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The relationship between the covariance of a 6eld theory and
the equations of motion is discussed in both the Lagrangian and
the Hamiltonian formalism. All theories whose 6eld equations are
derivable from a variational principle and are covariant under
arbitrary (curvilinear) coordinate transformations possess Bianchi
identities and, hence, "strong" conservation laws. Because the
strong conservation laws are ordinary divergences equal to zero,
whether or not the Geld equations are satis6ed, there exist certain
skew-symmetric expressions whose divergences yield the compo-
nents of the energy-momentum tensor. These superpotentials, as
the skew-symmetric expressions are called, enable us to write the
energy and momentum content of the field as two-dimensional
surface integrals. Also, by using the superpotentials together with
the 6eld equations, one can 6nd certain surface integrals which
are independent of the surface of integration and which yield the
equations of motion for the singularities .enclosed by the surface.
If the Einstein-Infeld approximation method is applied in the
general theory of relativity, the above surface integrals reduce to

integrals which are equivalent to those used by Einstein and
Infeld to obtain the equations of motion for the field sources.

In the Hamiltonian formalism the covariance of the theory is
revealed in the existence of a number of constraints between the
momenta and the Geld variables. Therefore, we examine the
relationship between the constraints and the Bianchi identities,
which lead to the strong conservation laws. We Gnd that the
first time derivative of the constraints leads to the existence of
four linear combinations of field equations which are free of the
time derivatives of the canonical Geld variables. These four
expressions are the "secondary" constraints. The second time
derivative of the primary constraints leads to the Bianchi identities
in terms of the canonical held variables. Thus, we are able to
establish the existence of the strong conservation laws in the
Hamiltonian formalism and by the same arguments as in the
Lagrangian formalism establish the existence of the super-
potentials. The superpotentials are written out only for the
gravitational theory.

I. INTRODUCTION

' 'N this paper we shall discuss the relationship between
- the transformation properties of a covariant field

theory and the equations of motion for the 6eld sources
in both the Lagrangian and Hamiltonian formalisms.
All theories whose field equations are derivable from a
variational principle and are covariant with respect to
transformation groups involving arbitrary furtctiorts
possess "strong" conservation laws. These strong laws
are certain (ordinary) divergences which vanish whether
or not the 6eld equations are satisfied. The existence
of such strong conservation laws enables us to set up
certain two-dimensional surface integrals which yield
the "equations of motion. "These equations will be the
ponderomotive laws only when the covariant transfor-
mation group under consideration is that of arbitrary
(curvilinear) coordinate transformations. In any case,
the type of covariant group possessed by a given 6eld
theory will determine what is conserved "strongly, "
and hence what kind of "motion" is determined by the
6eld equations alone.

Maxwell's theory of electromagnetism is covariant
with respect to the Lorentz group which depends only
on arbitrary pararweters. One can construct conservation
laws for the Maxwell field, but these laws will hold

only when the 6eld equations are satisfied. Furthermore,
the Maxwell equations do not contain the mass of the
charged particles in the 6eld; therefore, the pondero-
motive laws —the Lorentz equations —represent an
assumption distinct from and outside the framework of
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the 6eld equations. On the other hand, the 6eld equa-
tions of the electromagnetic theory are also covariant
with respect to the gauge group, which depends on one
arbitrary function. There exists, therefore, one strong
conservation law for the Maxwell field and that is the
conservation law for charge. This conservation law tells
us that the charged particles producing the field must
move so that the total charge is conserved. Beyond this
statement, the field equations by themselves leave the
motion of the particles arbitrary. Moreover, it is well
known that the total charge in a given region of space
may be calculated by means of a two-dimensional
surface integral over a surface which encloses that
region. Thus, the time rate of change of the charge
enclosed by a surface may also be calculated by means
of a surface integral. If the 6eld equations are satisfied
on that surface (i.e., if the charge and current distri-
butions are zero on the surface), then the total charge
enclosed is constant in time.

In a similar fashion, theories which are covariant
with respect to coordinate transformations possess four
strong conservation laws as they involve four arbitrary
functions. These laws are the conservation laws fo;
energy and momentum. Because these are strong laws,
the energy and momentum can be calculated by means
of two-dimensional surface integrals, and the equations
of motion for the particles enclosed by the surface can
also be calculated by means of surface integrals. The
methods we use to prove this result can be applied to
more general transformations to obtain corresponding
conservation laws and equations of motion. However,
in this paper we shall restrict our attention to coordinate
transformations.

