K. E. Volk, Metallwirtschaft 15, 699 (1936).
e H. Astrand and A. Westgren, Z. anorg. u. allgem. Chem. 175, 90 (1928).
d Niel, Almin, and Westgren, Z. physik. Chem. 14, 81 (1931).
e See reference 8.
f Westgren, Hagg, and Eriksson, Z. physik, Chem. B6, 40 (1929).
g A. G. H. Anderson, Trans. Am. Inst. Mining Met. Engrs. 137., 334

(1940).
h See reference 7.

Recently Zener" has pointed out the importance of the
d-shell electrons in determining crystal structure in the
transition metals. This paper will be concerned with
variations in the axial ratio which appear to be pre-
dominantly determined by the electron-atom ratio. The
Bloch" model is employed to investigate how the valence
electrons of metals and their alloys can force distortions
in a lattice from the packing of "spheres" in order to
increase the cohesive binding energy of the lattice.
Those lattices which have axial ratios which diGer from
the ideal value as a result of an ordering of atoms of
diGerent size are omitted from the discussion.

II. GENERAL THEORY

In order to understand the role of the valence elec-
trons in determining crystal structure or crystal dis-
tortion, it is necessary to have a knowledge of the
various factors which contribute to the binding energy
of the crystal. The calculation of the internal energy
of a metal compared with the energy of the widely
separated individual atoms which compose it is usually
made in two steps. First, the energy of the lowest level
of the valence electrons is computed by some method
such as that of signer and Seitz, and then the whole
energy of the electrons referred to this lowest level, the
Fermi energy, is calculated. Though the energy of the
lowest level is sensitive to changes in atomic volume, it
is not very sensitive to changes in crystal structure for
a given atomic volume. Fuchs" has shown that the
difference in energy of the lowest level of the valency
electrons between the b.c.c. and the f.c.c. structures
having the atomic volume of copper is only 10 ' ev
per atom. The calculated energy diGerence between the
b.c.c. and f.c.c. phases for copper of 0.1 ev per atom
is due to the interaction of the closed d-shells which
just touch in the noble metals. In this paper the d-elec-
tron contributions are neglected except in so far as they

' C. Zener, Phys. Rev. 81, 440 (1951)."F.Bloch, Z. Physik 52, 555 (1928).
» K, Fuchs, Proc, Roy. Soc. (London) A151, 585 (1935).
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FIG. 1. Brillouin zone for a two-dimensional square lattice before

and after distortion.

contribute to the elastic constants of the metal or
metal alloy. The Fermi energy, on the other hand, is
sensitive to changes in structure even when the volume
remains unchanged since the kinetic energy of the
electrons which move in a periodic potential is not
proportional to the square of the wave number, as in
the case of free electrons, but depends upon the period
of the lattice. It is assumed, therefore, that the lowest
level of the valence electrons remains constant during a
small distortion from the packing of "spheres" in any
given phase. Consideration is given only to how changes
in the Brillouin zone boundaries should effect the Fermi
energy.

Brillouin" has shown that due to the perturbations
inherent in the restrictions of a lattice on the otherwise
freely moving electrons, the electron energy vs wave
number curve in any direction in reciprocal space is
not a parabola, as in the case of free electrons, but shows
discontinuities at certain sets of planes in the lattice
which are determined by the lattice configuration. The
regions in reciprocal space which are enclosed by these
energy discontinuity surfaces are the Brillouin zones
of the lattice. When the crystal is subject to a shear
which alters the lattice configuration, the positions of
the Brillouin zone boundaries must also change. In
order to study the effect of a change of shape alone on
the binding energy of a crystal, only those distortions
of the lattice which do not involve a volume change
should be considered. If a crystal distorts without a
volume change, then some of the Brillouin zone surfaces
must move toward the center of the zone while others
move away. In order to understand how the electron
energy will change with movements of the energy dis-
continuity surfaces, consider a two-dimensional square

"L.Brillouin, Quuntenstattstt7t (Julius Springer, Berlin, 1931).

lattice. The Brillouin zone for this lattice is a square of
side 1/a, where g is the lattice parameter. Figure 2 (a)
represents, schematically, the electron 'energy vs wave
number curve for the direction ar of Fig. 1 and Fig. 2 (b)
the electron energy vs wave number curve for the direc-
tion a3. If the lattice is given a positive strain ei and a
negative strain e& subject to the constraint (1+e&) (1+et)
= 1., then the Brillouin zone will shear in the opposite
direction as shown in Fig. 1. This means that the wave
number corresponding to the surface of energy discon-
tinuity will move to smaller absolute values in the a&

direction and larger absolute values in the a3 direction
as shown in Fig. 2. Since the crystal volume remains
constant during the distortion, the density of energy
states in k-space remains constant. The Fermi surface
will, therefore, remain stationary through the distortion
if no redistribution of electrons takes place and if it
does not intersect a zone boundary. A redistribution
of the electrons will cause the Fermi surface to bulge
slightly in the direction of the approaching surfaces.

It is now apparent that if the Fermi surface is close
to but does not yet intersect or touch a particular
energy discontinuity surface, a movement of that surface
towards the Fermi surface, as in Fig. 2 (a), will lower
the average electron energy due to the shift in the
position of the energy gap. The Fermi surface exerts, as
it were, a force of attraction on the energy discontinuity
surface. This force will be greater the larger the energy
discontinuity across the surface, the smaller their
distance of separation, and the larger the energy of the
Fermi surface. The last dependence results from the
fact that the larger the energy of the Fermi surface, the
smaller the curvature of the surface and therefore the
larger the area of Fermi surface within a given distance
from the energy discontinuity surface. The energy
levels which are most affected by the movement of the
Brillouin surface correspond to those values of k in the
immediate neighborhood of the surface. Therefore, as
the Fermi surface of a crystal approaches, as the
electron-atom ratio is increased, the surface of a Bril-
louin zone, there will be an increasing opportunity for
the crystal to lower its average electron energy by a
distortion which will cause the zone surface to move in
the direction of the closest element of area of the Fermi
surface. Since the Fermi surface, before it intersects any
boundaries, is approximately spherical, this direction
of motion will be normal to the zone surface toward the
center of the zone.

