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In this paper we investigate the broadening of the spectral lines produced by small inhomogeneities in the
homogeneous C-field of the molecular beam electric resonance apparatus. To do so, we represent the inhomo-
geneities as an arbitrary function of time because of the flight of the molecules through the field. The transi-
tions which we investigate occur between states which are the instantaneous solutions of the Stark effect
problem in which we neglect the effects of nuclear molecular interactions. We obtain a solution for the
probability amplitudes for a transition such that d J=0 and Am =+1by considering a linear combination of
the solutions for the case in which there are no inhomogeneities. As an example, we consider the inhomo-
geneity of the C-field as represented by a linear taper. In this case the amount of line broadening depends on
the ratio of the amplitude of the taper to the amplitude of the radio frequency field which induces the
transitions. Because under optimum operating conditions the product of the rf Geld and the homogeneous
field is kept constant, the inhomogeneities have a greater e6ect in strong than in weak C-fields. The line
broadening, however, is considerably smaller than one might estimate from the energy level difference
computed for two perfectly hodogeneous fields having respectively field intensities equal to the two extreme
values of the tapered field.

' 'N the electric resonance method of molecular beam
& ~ spectroscopy, ' broadening of the spectral lines has
been observed in strong fields. This broadening has been
attributed to small inhomogeneities in the homogeneous
field (C-field) of the molecular beam apparatus. ' Inas-
much as the determination of the physically interesting
parameters of a molecul- electric dipole moment,
m, oment of inertia, nuclear quadrupole moments, etc.—
depends on the resolution of the 6ne and hyper6ne
structure of the broad lines observed, we have attempted
to obtain quantitative information on the degree of
broadening of the line profile on account of inhomo-
geneities in the C-field. In our calculations we have
represented this inhomogeneity as a change in the
C-6eld with tinze, because of the Right of the molecule
through the 6eld. To simplify matters, we have neglected
the effects of the nuclear quadrupole moment; our
methods can be modified to include such effects, but the
calculations become considerably more laborious. In our
opinion, this simplification does not destroy the es-
sentials of the situation.

If a molecule is in a constant electric field 8, the
separation of its energy levels remains fixed. If we

impose an oscillating held h, cosset at right angles to 8,
such that Ace is equal to the energy separation of two
states with different spatial quantization, transitions
will be induced between these states in a regular and
predictable manner. ' If a small inhomogeneity f(/) is

added to the constant 6eld, the energy levels will shift
adiabatically as long as df/dt is sufficiently small. A

where J is the total angular momentum, p, is the effective
molecular dipole moment, and I is the moment of
inertia of the molecule. In the absence of an oscillating
6eld, the last term in the Hamiltonian does not appear.
Therefore, transitions will occur between those states
which are instantaneous solutions of the Stark eBect
problem,

[J'h'/2I IJ,(B+f(t))]pg —= Eg pg, (2)

provided the selection rules are satisfied. The first index
refers to the rotational quantum, state and the second to
the space quantization of the molecule.

In order to solve the full time dependent problem
stated in Eq. (1), we expand 4' in terms of the it ~ with
time dependent coefficients:

molecule exposed to this 6eld for a time ~ will no longer
be near resonance for the entire time of exposure. More-
over, since the resonance frequency changes in time, the
molecule will be near resonance (at least for a small
interval of time) over a greater range of frequencies of
the oscillating held than is the case in a perfectly homo-
geneous field. Therefore, one would expect, even without
detailed calculations, that the peaks of the spectral lines
should be decreased as well as their widths broadened by
the presence of a small inhomogeneity.

To show these effects explicitly, we must solve the
time dependent Schrodinger equation,

$J'k'/2I IJ, ,(b+f(t)) —p.B, cosset]+—= i7iM /Bt, (1)

*This paper incorporates the major results of a Master' s
dissertation by one of us (JNG), which was accepted by the
Graduate School of Syracuse University in 1950.

f Now at Armour Research Foundation, Chicago, Illinois.
' H. K. Hughes, Phys. Rev. 72, 614 (1947).
~ J. W. Trischka, Phys. Rev. 74, 718 (1948). By substituting the expansion (3) into Eq. (1),we obtain
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differential equations for the coeScients aJ

ag = g ~(Jml p,h. lJ'm') cos(gt
J'~1 t

8—zk Jm —Jm ug
Bt

z
Xexp —

i (Eg —E~ )dt . (4)

combine. There are two linearly independent solutions
of the homogeneous case which separate these different
exponentials explicitly:

M=co+ exP ,'i)~(Q—+R E /—h)dt f„

+cg+ exp —,'i ( 0+R—E~g—/h)dt P„+„

=co exp, —,'i ' (0—R—E„/ h) Ct PThe instantaneous Stark effect wave functions, f~,
are linear combinations of ordinary states of a rigid
rotator belonging to different values of the quantum
number J. If we continue to label stationary levels with
a quantum number J, then this quantum number is not
quite identical with the usual one describing the total
angular momentum of the molecule. As a result,
transitions with AJ=O and Am= &1 are permissible.
Therefore, we shall consider the case where Pg is the
initial state and I'zQ= Eg —Eg ~~—A~=0, All terms in
Eqs. (4) which do not have 0 in the exponent may be
neglected as they contribute little to the result. Equa-
tions (4) thereby reduce to a pair of simultaneous
diAerential equations. Dropping the subscript J, they
are:

+c~ exp ——,'i (D+R+E~~/h)dt P +~.