The general theory of relativity is the only significant
6eld theory known today whose 6eld equations deter-
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mine the equations of motion of the particles producing
the field. ' ' As a result of the covariance of the theory
of gravitation under arbitrary coordinate transforma-
tions, the field equations are nonlinear and, moreover,
the 6eld equations satisfy four differential identities
(the Bianchi identities). The nonlinearity of the field
equations is essential for the explicit description of the
interactions between particles. If we have linear field
equations, then the sum of any number of solutions is
again a solution of the Geld equations while the world
lines of the particles producing the 6elds are unaffected
by the summation process. The role played by the
Bianchi identities is very complex, but for our purposes
it is sufhcient that the existence of the Bianchi identities
guarantees the existence of the strong conservation
laws. 4 As we have noted above, the existence of these
strong conservation laws permits us to determine the
equations of motion from the field equations by means
of surface integrals.

In their solution of the problem of motion in the
gravitational theory, Einstein and Infeld also use
surface integrals to obtain the equations of motion. ' '
However, in order to set up their surface integrals they
separate the gravitational metric into the metric for
Rat space, which is assumed to be the exact 6eld at
spatial infinity, and a part representing the deviation
from Bat space. With this substitution certain of the
field equations consist of linear terms which may be
written as the spatial divergence of an antisymmetric
form, plus a form containing primarily nonlinear terms.
Because of the skew-symmetry of the linear form, the
two-dimensional surface integral of the nonlinear form
vanishes whenever the Geld equ'ations are satisfied on
the surface of integration according to Stokes' theorem.
These surface integrals yield the equations of motion.
This derivation of the surface integrals depends on the
speci6c structure of the gravitational 6eld equations.
There is no indication as to how these surface integrals
are related to the covariance of the theory.

Bergmann has shown that any field theory whose 6eld
equations are derivable from a variational principle and
whose 6eld equations are covariant under arbitrary
coordinate transformations will possess Bianchi identi-
ties and, hence, strong conservation laws. ' Because of
the existence of the strong conservation laws there exist
certain skew-symmetric forms, which we shall call
"superpotentials. " These superpotentials enable us to
6nd linear combinations of the 6eld equations which

may be written as the spatial divergence of an anti-

' Einstein, Infeld, and HoGman, Ann. Math. 39, 66 (1938).' A. Einstein and L. lnfeld, Ann. Math. 41, 455 (1940l.' A. Einstein and L. Infeld, Can. J. Math. 1, 209 (1949).
4 There is only one case where this is not so. If the infinitesimal.

transformation of the field variables does not involve derivatives
of the "descriptors" of the transformation, then there will exist
Sianchi identities but no conservation laws. This case is of no
interest to us and we shall not consider it further.

~ P. G. Bergmann, Phys. Rev. 75, 680 (1949). This paper will
be referred to as I and references to equations in this paper will
be made as (I-2.1), etc.

symmetric form, plus other terms. Both types of terms
are related to the energy and momentum of the 6eld.
Thus, the surface integrals can be set up independently
of any splitting-up of 6eld variables or approximation
methods. Furthermore, the fact that these surface
integrals can be related to the energy-momentum tensor
adds to their signi6cance in determining the equations
of motion. If we apply the Einstein-Infeld approxima-
tion, our surface integrals are equivalent to theirs.

The usual approach in quantizing a field theory is
6rst to cast the classical theory into the Hamiltonian
formalism. From the Poisson brackets of the field
variables one obtains the commutation relations to be
obeyed by the quantum-mechanical operators. That is
why we have formulated the strong conservation laws
and the surface integrals for the equations of motion
also in terms of the canonical variables. Inasmuch as
covariance in the canonical formalism expresses itself
through the primary and secondary constraints, it is to
be expected that the canonical constraints are related
directly to the conservation laws. We shall show this
relationship explicitly.

8E=O, I= ~L(yg, y~ „)d'g. (2 &)

The 6eld variables y~ are assumed to transform under
arbitrary coordinate transformations according to the
law

5yA +Ay yB$, ~ yA, @gal (2.2)

where the P are the descriptors of the tr'ansformation
(for a coordinate transformation they are merely the
infinitesimal changes of the coordinates) and the F~„~"
are certain constants in any given theory. If the field
equations,

(I-2.2)
L"=8"L (8~&L), p

——0,— —

B~L=BL/Byg, 8~PL= BL/B—yg, p,
—(2.3)

are to be covariant under the above transformations,
the density function, I, must transform at most by the
addition of a total divergence. In order to satisfy this
condition on the Lagrangian density, the 6eld equations
must satisfy the four Bianchi identities,

(2.4)

From the Bianchi identities one immediately obtains the

II. THE LAGRANGIAN FORMALISM

2.1 Strong Conservation Laws

In this section we shall summarize previous results
(I) needed here. The field equations are assumed to be
derivable from a variational principle whose Lagrangian
density is a function of the Geld variables and their
first derivatives,
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strong conservation laws:

T„",„=—0,
(I-3.11)

T v P Bvy IA g vgygAvgy
(2.5) f

P„=~ T,'dv= fU„v'v dd. (2.11)

If I'„ is the total energy and momentum in a given
three-dimensional volume V with the surface S, then

%hen the 6eld equations are satis6ed, I."=0, these
strong laws reduce to the usual "weak" conservation
laws found in all 6eld theories derived from a variational
principle:

t„"v=0,
(I-3.8)

g v — $ vL+ QAv jy
(2 6)

All of the above results, with minor changes, hold
equally as well for the gauge transformation in the
theory of electromagnetism. In that case we have

(2.7)

(2 8)

and the "Bianchi" identity and the strong conservation
law are one:

dP„/dh fU„v=', ,v, dd. (2.12)

where the e, are the components of the unit normal
vector to the surface S. The signifKance of this state-
ment is that one need not integrate across the singular
regions of the held in order to calculate the energy and
momentum content of the 6eld including the singu-
larities. Thus the total energy and momentum of the
field, including the particles in the held may be calcu-
lated without the necessity of making an arbitrary
separation of the total field into external and self-fields
as is necessary in the theory of electromagnetism.
Clearly, the time rate of change of energy and momen-
tum contained in a volume V is also given, from Eq.
(2.11), by a surface integral:

Equation (2.8) leads directly to the conservation law This result is of interest in the investigation of (gravi-
for charge. tational) radiation.

2.2 Suyerpotentials

Although we ordinarily confine our attention to those
domains where the fieM equations are satis6ed, the
existence of the strong conservation laws is of great
importance. It is well known that whenever the com-
plete divergence of a "tensor" form' vanishes, then the
form itself may be represented as the complete diver-
gence of an antisymmetric form whose rank is higher
by one. (This corresponds to writing 8 as the curl of a
vector potential df in the electromagnetic theory ).
Therefore, we may write

v U [v4r]
d

(2.9)

The square brackets around the superscripts u and v-

indicate that U„t"' is antisymmetric in these indices.
The existence of these "superpotentials, " as we shall
call this antisymmetric tensor-form, will enable us to
obtain the surface integrals for the equations of motion.

Before we go into a discussion of the equations of
motion, it is interesting to note that the superpotentials
permit us to write the total energy and momentum in
the Geld as surface integrals. As was mentioned in the
introduction, this possibility corresponds to Gauss' law
in electromagnetic theory. The total energy and mo-
mentum density in the field is represented by T„4.
From Eq. (2.9) we find that

P Bvy IA —U [vvt +g v 0 (2.13)

Let us set i equal to s, (1, , 3), and in the potentials
separate the derivative with respect to x' from the
spatial derivatives:

Iv„Bdy ZA=U (vd) +, U (4,) +.], 0 (2 14)

It is evident that these linear combinations of field
equations have just the required property. If we now
take the divergence of Eq. (2.14), the first term vanishes
identically because of the anti-symmetry of r and s in
V„I'"&, and because of the symmetry of r and s in the
derivatives. Thus the divergence reduces to

2.3 Equations of Motion

In the theory of gravitation the problem of motion
was solved by means of a particular approximation
method which allows certain of the field equations to
be written as the sum of two terms, one of which is the
spatial divergence of an antisymmetric form. ' ' %e
shall now find those linear combinations of the field
equations having this form, without splitting the field
variables or applying an approximation procedure.

From Eqs. (2.5), (2.6), and (2.9) we find. that the
following linear combinations of field equations may be
written in terms of the superpotentials:

T„4= U„&44I „(s=1, 2, 3). (2.10) (F 'yBI."),.= (U„a'I +t„'),=0.— (2.15)' Sy a tensor-form we mean a set of quantities whose compo-
nents are distinguished by indices but which may not have simpIe
transformation properties, e.g., the ordinary divergence of a
tensor.

Equation (2.15) tells us that the closed-surface integral
over (U„td'&, 4+t„') will be independent of the surface
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as long as the field equations are satis6ed at least on
the surface of integration.