If the electron-atom ratio is so large that the Fermi
surface intersects the Brillouin zone surface, any move-
ment of the zone surface toward the center of the zone
will result in two opposing energy changes. There will
be a decrease in the energy vs wave number surface due
to the change of position of the energy gap which will
tend to lower the average electron energy. There will

also, however, be an increase in the energy of the Fermi
surface due to a redistribution of the electrons which are
displaced by the movement to unoccupied energy
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states. This latter eGect, which will tend to increase the
average electron energy, will begin abruptly so that
the force of attraction between the Fermi surface and
the energy discontinuity surface should show a sharp
maximum at that value of s for which the two surfaces
just touch. If the energy discontinuity across the
Brillouin zone surface is large so that overlap of the
zone surface does not take place, the repulsive force
between the two surfaces may dominate as s is in-
creased further so that the Fermi surface now pushes
the energy discontinuity surface away from the center
of the Brillouin zone.

When the Fermi surface begins to overlap the energy
discontinuity surface, the repulsive force between the
two surfaces will be partially relieved since not all of
the electrons which are displaced by a movement of the
energy discontinuity surface toward the center of the
zone are forced to energy states which increase the
energy of the Fermi surface. Some of the displaced elec-
trons are forced to energy states which, though greater
in energy by the magnitude of the energy gap, are still
of lower energy than the Fermi surface. Although the
total force between the Fermi and Brillouin surfaces
may be repulsive, the decrease in the repulsive force
between the two surfaces because of zone face overlap
can be considered to contribute an efI'ective partial
pressure against the zone boundary to push it toward
the center of the zone. This partial pressure will begin
abruptly at that value of s for which overlap of the
Brillouin zone surface begins.

Finally it should be noted that when there is complete
overlap of an energy discontinuity surface, a movement
of this surface toward or away from the center of the
Brillouin zone will have little eGect on the average
valence electron energy. The perturbation of the elec-
tron energy vs wave number curve in any direction
through the energy discontinuity surface is of equal
magnitude on either side of the surface. The average
electron energy, when the perturbed states on each side
of the energy discontinuity are included, is therefore the
same as it would be were there no surface of energy
discontinuity present.

We can qualitatively conclude, therefore, that as the
Fermi surface of a metal approaches, with increasing s,
a Brillouin zone energy discontinuity surface, there will
be a force of attraction between the two surfaces. Once
the Fermi surface intersects an energy discontinuity
surface, there will be two opposing forces between the
surfaces. The repulsive force between the two surfaces
will increase with increasing intersection of the surfaces,
or with increasing s. The rate of increase with s of this
repulsive force will decrease when overlap of the zone
surface by the Fermi surface begins as a result of what
may be thought of as a partial pressure of the over-
lapping electrons to push the Brillouin zone surface
toward the center of the zone. The maximum repulsive
force between the two surfaces should occur at that
s for which the low energy side of the energy discon-

tinuity surface is just completely intercepted by the
Fermi surface, since the number of electrons which are
displaced by a movement of the zone surface cannot
increase for larger values of s whereas the partial
pressure due to the overlapping electrons does increase.
If the electron-atom ratio is increased beyond this,
therefore, the total force on the energy discontinuity
surface will decrease toward zero.

Any Brillouin zone is composed of several energy dis-
continuity surfaces of diferent orientation, and there
will be similar forces of interaction between each of
these faces and the Fermi surface. From Fig. 1 it is
apparent that if the Fermi surface exerts a force of
attraction on all the Brillouin zone surfaces, then though
some of the faces will move in the direction of the attrac-
tive force in a constant volume deformation, the other
faces will be forced to move against this force. There
results a competition among the zone faces for move-
ment toward the center of the zone. The type of dis-
tortion to be expected in a crystal will therefore depend
upon the relative magnitudes of the forces between the
Fermi surface and the various energy discontinuity
surfaces. In cubic crystals the Brillouin zones are com-
posed of families of energy discontinuity surfaces which
are symmetrical with respect to the origin in reciprocal
space and therefore equidistant from the Fermi surface.

L -ks = i/a
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FIG. 2. Schematic representation of variations in the electron
energy es wave number curves for different directions in a metal
lattice under strain.
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The energy gap across each equivalent face is the same,
and therefore each equivalent face is subject to an
identical force of attraction toward or repulsion from
the center of the zone. Since the restoring forces possess
the same cubic symmetry in a cubic lattice, there is no
preferred direction of shear as a result of the force of
interaction between the Brillouin zone surfaces and
the Fermi surface. Also, since the equivalent Brillouin
surfaces in cubic crystals are sets of (n, e, m) planes,
the linear coefficients of the strains in the expression for
the change of average electron energy due to a move-
ment of each equivalent face are the same. If, therefore,
the distortion is without a volume change, the resulting
restraint on the strains will cause the linear term to
vanish in the expression for the total change in the
average electron energy with distortion. Any contribu-
tion to the energy change with distortion due to a
redistribution of the e1.ectrons among the energy states
will also. be of second order in the strains, since both the
number of electrons which would redistribute them-
selves and the amount of energy change of each in any
redistribution are proportional to the strains. In cubic
crystals, therefore, any increase in binding energy with
distortion due to the "electron . energy anisotropy"

FIG. 3. First Brillouin zone for
the h.c.p. lattice. It is bounded by
the 20 lanes (110, 0), (110, 1),
(000, 2 .

eRect, to name the mechanism under discussion, can be
only a second-order eRect. Nevertheless, this eRect
should be considered in any quantitative calculation
of the elastic constants in cubic crystals since here one
is interested in the second derivative of the energy
change with respect to the strains.

%hen the lattice structure is noncubic, however,
the "electron energy anisotropy" effect is a 6rst-order
eRect, and the directions of the resulting distortions of
the lattice should be predictable. In the hexagonal
lattices, for example, the sets of Brillouin zone faces
parallel to the symmetry axis will be reached by the
Fermi surface, as it expands with increasing electron-
atom ratio, at a diRerent time than the faces perpen-
dicular to the axis or sets of faces intersecting the axis
at acute angles so that there is an uneven competition
for contraction perpendicular and parallel to the axis.
There results a decrease in the average electron energy
with distortion which is to the 6rst order in the strains
whereas the restoring force is to the second order in the
strains, and distortions of the lattice result.