The coefficients co+, co, c&+, and c& are determined by
Eqs. (5) and the requirement that M and ~ be
normalized:

co+= hgo[hgoo+PP(0+ R)oj
co ——h»t:h~o'+h'(0 —R)'j ~

c,+= —h(n+R) [h,,o+h'(n+ R)']-:, (~)

c,—= —h(Q —R) l
h|o'+h'(ft —R)'3—l

We now write the solution of Eq. (1) as a linear
combination of W and ~ with time dependent
coefficients:iha =-', hzoa~z expl i

~
Qdt I,i) )'

where

5
+=b, (t)W+ b, (t)~. (10)

A comparison of Eqs. (10) and (8) with Eq. (3) shows
that the probability amplitudes a and a +~ are related
to the coefficients b& and b2 as follows:

a. Ia„coexP —',i (QaR)dt,

a~~ c, exp ',i (—QaR)dt, -
(7)

h»=P, ~+1l &,s, ls~).

If the degenerate states with m equal to ~1 are in-
volved, both must be taken into account as transitions
can occur to either from the state with vs=0. The only
resulting change in Eqs. (5) is that the right-hand side of
the first of these equations is multiplied by 2. Hereafter
we shall consider m unequal to zero unless otherwise
specified.

If f(t) is suKciently small, one would not expect the
line shape to be seriously a6'ected. Since this condition is
satisfied in the experimental set-up, we shall look for a
solution as a linear combination of the instantaneous
solutions of Eq. (5). These solutions are of the form:

a =b~co+ exp o'i~ (0+R)dt

+boco exp ,'i (0,—R)dt, —

a~)——b)c)+ exp ,'i) (—n—yR)dt

+boc,—exp —-', i~t (Q+R)dt .

Substituting Eq. (10) into (1), we obtain a pair of
diGerential equations for b& and b2.'3

bg b, (co+——co—+c,+c, )—exp
l

—i Rdt l, —

bo= br(co+co +ci+c~ ) expl i l~ Rct l.

where R= (0'+h»'/h')'*. Each probability amplitude, in
the homogeneous case, is the sum of two exponential
terms, differing by the sign of R in (7). In this case, each
exponential would satisfy Eq. (5) separately. However,
in the presence of inhomogeneities the two terms will

' These equations have been simpli6ed by means of the ortho-
normality conditions of N+ and + . These conditions result in the
following relations for the coefFicients:

(cp+)'+ (ci+)'= j
(cp-)~+(c&-)~= &,

Cp+Cp +Ci+Ci =0.
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The above equations show clearly that when f(t) is
identically zero b~ and b2 do indeed vanish. That is, the
solution would reduce to that for a constant Geld, as it
should. Since f(t) is much smaller than the steady field,
we say that b~ and b2 will not di6er much from the
homogeneous Geld solution. Therefore, we can apply the
method of successive approximations to obtain a solu-
tion of Eqs. (12).We shall let bi(0) = b&(0) = 1 and apply
the initial conditions later. Thus we obtain:

bi(t)=1 — RA expl i —Rdt" Idt
(

J, i J, )

Thus, the probability P(m, m+1) of a transition from
the state P to the state P +i after a time r is given by'

X I:(1+b'(0))(1+~'(r))j'—b(0)b(r)

r—cos Rdt 2A—
I c(r) (1+bP(0))'

"o

—b(0) (1+bP (r) )ljsin Rdt, (16)
dp

where

bp(t) = 1+
Jp

RA expl i Rdt" Idt',
)

where we have used the abbreviation

b(t) = An(t)/, tt„ (17)
A = (cp+cp +ci+ci )/R.

To evaluate the integrals which appear in the above
equations, we hold A Gxed and so obtain:

It is evident that if f(t) vanishes, Eq. (16) reduces to the
usual expression for the transition probability, '

Pp(m, m+1) = (1+8')—' sin'(-', Rr). (18)

(
b, (t)=1 iA —expl i —Rdt'

I

—1,
)

(14)

If we evaluate the matrix elements involved and
neglect second-order terms in f(t), we find. that

Q(t) = cop a)+2K—bf(t), (19)

b (p)t=1 iA ex—pl i Rdt'
I

—1
t'.

This solution will be valid only if A«1. A should be
evaluated at the mean value of the static Geld, so that as
little asymmetry as possible will be introduced by
means of the approximation method.