Therefore, we form the two-dimensional surface
integral over Eq. (2.14):

~A B yBI A+ dS — U [rsvp r

from the statement of the strong conservation laws by
making use of the existence of the superpotentials and
the condition that the field equations be satis6ed on
the surface of integration. Separating the derivative
with respect to x' in the strong conservation laws,
Eq. (2.5), we have:

T„d 4+T„',=—0. (2.18)

+f(12„i"i +1„')e,dS=O. (2.16)

Here, the first integral vanishes identically because of
what Einstein calls "the lemma. '" ' The essential argu-
ment is that the spatial divergence of any antisymmetric
form, whose antisymmetric indices are spatial, may
always be represented as the curl of a vector, the
remaining indices being disregarded. The integral of a
curl over a closed surface always vanishes. Thus, from
Eq. (2.16) we are left with

) 2'„', ,dV+f 2'„'n,dS 0—=(2.19)

We can now substitute for T' from Eq. (2.10) and thus
obtain an expression involving only a surface integral:

(U (" +T ')I dS=—0 (2.20)

Taking the volume integral of t'he above equation and

applying Gauss' theorem to the second term, we find
that,

FA„'y&I. e,d$=— U„~"~,4 t„' ~,d$=0.~ ~

If the surface does not enclose any singularities, then
this result is trivial. Applying Gauss' theorem, and
remembering Eq. (2.15), the surface in.tegrals give an
identically vanishing result. %hen singularities are
enclosed by the surface, however, Gauss' theorem
cannot be applied to yield this trivial result. The surface
integrals need no longer vanish identically. Equation
(2.15) tells us that no surface integral of the form
(2.17) can depend on the shape of the surface as long
as the 6eld equations are satished on that surface. If
two diferent surfaces enclose the same singularities,
then Gauss' theorem applied to the region between the
surfaces will give an identically vanishing result. There-
fore, the surface integrals (2.17) can be functions only
of the coordinates and the time derivatives of the
coordinates of any singularities enclosed by the surface.
Hence, these surface integrals must yield the equations
of motion for the singularities enclosed.

It is important to remember that the surface inte-
grals, Eq. (2.17), would have no meaning were it not
for the existence of the strong conservation laws. A
surface integral taken over a linear combination of the
full held equations would vanish on a cap, as well as on
a closed surface, as long as the field equations are
satisfied on the surface of integration. By means of the
strong conservation laws, and the consequent skew-
symmetric superpotentials, we have shown that the
closed surface integral over a quantity which is not a
linear combination of the full field equations vanishes,
Moreover, the existence of the superpotentials enabled
us to prove that these closed surface integrals are
independent of the surface of integration in the sense
of the previous paragraph.

Indeed, one can obtain these surface integrals directly

IA yA (2.21)

In this case, Eqs. (2.15) and (2.17) are replaced by

and
(2.15')

(12„~"(,+1„')m.dS JP~,~'2&P"n dS=. (2.11')~ ~

Clearly these integrals are no longer independent of the
surface. If the distribution of matter is not zero on the
surface, then changing the surface will in turn change
the amount of matter enclosed by the surface. In this
case, the equations of motion cannot be independent of
the surface. These surface integrals depend on the
distribution of matter through the field variables them-
selves as well as through the I' explicitly. The de-

pendence of the field variables on the distribution of
matter is determined by the field equations, Eq. (2.21),
and thus by the distribution of matter throughout all

space. The explicit dependence of the equations of
motiori on the P, however, is determined solely by the
distribution of matter on the surface. This situation is

to be expected as the change in the energy and mo-

menturn contained within the surface will depend on

If the field equations are satished on the surface of
integration, then Eq. (2.20) reduces to (2.17). .The
only advantage of the original derivation of the surface
integrals is in proving that these integrals really give
the equations of motion and for comparison with the
method of Einstein and Infeld.

The surface integrals can be generalized to the case
where matter is represented by a tensor field I'A rather
than by singularities in the fieM. The I'A become the
right-hand sides of the field equations; that is,
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the Aux through the surface. The analogous situation
occurs in the theory of electromagnetism with respect
to the conservation law for charge.

It is easy to see that no new information can be
obtained from Eq. (2.13) by setting I equal to 4. The
same surface integrals result after taking a time deriva-
tive and substituting from the strong conservation laws
for those terms which are not a spatial divergence.
Thus, once having satisfied the surface integrals (2.17),
these additional relations are empty.

2.4 Theory of Gravitation

In the theory of gravitation, Eq. (2.14) becomes

—2( —g)iG, '—= U„'r' +U "' 4+k„s=0 (2.22)

where"

U [vX] —i
( g)s{B v(gI rgpa gI agpr)

I (gvrgpa gvagpr)

p(gvrgI a gI rgva) )g (2 23)

Following Einstein and Infeld, we write the gravita-
tional metric as the sum of the metric for Rat space and
a term representing the deviation from Aat space:

theory, really give the equations of motion for the field
sources.