As is evident from the discussion of the single energy
discontinuity surface, not only is the shape of the

Brillouin zone an important factor in determining dis-
tortion to tetragonality in crystals, but also its fullness,
or the electron-atom ratio s. If the zone is nearly empty
so that only those energy states are occupied which are
closely proportional to the square of the wave number,
there will be practically no change in the Fermi energy
as a result of a constant volume lattice distortion. The
curvature of the electron energy vs wave number surface
which pertains to the occupied energy states is not
appreciably altered, and the electrons are free to
minimize their kinetic energy by a redistribution among
the energy states. If s is increased so that the Fermi
surface approaches the set of equivalent energy discon-
tinuity planes closest to the center of the Brillouin zone,
the Fermi surface will exert an increasing force of at-
traction on the zone surfaces. In crystals with hexagonal
symmetry all the bounding surfaces of an equivalent
set cooperate to cause a similar distortion parallel to the
symmetry axis as they respond to the attractive force
of the Fermi surface. The crystal will therefore prefer
to suQer a shear in which the nearest set of zone surfaces
move closer to the center of the zone. For values of s
such that the Fermi surface intersects the nearest set of
cooperating faces but has not yet reached the coin-
peting set of zone surfaces, the crystal may prefer to
shear in the opposite direction. If s is further increased,
the relative magnitudes of the various competing forces
will determine the direction of crystal shear.

III. BRILLOUIN ZONE CONSIDERATIONS

Before the general considerations just discussed are
applied to the particular examples of distortion in
metals and metal-alloys which were previously cited, it
is necessary to 6rst examine the Brillouin zones for the
h.c.p. lattice and for the i'-phase of the silver-zinc
system. It will also be instructive to consider brieQy
the zone for the f.c.c. lattice.

In Fig. 3 is shown the 6rst Brillouin zone for the
h.c.p. lattice. "The number of energy states per atom
included within a Brillouin zone, according to the
Pauli principle and the periodic boundary conditions
for the Bloch electronic wave function, is given by twice
the product of the atomic volume and the Brillouin zone
volume. The number of energy states per atom in the
6rst zone of the ideal h.c.p. lattice is, therefore, 1.75.
In Fig. 4 is pictured the zone for the h.c.p. lattice which
just contains two energy states per atom. Consider now
what might be expected to happen as these zones are
61led up by an increase of the electron atom ratio s. It
is assumed, for convenience, that the Fermi surface is
a sphere. This is a good approximation only when the
first zone is partially 611ed. It will, however, serve as a
first approximation. If there were no distortion from
the close-packing of hard spheres, i.e., if c/a= 1.633, and

'

if there were no energy discontinuity across the zone
surfaces, then the Fermi surface would just touch the

'~ Refer to Appendix I
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surface A when s~= (2n/9)(c/a) = 1.14, the surface 8
when ss= (2m/~3(a/c)s= 1.36, and the surface C when
sc=(2s'/9)(c/a) (1+4(a/c)')&=1.67. If the magnitude
of the energy discontinuity across face A is 1 ev when
the lattice parameter is a=3A, then overlap of the A
faces will occur when z~' ——1.45, and the Fermi surface
will just touch the respective zone surfaces when
z~ ——1.14, z~ ——1.32, zg ——1.57. If an h.c.p. lattice has
c/a=1. 633 when s=0 and s is increased, then as s
approaches 1.14 there will be an increasing tendency
for the lattice to distort in such a way that the zone
surfaces A are brought closer to the center of the zone.
The average electron energy is lowered if electrons
occupy the energy states which are depressed by the
perturbation in the vicinity of the zone surfaces. Such
a distortion would decrease the c/u ratio found in the
real lattice. Since the two 8 faces, which would favor a
distortion in the opposite sense, are farther from the
center of the zone than are the A faces, and since there
are only two 8 faces compared with six A faces, their
competing inRuence will be smaller than that of the A
faces provided the energy gaps of the two sets of zone
faces are of similar magnitude. It is concluded, there-
fore, that when z&1.14, the valence electron pressure
for distortion in h.c.p. crystals is in such a direction as
to favor c/a(1.633. The change in valence electron
energy will be to the first order in the lattice strains
while the restoring force is of second order so that a
6nite distortion should take place. Although the
maximum distorting force before distortion will be at
z=1.14, the maximum distortion should occur at that
z for which the distorting force is a maximum after dis-
tortion. For a distortion to c/a=1.563, the Fermi
surface will just touch the g faces when s~= 1.09.

If z=1.32, there is sufficient intersection of the A
faces by the Fermi surface for the repulsive force
between these surfaces to nearly overbalance the
attractive force. The 8 faces, on the other hand, will be
experiencing a maximum force of attraction toward
the center of the zone. The net interaction between the
Fermi surface and the A and 8 faces, therefore, would
produce a distortion to a c/a) 1.633. Because there are
only two 8 f~ces, the maximum attractive force between
the Fermi surface and the 8 faces will be smaller than
that between the Fermi surface and the six A faces if
the energy discontinuities across these faces are of
similar magnitude. There will also be an attractive
force between the Fermi surface and the twelve C
faces which will work against a distortion to c/a) 1.633.
If, therefore, a distortion to c/a)1.633 occurs for
values of z in the neighborhood of 1.32, it should be
small compared to the maximum distortions to c/e
& 1.633 at other z values.

Since only half of any C face will be interacting with
the Fermi surface if A face overlap has not yet begun,
and since the angle with which these surfaces intersect
the symmetry axis is deined by tan8= (V3/2)(a/c), the
total eGect of the C faces will be roughly the same as 2.6

C faces parallel to the symmetry axis at the same
distance from the center of the zone. As z increases
beyond 1.32, the attractive forces acting on the C faces
will be increasing rapidly along with the repulsive com-
ponent of the interaction force on the 8 faces. These
increases will be counterbalanced by the increase of
repulsive force on the A faces before A face overlap
begins. A slow variation in the total shearing force with
z in the region 1,3&z&1.45 should not, therefore, be
surprising. According to the simple model of a spherical
Fermi surface, the maximum attractive force acting on

FIG. 4. The Brillouin zone for
the h.c.p. lattice which contains
just two valence electrons per
atom. It is bounded by the planes
{110,0}, {1TO, 1}, {000, 2}.

the 8 faces after a distortion to c/@= 1.647 will' occur
at a zg ——1.29.