Applying the initial conditions a (0)= 1 and a +i(0)
= 0 in Eqs. (10),we find for the probability amplitudes
the following expressions 3

hip= ri2KMh ~L(J ~)(I+iii+1)1*

For optimum operating conditions, one chooses

/ hip/I't = —7r/r

Hence, one can write'

(2o)

where
K=3(2m+1)/I J(J+1)(2J—1)(2J+3)],

and ~p=EP is the frequency separation of the energy
levels at the mean Geld value. %e also have

a„(t)= 1 iA expl i Rd—t
I

—1
40 GOp T

8(t) = 4f(t)
(22)

S,[(S ~)(J+~+1)]

Xcp+(0)cp+(t) exp —',i (0+R)dt

t'. t+ 1—iA expl i Rdt
I
—1

qJ j
, . f

Xcp (0)cp (t) exp —,'i~ (0—R)dt, (23)f(t) = a8(t/r —-',).
(13) In this case we have

Up to now we have represented the inhomogeneity of
the C-field as an arbitrary function f(t). For most
functions, however, the integration over R cannot be
carried out easily. A particularly simple example for
which this integration can be carried out in closed form
is that in which the inhomogeneity is represented as a
linear taper:

a +it= 1—iA. expl —i Rdt
I

—1
(

) 07 Mo T
b(t) = 4ah(t/r ,')——

(24)
8,[(J—m) (J+m+ 1)]'*

Xcp+(0)c,+(t) exp —',i (—0+R)dt

+ 1—iA expl i Rdt
I

—1
(

Xcp (0)ci (t) exp 2i) (0+R)d—t .

' When m =0, P(0, 1) is equal to one-half the expression given in
Eq. (16) and b(t) = AQ/V2h1p. Similarly for P(0, —1).' H. C. Torrey, Phys. Rev. 59, 293 (1941).' U the initial state is one with m =0, the fact that the transition
can take place to either of the two states with m =&1 introduces a
factor of 2 multiplying h10' in R. The delnition of optimum
operating conditions is then altered by a factor of V2. Thus

(M —o)p) v 2%2f(t')

8,[J(J+1)g&
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and~

p T ~h, [(x—m)(z+~)]:—~(r)[1+~'(r) j'
8~b

~( )+[1+~'( ) j-:
—b(0)[1+8s(0))'+in

~(0)+[1+~'(0)3'

t
0

LQ"

.9-

.8"

It is clear from Eq. (23) that the effect of the taper is
completely determined by Ah/h, . By choosing optimum
operating conditions the product h8 was set equal to a
constant. Hence, if 8 is increased 8, must be decreased
in order to maintain optimum operating conditions.
Therefore, the inhomogeneities will have the greatest
effect on the line shape in strong C-Gelds where they
were Grst observed by Trischka. ' The fact that a given
ratio hb/h has a greater effect when the C-field is
relatively strong than when it is weak may seem
paradoxical. However, it is well known' ' that the line
width is proportional to the product 8$ . On the other
hand, the energy level perturbation due to the taper is
proportional to h68. Thus the shift in energy levels due
to the inhomogeneities is small in weak and large in
strong C-fields, compared with the line width in a
homogeneous Geld. Therefore, one should expect the
inhornogeneities of the C-6eld to produce greater
broadening of the line pro61e in strong Gelds.

In Fig. 1(a) we have plotted the probability that a
molecule initially in a state with J=1 and m=O will

undergo a transition to a state with J= 1 and m= &1.
The curves are drawn for both a homogeneous Geld and
a field with a linear taper. (In both of these cases the
speciGc molecular parameters drop out of the expression
for the transition probability. ) The field values repre-
sented by the curves are such that Ah/h, =0.625. For
such Geld values we have

A = (Ah/s-h. )[1+8'(r/2) j—'& 0.20.
7 For ms=0, the factor outside the brackets becomes

—s.h, )J(J+1)7&/(4%25 6).
'The dependence of the line width on the product Bh, can

easily be verified if one examines the transition probability for the
homogeneous case, Eq. (18), using the fact that 8$,~1/r.' The general relation is

1+ ~ 2) —.
It $8,'(J—m) (I+m+1)

For the case m=0, the numerator is divided by 2.

I- ~

I

-2.0 "L5 -LO 4 0 .5 LO L5 2.0
(Qt-ta1,')t

Tr

FIG. 1. (a) compares the line profiles for a transition occurring
from the state J=1, m=0 to the state J=1, m ~1 in a homo-
geneous field (broken curve) and in a field with a linear taper
(solid curve). The taper has produced a 13 percent increase in
half-width and a 5 percent decrease in peak. (b) shows the instan-
taneous resonance position as a function of time.

Thus, these field values represent the limit of our ap-
proximation method. Figure 1(b) shows that the instan-
taneous resonance frequency sweeps over nearly the
entire range of frequencies included within the half-
width of the homogeneous Geld curve. Following the,
conservative method of estimating the broadening, ' one
would expect the half-width to be nearly doubled.
However, the taper increases the half-width by only 13
percent and decreases the peak by 5 percent.

If one attempts to use a larger ratio of hh/b„ the
curve becomes double peaked, dipping at resonance.
Because the approximation breaks down first in the
immediate vicinity of resonance (since A achieves its
maximum value at resonance), this result may well be
spurious. For points o6 resonance, however, one should

still get a reasonable picture of the broadening as long as
2 «& 0.20.