I-= /t A pB'(yc)y A, ,yB, . (3 1)

The covariance of the theory under arbitrary coordinate
transformations leads to the Bianchi identities, Eq.
(2.4), which place certain restrictions on the coe%cients
A pB'. After substituting the above expression for the
Lagrangian into Eq. (2.4) and separately considering
the coefficients of various diGerential orders, we find
that

III. THE HAMILTONIAN FORMALISM

3.1 Primary Constraints

In order to show the relationship between the con-
straints and the strong conservation laws in the Hamil-
tonian formalism, we shall require an explicit expression
for the Hamiltonian so that we may calculate Poisson
brackets of the constraints and the Hamiltonian. Such
relations are meaningless without definite expressions
for the Hamiltonian and the constraints. Therefore, in
what follows we shall assume that our Lagrangian is an
integral over a density function I.which is homogeneous
quadratic in the first derivatives of the field variables:

g"= n"+hp.

g44=1, g „=—6 „, q4 =0.

(a) 44 pIAC r+44aaIACrp+44 rIAC pa ()—
(2.24)

(b) fI aI ACpr+ dC(44 aI ABpr) 4 ris paB, AC

It is convenient to introduce a linear combination of
the h„, as the field variables,

pP B AC —0pB )

(C) $ pp C AB+B is .B,CA+/ is», BC
(3.2)

ptr 1
Ppp July g gIgy It I4 para (2.25) +cic(44 D pp D, AB)+dB(44 is pD, cA)

Substituting Eqs. (2.24) and (2.25) into (2.23) we

find that U '"' becomes

, r (yssr, s Vsss, r I assr7sm, m vvtss rrm, m), rTT ter] f

+ (&„,y4, , 4
—5„,y4. , 4), „+nonlinear terms. (2.26)

The first group of linear terms on the right-hand side
of Eq. (2.26) are just those terms which Einstein and
Infeld separate from the field equations in order to
obtain their surface integrals. The second group is not
separated out because in their approximation procedure
these terms behave like the nonlinear terms. Therefore,
if we apply the Einstein-Infeld approximation pro-
cedure, in each step of the approximation we obtain
the same surface integrals modulo terms which vanish
because of "the lemma. " The reason we do not obtain
the identical surface integrals right away is that
Einstein and Infeld only separate out linear terms,
whereas we separate out all the terms in the field

equations which are the spatial divergences of skew-

symmetric expressions. Thus, one sees that these surface
integrals, which result from the covariance of the

7 P. Freud, Ann. Math. 40, 417 (1939).
g H. Zatskis, Phys. Rev. 81, 1023 (1951).

+ CIA (44 pisa vD, Bc)—()

uA = Ae 7»

4l = BI/ByA 4,

yA, 4= BII/84I

(3.3)

(3.4)

Equation (3.3) is merely the definition of the momenta
canonically conjugate to the field variables yA, on the

' The function L(qs, qs) is considered as the generator of the
transformation to the coordinates qI, and p& by de6ning pk as
BL/Bqs One then asks for t.hat function H(qz, Ps) which generates
the inverse transformation q&BH/Bp&. By considering the total
di8erential dL, or dII, one finds that H=Zg, pqjq —1. which is
the usual definition of the Hamiltonian.

IAB ps —gA pBa+ /t AaB p
)

I prJB, AC —gBgA pCa gAgB pCo gCgA pB0

These three sets of relations will be frequently used in
the following calculations.

One can consider the transition to the Hamiltonian
formalism as a Legendre transformation. ' Therefore,
the following two equations are valid whether or not
the field equations are satisfied:
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other hand, Eq. (3.4) is one-half of the Hamiltonian
field equations. In the Lagrangian formalism, when we
consider situations in which the field equations are not
satisfied, we set the right-hand sides of the field equa-
tions equal to expressions PA, which represent the
distribution of matter. When we pass to the Hamil-
tonian formalism, the number of field equations is
doubled. The question arises whether all of them may
be considered eligible for nonvanishing right-hand sides.
Setting up the Hamiltonian formalism through a
Legendre transformation shows that only half of the
field equations may acquire right-hand. sides:

—Pi"+bH/by&) =P". (3.5)

Setting p= o.= r=4 in Eq. (3.2a), one Ands that the
N„A' are null vectors of A 'B'. Because of the existence
of these null vectors, there are four linear combinations
of field equations in the Lagrangian formalism that are
free of second time derivatives of the field variables.
This situation is reQected in the Hamiltonian formalism
in the existence of the primary constraints which are
four linear combinations of the momenta and field
variables not involving the y~ 4. Multiplying Eq. (3.3)
by the n„A' we have

g
—~ 4@A 0 gA ~A 2gA4Bsy (3 6)

Therefore,

where

+AC~ +DB ~AB

EACAC4B4= bAB —V &N„A,

EABV ~=0,

I A
PAv —$ v

(3.8)

(3.9)

Since the E» is only a quasi-inverse, it is not quite
uniquely determined by the defining relation above.
Therefore, the last term in Eq. (3.7) is redundant.
However, in practice one chooses a particular form for
the quasi-inverse and any further changes in the
Hamiltonian are then represented as linear combinations
of primary constraints as indicated in Eq. (3.7). The

'~ R. Pen6eld, Phys. Rev. 84, 737 (195j.).