After A face overlap occurs, the rate of increase with
z of the repulsive force on the A faces will diminish
while that on the 8 faces will increase. The increasing
attractive force between the Fermi surface and the
twelve C faces will therefore cause the axial ratio for
any given alloy to decrease continuously with increasing
z. Since the Fermi surface will not reach both halves of
a C face at the same time because of the energy discon-
tinuity across the A faces, there will be a broad maxi-
mum in the attractive force between the Fermi and zone

FIG. 5. First Brillouin zone
for the f.c.c. lattice.

surfaces in the range 1.6&z&1.8. The axial ratio will,
however, continue to decrease in this range due to the
inc~easing force of repulsion on the 8 faces. The actual
rate of variation will depend upon the elastic constants
of the particular alloy, the magnitude of the respective
energy discontinuities, and the atomic volume. Figure 9
shows how the various contributions of the different
faces to the total shearing force combine.

For values of z close to two, the A faces will be largely
overlapped so that their interaction with the Fermi
surface will be relatively small. The repulsive forces
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between the Fermi surface and the 8 and C faces will

predominate. If no overlap of the zone boundaries takes
place, the repulsive forces will make the zone of Fig. 4
as "round. " as possible so as to lower the energy of the
Fermi surface. This means that the shearing force due
to the repulsive forces will vanish if the 8 faces are
equidistant with the C faces from the center of the zone.
This occurs only if there is a distortion to c/a(1.633.
In fact, kg= kc when c/a= 1.50. If there is no overlap,
therefore, there will be a force to shear the crystal to
an axial ratio c/a=1. 50. Since this force will decrease
with the distortion while the reactive forces which
resist distortion increase with the strains, the maximum
distortion to be anticipated in any divalent h.c.p. metal
should be about midway between these extremes, or to
a c/a —1.56. If, on the other hand, 8 face overlap does
take place, then the repulsive force on the 8 face will be
reduced by the effective partial pressure of the over-
lapping electrons. If 8 face overlap is occurring, how-

ever, the repulsive force on the C faces will continue to
increase rapidly with increasing s. There may, therefore,
be some value of s for which the repulsive forces on the
Cfaceswillpredominateso that distortions to c/a) 1.633
result. Since the repulsive force on the twelve C faces

Fn. 6. Probable 6rst Brillouin
zone for the complex h.z.p. g-phase
of the silver-zinc system.

axial ratio should increase rapidly with increasing s due
to the increasing force of repulsion on the C faces. These
features of the h.c.p. lattice are summarized in Fig. 9.

In Fig. 5 is shown the form of the first Brillouin zone
for the f.c.c. lattice. The number of states in the
inscribed sphere of this zone is V3~/4= 1.36. It is there-
fore expected that as s approaches 1.36, there will be a
decrease in the stability of the cubic configuration and
an increasing likelihood that a f.c.tet. phase appear.
Due to the symmetry of the zone structure, there is no
preferred axis for elongation. Also the eight faces which
are met when a=1.36 compete equally for opposing
distortions so that any lattice shear will only be ac-
companied by a decrease in the valence electron energy
which is of second order smallness. Therefore, although
alloys with a f.c.c. structure with s—1.36 are in the
optimum range for distortion to tetragonality, it is not
surprising that there are no known instances of f.c.tet.
crystals as a result of the interaction of the valence
electrons with the crystal lattice.

Consider, finally, the complex h.c.p. l-phase of the
silver zinc system. Owen and Edmunds' have proposed
an hexagonal structure for this phase with 54 atoms to
the unit cell. For an electron-atom ratio of 1.48, they
give values of c and a of 5.646A and 7.615A, respec-
tively, or an axial ratio c/a=0. 742. To construct the
probable erst Brillouin zone for this phase, note that if
ko is the radius in k space of the Fermi sphere corre-
sponding to s electrons per atom and 0 is the atomic
volume, then

ko ——L(3/4~) (z/20)]&=0.224A '

will increase rapidly with small changes in s near to two,
a gradual change from the e- to the g-brass phase cannot
occur. The crystal will be at a lower energy if it forms
two distorted phases than if it forms one homogeneous
phase with no distortion. The reason for the continuous
change of axial ratio in the neighborhood of a=1.4
would appear to be the slowness of the variation in the
total distorting forces in the transition region from one
phase to another and the smallness of the maximum
force distorting the crystal to axial ratios greater than
1.633. If s is close to two and the zone is nearly full,
the interface between the Fermi surface and the twelve
C faces comprises a large fraction of the total Fermi
surface. Any displacement of the C faces towards the
center of the zone, therefore, d.isplaces a large number of
electrons while the available non-intersecting Fermi
surface to which they may be displaced is small. There
results a large change in the energy of the non-inter-
secting Fermi surface with a small change in the position
of the C faces. The respulsive force between the Fermi
surface and the twelve C faces increases rapidly, there-
fore, with s approaching two. If the electron-atom ratio
is so large that only the g-brass phase is present, the

for the values quoted above for which x-ray data was
published. The x-ray measurements showed two lines
of very strong intensity corresponding to the hexagonal
Miller indices (3, 0, 0) and (2, 0, 2). Since the distance
between parallel reAection planes in the hexagonal
lattice is given by

d = f (4/3a') (k'+ k'y kk) +P/c')

the two very strong lines appear to be composed of
overlapping reflections from the set of six (330, 0)
and the set of twelve f220, 2) planes which are at
distances from the origin in k-space of 0.228A ' and
0.233A ', respectively. These two sets of planes form
the zone shown in Fig. 6. For an axial ratio c/a= 0.742,
the Fermi sphere will just touch the zone surfaces
marked A in Fig. 6 when s= 1.56 and the zone surfaces
8 when s=1.67. If the Fermi surface does not inter-
sect any of the zone boundaries, the force of attraction
on the A faces favors a contraction in reciprocal space
perpendicular to the symmetry axis, or a decrease in the
axial ratio c/a, while the force of attraction on the 8
faces, since they intersect the symmetry axis at an
angle 0&45', favors an opposite distortion. Since the
A faces exert their maximum inQuence when s=1.56
and the 8 faces when s=1.67, it is predicted that as s
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approaches the value 1.50, the (:/a ratio will decrease
with increasing s.