Thus, although the m
A are uniquely defined in terms of

the field variables and their derivatives, the yA, 4 are
not uniquely determined by the canonical field vari-
ables. They are determined only up to a linear combi-
nation of the null vectors u„A4. This lack of uniqueness
in the yA 4 is refiected in the corresponding lack of
uniqueness of the Hamiltonian. All generally covariant
theories possess this property. The Hamiltonian density
(if we do not introduce parameters) is, 's

E=4~Eg~7r 7r —A " 'pg, ya, +w~g, (3.7)

where the m& are four arbitrary functions of the field
variables. E» is the quasi-inverse of A ' ' and is defined

by the relationship

null vectors vA& exhibit a corresponding lack of unique-
ness, although for a particular choice of inverse the null
vectors are uniquely defined by the relations (3.9). In
the following, we assume that a particular choice of
EAB has been made. Therefore, there is no redundancy
in Eq. (3.7) and the null vectors are unique.

PA (3.10)

where I is the usual density function. In the variational
principle the PA are considered given and are not to be
varied. The transformation law for the yA is unaffected
by this change and that of the PA is,

bPB — P BvPAP (PBP) (3.11)

If one carries out the argument normally leading to
the Bianchi identities, one finds that the requirement
that bJ* be a divergence leads to the usual identities
without PA appearing at all. The terms involving the
PA either cancel outright or go together to form a total
divergence. Clearly, the definition of the momenta, mA,

is not altered and, therefore, the primary constraints
are the same as in the usual case. However, the Hamil-
tonian density is changed by the addition of the term

y PA ~

&*=&+y~p" (3.12)

In this Hamiltonian the PA are not dynamical variables,
and thus this theory does not by itself lead to diGer-
ential equations for the PA. It is clear that the new
Hamiltonian density B*is determined, as is the old one,
up to a linear combination of the primary constraints.

Following Anderson and Hergmann" we introduce
the function space whose "points" are arbitrary sets of
functions yg(x', , x') and call it the "configuration"
space of the Lagrangian theory, Z, . If we double the
dimensionality of this space by adjoining to it the
second set of arbitrary functions m."(x', , x'), we get
the phase space of the corresponding canonical formal-
ism, Z. However, because ofthe existence of the primary
constraints, not all points of Z correspond to possible
situations in the Lagrangian theory. We must restrict
ourselves to that sub-space Z& of Z where the primary
constraints, Eq. (3.6) are satisfied. The fact that the
primary constraints are satisfied in Z~ for all time
places certain restrictions on the field equations which
are called "secondary" constraints. The question arises
as to how many such secondary constraints exist. In

"J. Anderson and P. G. Bergmann, Phys. Rev. 83, 1018
(1951l. This paper will be referred to as II and reference to
equations in this paper @rill be made as (II-3.2), etc.

3.2 Secondary Constraints

Since we are looking for the strong conservation laws,
which are satisfied even when the field equations are
not, we must use the field equations with right-hand
sides. In order to set these up consistently, we shall
redefine the Lagrangian density as
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general, the answer depends on the transformation
law- for the field variables. For the case which we
consider there are only four secondary constraints. We
shall delay the proof of this statement until the next
section. Here we shall calculate the secondarycon-
straints.

Consider a three-dimensional integral over the pri-
mary constraints g„with arbitrary weight functions 0.&.

Obviously, this integral vanishes in the space Z&,

l

(g„, H*)=L„—u„A4—PA=0 (3.18)

In L„, above, f„(g,) represents many factors of g, and
g p, , We have chosen to write them in this way because
in Z~ these terms make no new contribution and in
taking further time derivatives of g these terms will
never contribute anything new. Therefore, the coefIi-
cient of o& in Eq. (3.16) is,

g= o'"g„d x= Oa (3.13)

By a direct comparison with the fmld equations,
Eq. (3.5), we find that

L„= u„A—4(—8H/by A+ ir A)+ g„. (3.19)

and, conversely, if it vanishes for all possible 0-&, then
automatically the primary constraints are required to
be satisfied. (The symbol t above an equal sign means
that the relationship is valid in Z&.) Since the primary
constraints are satisfied in Z~ for all time, it follows
that the time derivatives of the g„must also vanish in
Zi. Thus the time derivatives of g must likewise vanish
in Z&. Because of the field equations, Eqs. (3.4) and
(3.5), we have:

where

dg Bg l

+(g, X*)=0,
dt Bt

(3.14)

K*= B*d'x.

(P 3'.S) y ~) i @Ada+
~ b~A

(3.15)

Using the above relation, Eq. (3.14) becomes

&"gn+ar" (gn H)
Bgp

I'A d'x= 0. (3.16)
Bm"

Since the weight functions 0& are arbitrary, the coefIi-
cients of the differentiated and the undifferentiated
weight functions must vanish separately. Clearly, the
coeKcient of 0.I" vanishes in Z&. In order to identify the
terms multiplied by 0-&, we must evaluate the Poisson
bracket (g„, H), which we shall denote by I„.We have:

L„=(u„A'S A), ,+8„4H—+8„'yA, .~A

+g 4gAnaBny y 2g nagA4Bny y

(IannaC, AByA y 2gAnCnay )

+f.(g.) (317)
'~ For the dehnition of the Poisson brackets of functionals see

P. G. Bergmann and J. H. M. Brunings, Revs. Modern Phys, 2I,
480 (1949).

(Q, BC*) is the Poisson bracket of the two functionals

g and K~.i2
From Eq. (3.12) it is evident that if P(yA, ~A) is an

arbitrary functional, then

From the above, it is evident that there exist four
linearly independent combinations of the field equations
which are free of the ~~ and j&. These four equations
correspond to the four linear combinations of field
equations in the Lagrangian formalism which are free
of second time derivatives of the field variables. Because
the L„are four expressions involving the momenta and
the field variables, but no time derivatives, the rela-
tionships (3.18) are called "secondary" constraints.

In the theory of the electromagnetism a similar
situation arises. There the primary constraint is ~4=0,
and the secondary constraint is ~', ,+cp=0, where p is
the charge density. x' is equal to the negative of the
electric 6eld strength divided by 4xc, and therefore the
secondary constraint corresponds to the Lagrangian
field equation divE=4~p.

3.3 The Bianchi Identities

Before proceeding to take further time derivatives,
we shall stop to examine how far this process need be
carried. According to II the number of secondary
constraints in any theory is I' times the number of
arbitrary functions in the transformation law for the
field variables, where P is the highest order of difFer-

entiation occurring in the transformation law. There-
fore, we should expect to find only four secondary
constraints in a coordinate covariant theory such as we
are considering. Our case differs from the situations
considered in II in that we are dealing with the possi-
bility that the field equations may not be satis6ed.
However, the argument is not altered by this fact and,
therefore, we shall not repeat the whole argument.
Instead we shall merely indicate where changes need to
be made in order to include the possibility that the
field equations need not be satis6ed. We shall continue
to restrict our discussion to coordinate transformations,
although the extension to the more general transfor-
mations considered in II is trivial. In order to facilitate
comparison with II, we shall place the number of the
equation in II which corresponds to the equations we

write to the left of our equations.
In II it was shown that the generating density

function for an infinitesimal invariant transformation
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can be brought into the particularly simple form,

(II-5.4) C='A P~ —'A P (3.20)

If the Lagrangian, and therefore the Hamiltonian,
explicitly describes the possibility that the field equa-
tions may not be satisfied, then the coeflicients "A„
may depend on the P~, which are a measure of the
amount by which the 6eld equations are not satis6ed,
as well as on the canonical field variables. The group
character of the transformation law is not altered by
the introduction of the P~ into the theory. Therefore,
in this case as well, the "A~ form a function group.

The investigation of the Poisson bracket relations of
the "A„with the Hamiltonian proceeds in the same
fashion as in II. Because of the covariance of the theory
under arbitrary coordinate transformations, the Hamil-
tonian can change as a function of its arguments only
by adding a linear combination of primary constraints.
Furthermore, this change is given by the total time
derivative of the generating functional of the transfor-
mation "

Therefore, we have

Comparing Eq. (3.23) with (3.18) we find that,
modulo the primary constraints, the 'A„are equal to
the secondary constraints. In fact, by considering the
transformation law for the y~, one can show that

where
'A =—I.' —I 4I'"

I-'.=I-. —f.(g—').
(3.25)

0;= ~t o»A„d'x= ~~~(I.'„u„~4P")d—'x= 0. (3.26)

Equation (3.24) tells us, therefore, that the total time
derivative of the secondary constraints does not lead
outside the function group composed of the g„and 'A„.
Hence, the four secondary constraints are the only
conditions imposed on the field equations by the
existence of the primary constraints.