IV. ORDERS OF MAGNITUDE

The average energy per atom of the valence electrons
whose wave numbers are defined by any volume QI„.

of k space is

U = 2Q) E(,d'k,

FIG. 7. Cross section of Fermi
sphere intersecting pair of Bril-
louin zone surfaces.

directions at right angles to the s axis,

where 0 is the atomic volume of the metal. If s is the
number of electrons per atom which have wave numbers where (1+e„)= (1+(,,)'—1+2ei, and therefore the
within the volume QI„ then strain e& to be expected in an h.c.p. crystal is

s= 20) d'k.

Since the number of valence electrons remains constant
during a distortion of the lattice, Bs/Be=0, where e is
the lattice strain, and

BU/Be = s'E) f( ',—k,) {o( P-+ y),— (3)

B
f
V, //B~= —k.B[ V. f/Bk. =2/ V.

/ (4)

Although there is, therefore, an increase of the energy
gap with contraction of a zone surface to decrease y,
the parameter will nevertheless be positive.

For all three sets of faces in the h.c.p. lattice, the
parameter X is nearly v3/2. In Fig. 8 the dimensionless
coefFicient n is plotted as a function of Q. The attractive
force between the Fermi energy and the Brillouin zone
surface increases rapidly for larger Q, or for larger
energy discontinuities. If the energy gap across the A
faces is 2~ V,

~

=1 ev, then Q=0.005'' where a is the
lattice parameter in Angstrom units.

If |T is the stress in dynes per square centimeter
producing the strain e, then

1 BU 1 f'kg
~——————z R'~ —

( {~ I+V)—
QBe 0 (2) (5)

In the case of a uniform lateral stress acting in all

' Refer to Appendix II.

where s'=20 (4z/3)k()', E)~(k) =k'k'/2m, and n, P, y
are dimensionless parameters. The parameters (r and P
have been calculated for the simple model of Fig. 7."

With )i=k,/2ko, Q= ( V, ~/2Eqr(zk, ), and cos 'X the
angle between the normal to a Srillouin zone surface
and the line joining the center of the zone to the mean
edge of that surface, the calculation gives u = (r(X, p, Q)
arising from the attractive force between the two sur-
faces and P= P()i, Q) from the repulsive force between
the two surfaces if they intersect one another. P=O if
p, &1. The dimensionless parameter y is zero unless
there is zone overlap. If the valence electrons see a
coulombic potential about each lattice site,

~
V,

~

or 1/k, e

and

1 )k. q
+-S)3s g(, ) E.&~

~
{n—P+p))

n

where the first summation is taken over all pairs of
faces which contribute to stresses perpendicular to the
symmetry axis and the second summation refers to all
pairs of faces which contribute to stresses parallel to
the symmetry axis. The S;; are the elastic constants of
the metal. Since all of the elastic constants for hexagonal
crystals are not customarily known, Young's modulus 8
is used to give an order of magnitude estimate. In Fig. 9
is plotted

as a function of s under the assumption that a= 3A and
Qz=0.05, Qi) ——0.08, Qc=0.06 where Q, refers to the
ith face. This gives a qualitative picture of the expected
variation of the strain e~ with s for a given crystal. The
choice of Q~= 0.05 is arbitrary. It represents an energy

.04

.05

.02

.Ol

0 .02 .04 .06
Q

.08 I.O

Fro. 8. Variation of a with Q=
~
V. ~/2Ear(-', k.) for a pair of zone

surfaces when p= 1, ) =X'= —,'VS.

2"Ei&i=z'LZ (i) E)'(zk.){o( P+V)—
-2(.) E.r(zk.){- P+»3 -(6)
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FiG. 9. Contributions to initial electron energy change per atom
with strain in h.c.p. lattice with u =3A for distortions to c/u(1. 633
by (1) A faces; (2) 8 faces; (3) C faces. (4) is the resultant con-
tribution. The solid curves are calculated from Eq. (6) with
Q&=0.05, Q&=0.08, Q&=0.06. The dashed lines are conjectured
extrapolations. (2 ) is conjectured 8 face contribution if there is
no 8 face overlap.

and since Z0r(sk, )~k,s, the Q, 's should be in the ap-
proximate ratio

S100(z ~100) +002(z +002) +101(z +101)
AD BE C

kA4 kg4

—1:1.6:1.2.

The expression for a breaks down for large values of z

where the Fermi surface is intersecting most of the
Srillouin surface. The curves are therefore only quali-
tatively extrapolated for these larger z values. The
relatively broad maximum for the C face contribution
arises from the fact that the Fermi surface does not
reach both halves of the C faces at the same time, that
part of the C face which bounds the second zone being
reached at a greater z-value.

V. COMPARISON %ITH EXPERIMENT

The axial ratio for the h.c.p. lattice which is distorted
from the ideal packing of spheres by a strain e~ per-
pendicular to the symmetry axis is

c/a = 1.633/(1+ e,) '.

From Fig. 9 it is apparent that e~ is positive for values
of z&1.14 and therefore that the transition and rare-
earth metals which have h.c.p. structures should have

'~ A. H. Wilson, The Theory of Metals (CaInbridge University
Press, Cambridge, 1936), p. 78.

gap of 10/a2 ev across the A faces if a is expressed in
Angstrom units. Since, '~ however, the energy discon-
tinuity can be expressed in terms of the nuclear charge
Z, the atomic scattering factor F„and the structure
amplitude 5, as

(7)

a c/a(1.633. The actual value of the valence electron-
atom ratio in these elements is dificult to determine
due to an uncertainty in the amount of demotion of the
s-electrons to the d- or f-shell. Measurements of the
saturation magnetization of cobalt, however, indicate
that this element has 0.7 valence electrons per atom.
Since Ei——2.07X 10"dynes/cm' and 20= 22)& 10 "cm',
if Q~ ——0.05, Q21=0.08, Qc=0.06, then ei ——0.001 and
the axial ratio for cobalt should be c/a=1. 628. The
experimentally measured value for the axial ratio is
1.623, a value corresponding to ei ——0.002. It should be
noted that if one wanted to use a knowledge of the
axial ratio and elastic constants to estimate the number
of valence electrons in the metal, it would be necessary
to know the magnitude of the energy discontinuity
across the various faces.

In the case of the low temperature h.c.p. phase of
lithium, z=1 and 20=40X10 ' cm'. If &J=0.5X10"
dynes/cm' and Q& ——0.05, Q& =0.08, Qo =0.06 are
assumed to be the appropriate values for the lithium
h.c.p. structure, then ei ——0.013 and c/a= 1.570 as
against the experimentally reported value 1.563. It
appears, therefore, that the "electron energy aniso-
tropy" eGect is of sufficient magnitude to cause the
observed distortions from the ideal packing of "spheres"
in hexagonal crystals.

Figure 9 also predicts that eJ&0 if 1.29&z&1.46.
The exact range of z for which e~&0 and the magnitude
of e~ depend upon an arbitrary assignment of the mag-
nitude of the energy discontinuities across the various
Brillouin zone surfaces. There are three qualitative
features which are important, however. First, there is
the existence of a range of s for which c/12)1.633;
second, the magnitude of the maximum distortions to
c/u)1. 633 in this range should be smaller than the
maximum distortions to c/a(1.633 on either side of
this range; and third, the rate of change of distortion
with z in this range should be small. From Table I it is
observed that experimentally one finds distortions to
c/12)1.633 which are small in magnitude and vary
slowly with z in the range 1.21&z&1.4. Pabst' has
even reported observation of a maximum in the axial
ratio at z= 1.25 in the gold-mercury system. The quali-
tative features of Fig. 9 for 1.29&z& 1.45 are in general
accord with the observed variations of the axial ratio
with electron-atom ratio. Whereas the qualitative curve
predicts a maximum axial ratio for z=1.29 when
c/a=1. 647, the observed maximum appears to be at
about z=1.25, a discrepancy which could well be due
to the simplified model of a spherical Fermi surface.

Figure 10 indicates how the "electron energy aniso-
tropy" effect is dependent upon the magnitude of the
energy gaps and the lattice parameter. The ratio
Q~-. Qit'. Qo is held constant. If the lattice parameter is
fixed and the energy gaps are increased, the magnitude
of the maximum distortion to c/a) 1.633 is decreased
while the z-value at which it occurs is increased. For
fixed energy gaps c/a) 1.633 occurs for a lower range of
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z-values and has a larger maximum value if the lattice
parameter is decreased.

The qualitative arguments of the interaction of the
Fermi surface with all of the zone faces also predict a
nearly linear decrease in the axial ratio with z in the
range 1.45&z&1.85 in agreement with measurements
given in Table I and those of Owen and Pickup' on
e-brass. They also show the possibility of a phase change
to the g-brass phase for values of z close to two if there
is sufhcient 8-face overlap.

Finally, consider the complex h.c.p. |'-phase in the
silver™zinc system. This phase also has a single sym-
metry axis so that the variations with z in the axial
ratio should be predictable. It was predicted in the
general discussion of the Brillouin zone for this phase
that as s increased towards 1.50, the c/a of the crystal
should decrease. This is in agreement with the measure-
ments of Owen and Edmunds. '
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Fn. 10. Initial electron energy change per atom with strain in
h.c.p. lattice for distortion to c/a(1.633 for an A face energy
discontinuity of (1) 0.62 ev with a=3A; (2) 1.0 ev with a=3A;
(3) 1.6 ev with a=3A; and (4) 1.6 ev with a= 2.5A, when Qg.'Qg'.
Qc=1:1.6:1.2.

VI. SUMMARY

In summary, a mechanism has been considered
whereby the valence electrons in hexagonal metallic
crystals can inhuence the lattice structure due to a
change in their average energy with variation of the
lattice axial ratio. It was shown how the Fermi surface
for the metallic binding electrons interacts with surfaces
of energy. discontinuity which constitute the Brillouin
zone boundaries. Before the Fermi surface reaches the
energy discontinuity surface, there exists a force of
attraction between them which depends upon their
distance of separation, the magnitude of the energy dis-

continuity across the zone surface, and the energy of
the Fermi surface. If the two surfaces intersect one
another but do not overlap, there is also a repulsive
force between the two surfaces which depends upon the
area of interface between the two surfaces and the area
of Fermi surface which is not a common interface with
some other zone boundary. After overlap of a zone
boundary by the Fermi surface, the amount of
unoverlapped interface no longer increases so rapidly

FIG. 11. First Brillouin zone for
the h.c.p. lattice after Brillouin
and Seitz.

with increasing z. The resulting relief in the rate of
increase of the repulsive forces between the two surfaces
with increasing z has been thought of as an effective
partial pressure of the overlapping electrons to push the
zone surface toward the center of the zone. Finally, if a
zone surface is completely overlapped, there is no
interaction between the two surfaces.

The Brillouin zones for two hexagonal lattices were
considered, and it was shown how the forces of inter-
action between the Fermi and energy discontinuity
surfaces could qualitatively explain the observed varia-
tions of the axial ratio from the ideal value for the
close packing of spheres. A semiquantitative calculation
for the axial ratio variation in cobalt and lithium
indicate that the interactive forces under consideration
are of sufhcient magnitude to cause the distortions
which are observed in these lattices.

Finally, it was shown that the Brillouin zone struc-
ture for the cubic crystals have such a symmetry that
the "electron energy anisotropy" e6ect can be only of
second-order magnitude. This would explain why the
variations of the axial ratio with electron-atom ratio is
peculiar to noncubic crystals.

The author wishes to express his sincere gratitude to
his sponsor Dr. C. Zener for initially interesting him in
this problem and for his many helpful criticisms and
suggestions during the development of the work. He
would also like to thank the Westinghouse Electric
Corporation for the support it gave to the work.

APPENDIX I

In Fig. 3 is shown the first Brillouin zone for the h.c.p.
lattice. Brillouin" and Seitz,"on the other hand, have
taken the zone of Fig. ii to be the first Brillouin zone
for the h.c.p. lattice. In order to investigate which of
these two is the correct zone, it is first noted that the
h.c.p. lattice is made up of four interpenetrating
orthorhombic lattices with unit vectors A r

——a, As ——43a,
As ——c. Since the h.c.p. lattice, with two atoms n and P
in the unit cell, consists of two simple hexagonal lattices
with corresponding atoms at (0, 0, 0) and (z, s, z), the
potential at any point z' may be expanded as the Fourier
series

P' —P +Q P' esriks r

where ir, is a vector denoting one of the points of the

"L. Qrillouin, 8'ave Propagation irI, Periodic Strnctlres
(McGraw-Hill Book Company, Inc. , New York, 1946)."F.Seitz, Moderl Theory of SolÃs (McGraw-Hill Book Com-
pany, Inc. , New York, 1940).
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J
e
—2|ss)ss rL Vt)(x y s) Vp]dxdydz

V V +V pert(ss+:ss+ss)

reciprocal lattice such that k, r=(s&/Ai)x+(s&/A&)y = V (x, —y, s), so that for the {000,1}planes
+(sp/Ap)s and the Fourier coefficient of the potential
may be written

where, since each of the simple lattices is described by
(0, 0, 0) and (-'„-'„0),

V p
—A s{1+est(»+ss)}

' e '~'" '[V (x, y, s)-Vp]dxdyds
J J

According to the well-known degenerate perturbation
calculation, ".the magnitude of the energy discontinuity
across the planes de6ned by

k, ky-,'(h, ~&=0

is given by 2
~
V, ~. Therefore, if

V,= 2A~ cose—(stysp), i 1+ essi(ss+tss+ss)

2

vanishes for a given (si, sp, sp), there can be no energy
discontinuity corresponding to this set of integers. In
Fig. 4 is shown the second Brillouin zone for the h.c.p.
lattice. A comparison of Fig. 11 and Fig. 4 with the zone

FIG. 12. Geometric rela-
tion between

~
V,

~
and S.

of Fig. 3 reveals at once that the zone of Fig. 3 is what
one would obtain if the Fourier coefficient for the
surfaces {000,1} vanish whereas Fig. 11 is the zone
one would obtain if this Fourier coefficient does not
vanish. According to Eq. (i),

Vppi= 2A {1 At)/A }~

Mott and Jones" assume that the scattering coefficients
A and A p of the two atoms in the unit cell are identical
and therefore take Vpp~ ——0. Brillouin, on the other hand,
has pointed out that the atomic potential about atom
a by which the valence electrons are scattered is a
planar reflection of the atomic potential about atom P.
For an appropriate choice of axis, therefore, Vt)(x, y, s)

'P N. F. Mott and H. Jones, The Theory of the ProPerties of
Metals and Alloys (Oxford University Press, London, 1936),
ChRP. V.

JsJ~
e ' *"'LU (x, —y, z) —Vp]dxdyds

J 0
~" ~e ""(V.(x, y, z) —Vp]dxdyds

If y'= —y is substituted into the numerator of Eq.
(iii), however, it is at once apparent that At)=A and
therefore that Vppy=0. Figure 3 should, therefore, be
the correct first Brillouin zone for the h.c.p. lattice.

APPENDIX II

In the calculation of the parameters t). and P, a
simplified model is used in which it is assumed that (1)
the Fermi surface is spherical except when it intersects
a Brillouin zone boundary, (2) the electrons which
contribute appreciably to the "electron energy aniso-
tropy" eGect are included within the solid angle formed
by a rotation of a 30' plane angle about the k-vectors
to the center of the respective faces (i.e., it=&3/2),
(3) the magnitude of the energy gap remains constant
during a movement of any energy discontinuity surface,
and (4) the energy discontinuity is constant over the
discontinuity surfaces. In order to justify the 30' angle
of rotation of assumption (2), it is necessary to estimate
8, the largest distance in k space from the Fermi surface
to the energy discontinuity surface at which the electron
energy is appreciably aGected by movements of the
discontinuity surface. Although all of the valence elec-
tron energies are affected by the movement of each face,
nevertheless it will be sufficient to consider only those
electrons whose wave numbers lie in a region of k space
near to the moving face as contributing appreciably to
the "electron energy anisotropy" effect. It should be
noted that cobalt, which is assumed to have 0.7 valence
electrons per atom, is h.c.p. with c/a= 1.623 while the
h.c.p. form of nickel, with 0.6 valence electrons per atom,
shows practically no distortion. It appear's, therefore,
that when the h.c.p. lattice has 0.7 electrons per atom,
the Fermi surface is just close enough for movements of
the Brillouin zone surfaces to appreciably affect the
electron energies. Since the Fermi surface is approxi-
mated by a sphere, s=20 (4'/3)kp', where 0 is the
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atomic volume, and the radius of the Fermi sphere,
when s=0.7, is ks ——0.491/a. Since —', k, (A) =0.578/a is
the distance from the center of the zone to an A face,
8=0.087/a. If, therefore, the Fermi surface is just
touching an A face, the critical plane angle is given by
e=cos 'f1 —2/k, (A)j=31'. To avoid an overlap of
solid angles for the different zone faces for the h.c.p.
lattice, the value 0=30' is taken. The approximation
X=V3/2 becomes increasingly poor as the Fermi surface
intersects more and more of the Brillouin zone surface.

The geometric correlation between o and
~
V,

~

can be
seen from Fig. 12. Geometrically,

~
V,

~

-d(ksks/2m)-

dk ks/2

2Es~(-,'k, )

/Vf a'

2E&r(-', k,) —,'k,

If 8'= —s'8, then Q~ = 0.05, which is the value taken for Q
in the calculations of Fig. 9. This means that all the
electrons whose k vectors lie within a distance 38' of the
zone surface are considered in the estimation of the
"electron energy anisotropy" eRect. Geometrically, it
appears reasonable that all the electrons which con-
tribute appreciably to this eRect have k vectors in this
volume of k space.

Assumption (3) is employed in the evaluation of the
term s(r)Es/cle) of 8 U/Be. Since (BEi,/Be) =0 if there is no

energy discontinuity, the term s(BEi,/Be) can be ex-

pressed as a series of terms to the 6rst and higher powers
oftheenergydiscontinuity2~ V, ~. FromEq. (4), achange
in magnitude of the energy discontinuity with distortion
is proportional to the strains. Any contribution to (soEk)
due to a change in the magnitude of the energy gap with
distortion will, therefore, be only of second order in the
strains.

From the energy equation of the degenerate per-
turbation calculations in which the potential for the
free electrons is expressed as

V(r) V +Q V eswilrg. r

the kinetic energy of an electron of wave number k is
given by'4

h2

Es (k'+k k,+-,'k, ')——
2m

He finds c=2.816A and a= 7.639A, with nine atoms to
the unit cell. This is in agreement with recent measure-
ments by Edmunds and Qurashi, "who found c= 2.8197A
and a= 7.6360A. Jones found a first strong doublet cor-
responding to the Miller indices (1, 1, 1) and (0, 3, 0).
From these 6gures the Fermi surface, after account
is taken of intersection with the 8 faces, has a
radius kp ——0.226A ' while the 8 faces are found at
k~ ——0.220A ' and the A faces at k~ ——0.227A '. The
probabel Brillouin zone would be as shown in Fig. 13.
The decrease in the axial ratio as s varies from 1.46 to
1.5 would be due to an increasing repulsive force between
the Fermi surface and the 8 faces where the two sur-
faces intersect and an increasing attractive force on
the A faces which are not yet reached.

APPENDIX IV

Although there is no distortion to tetragonality in
cubic crystals as a result of the "electron energy
anisotropy" eRect, nevertheless the interactive forces
between the Fermi and zone surfaces exist. They are
just those forces which Jones" has suggested are re-

FIG. 13. Probable first Brillouin
zone of silver-zinc f-phase after
measurements of R. Jones.

sponsible for the Burne-Rothery'4 electron-atom ratio
rules for phase changes in binary substitutional alloys.
It should, therefore, be instructive to estimate the ratio
of the Fermi energies for the f.c.c. and b.c.c. structures.

The total valence electron energy referred to the
lowest electron energy state is the Fermi energy. If
there is but one pair of zone faces separated a distance
k, in wave number space, and if the Fermi surface is
approximated by a sphere, or portions of a sphere, then
the Fermi energy is given by

1 h'
~P '+2(1 k)]'+4(2~/k')s~ V. ~')&

2 2m
aJ p sinai p

Esk'dkd(cos())

This expression is used in Eq. (1) for the evaluation
of r)U/r)e

1 &Os/2 costi

Jp Jp
Esk'dkd(cos8) =Pi, Us, (i)

APPENDIX III

Jones" has recently measured the lattice parameters
for the f phase -of the silver-zinc system with a=1.5.

"Richard Jones (private communication).

ss E. A. Edmunds and Qurashi (private communication to R.
Jones by H. Lipsom).

»H. Jones, Proc. Roy. Soc. (London) 144, 225 (1934); 147,
396 (1934).N. F. Mott and H. Jones, p. 170 of reference 20.

"W. Hume-Rothery, J. Inst. Metals BS, 295 (1926); The
Metallic State (Oxford University Press, London, 1931), p. 328.
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0.8

Uf.o.a./Ub. c.o.= [4'(1)—3]/[6Pz(2) —5j, (1v)

where Pi, (1) refers to the f.c.c. lattice and P~(2) refers
to the b.c.c. lattice.

For the simple model of a spherical Fermi surface, it
is readily shown that

n1, (1)=(6p '—3p, '—2), ng(2)=(9p '—Sp,
—'—3).

0.6
0.8 1.0 1.2 Zstl) ) 4 ZS(2)

FIG. 14. Ratio of Fermi energies for a f.c.c. and b.c.c. lattice
calculated from Kq. (v) with Q&=Q& ——0.05.

where Up ——pasEtr(k), s=20. (47r/3)k', and Pq= (k,/2k)'
f(g, Q.) is a dimensionless parameter.

The volume enclosed by the Fermi surface in wave
number space, 01„can always be expressed as

0 = n (4'/3)(k, /2)',

where o.~ is a dimensionless parameter. Since the elec-
tron-atom ratio 2' is conserved in a phase transformation,

(k,/2k) '= 1/nb = s,/z,

where s, =20 (4s-/3)(k, /2)'. Since nI, =nj, (p, Q) and s,
is known, there is the functional relation between s and
p, for any given phase

z= n. (V, Q) z'

For a single pair of faces

DU= U—Up ——Up(pg —1).

In the f.c.c. lattice there are four pair of nearest zone
faces, and in the b.c.c. lattice six pair of zone faces. If
the inhuence of the six small next-nearest zone faces of
the f.c.c. lattice is neglected, and if the inhuence of each
zone face is assumed to be that of an infinite plane, then

Uf. . .= Up+46U= Up(4Py —3)

Ub ..= Up+66U= Up(6P„—5),

If the constants Qt and Qp are taken for a measure of
the energy gaps across the f.c.c. and b.c.c. zone faces
respectively, then the respective values pr(s) and p2(s)
for a given value of s can be calculated from relation
(iii). Since s,(1)=1.362 and s,(2) =1.480, relation (iv)
can then be written as

Uf, . 4(1.362/z)'i'f(pr(z), Qr) —3

Ub. , 6(1.480/s)"' f(pp(s), Qp) —5

Figure 14 shows a plot of U&. , /Ub, , ss s for Q, =Qp
=0.05. The perturbation value for EI, given in Sec. IV
was used in the calculation of Pl, to give

1 (2i 1

p ' —5Q'p ' —logl —
l

—— for y, )1
4 &Q) 3

(2ii~ '
f(i Q)—='-(5~ '-»+5Q'

l
5-»ogl —

I l~Q)) 6

(2)
log

&Q)

This calculation shows that if the Fermi energy alone
is used as a criterion for the relative stability of the
f.c.c. and b.c.c. phases in a metal alloy, the f.c.c. phase
has the lower Fermi energy and therefore is the more
stable for s&1.4. For larger values of s, however, there
is a range in which the b.c.c. phase is the more stable.
This range corresponds to the p-phase region in the
p-brasses.