From the above it is evident that the second time
derivative of the primary constraints should vanish
identically modulo the primary and secondary con-
straints. This condition yields the Bianchi identities in
the canonical formalism. Let us consider

(II-5.8)
88

(8, K*)+ —=~~b'tong, d'x.
Bt

Equation (3.16) shows that we need only consider
d 8/dt in order to obtain all the interesting information
from d'g/dt':

As a result it follows that

(II-5.12)

and'4

(II-5.13)

gp Ap)
~' 'A„+o~ (eA„, H*)+

dt Bt
~px=0. (3.27)

8 'A„
+('A„, H*)='A„—=a„"g„,

(g„, H*) —'A „=a„"g„,

8 '2„
+('A„, H*)=b„"g„. —

Again we consider the coe%cients of 0-& and ~& sepa-
rately. The coefFicient of 0& is merely the secondary
constraint and, therefore, gives no new information.
From the previous argument concerning the function
group, the coe%cient of 0-& is equal to a linear combi-
nation of primary constraints and, hence, vanishes in

(3 24) Zi. Let us calculate this term explicitly:

The a„" and b„" are certain functions of the 6eld vari-
ables which are determined by the transformation
properties of the Hamiltonian. The only difference
between the above relations and the corresponding
relations in II is the occurrence of the partial derivative
with respect to t on the left-hand side of the above
equations. This additional term results from the fact
that the "A„can depend on the time through the P~
as well as through the 6eld variables.

"A canonical transformation produces the following changes
in value:

b~.=ac/sp. , bp.= —ac/aq„be= ac/at.
Therefore,

aII /aH ~(I.„,H*)=a I „ya'I. „Ias-" & as-"), ,

aH q bH*y
+a""'I-'

I
l am") „, ( by~), ,

( aH ) bH*
+b, 'y~, , I

aw"
' ) by&

B„—(e„~'P )„—
aH

b~4 +b~'y& ~ I
P~ (3 28)

L "a~' " ')

a 'A „/at+ (sA „,H*)=8 (u z "P~)„— —

—(b 'aH/am"+b 'yg, ,)P"=0. .(3.29)

b'~=a(&„p.)—a(g, ', p.')+sc/sf
=(c, a)+ac/at.

'
Therefore, we obtain"The Poisson bracket ("A„,H*) is to be calculated as follows:

~ ~

f" ~„~"x*) 1' "& ~„a&e."=. ,

where the 0" are arbitrary weight functions.
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The symbol / above an identity sign means that the
relationship is an identity modulo the primary con-
straints (but not involving time derivatives of primary
constraints). The secondary constraints are satisfied
only as long as we remain in Z&. However, the relation
(3.29) are satisfied, in the above sense, throughout Z;
i.e., Eq. (3.24) is valid throughout Z. Furthermore,
since Eq. (3.29) must be satis6ed identically in Z,
whether or not P~ is zero, the terms containing P~ and
those not containing P~ must vanish separately. Hence,
we have

put into the form of a divergence:

r bH
+~"

I

I. by. ) I,

b4"L'„b,"u—„g'l +n"
l

. (3.34)
Kby~ )

The remaining two terms require a little manipulation,
but without difhculty one can show that,

t bII
(u g"I' ) —(b 'aH/an. "+b 'yg )I'"—=Q (3.3Q) b„'yg, , l

+n"
l

&by~ )

l
B„=o. (3.31)

( BHJ
b, " b„'l H —n-"

l

—b„"yz, ,&~'H
a..)

Comparing Eq. (3.30) with the Bianchi identities,
Eq. (2.4), we see that this identity must be satisfied by
the I'~, if they are to be the right-hand sides of co-
variant field equations.

The B„can also be written in the same form and are,
therefore, the Bianchi identities in terms of the canon-
ical variables. By using the relations given in Eq. (3.2)
one can show that

BH rbH

Bn" (bye )

+b„'b4"yz, ,ir~ (3.35)

BH
b„4b4 "H b„'b, " —8"'H . (3.36)

Bx"

BI p BI—ir"+ n-" —(u„g'ir")
Bm~,

BH
+4'y. . l~"=—Q (3 32)

an-" )

Adding the above identity to B„we have

(bH

&bye )

BH y rbH
+b.'», ll + " l=—Q (333)

Bir" ) &by~ )

If we remember Eq. (3.19), we see that the above is

just what one would expect the Bianchi identities to
become in the Hamiltonian formalism.

3.4 Strong Conservation Laws

As has been pointed out previously, the strong con-
servation laws are certain ordinary divergences which

vanish whether or not the field equations are satisfied.
Furthermore, they are a result of the existence of the
Bianchi identities. Having already obtained the- Hianchi
identities in the canonical formalism we are prepared
to derive from them the strong conservation laws.

The first two terms of 8„, Eq. (3.33) can easily be

Substituting from the above three relations, Eq. (3.33)
becomes

L

T„",„—=0,

(bH q r BHy
T '=u g'l + '" l+b„'l II "

l, (3.37)—
(bye ) E an.")

T„'= I.'„+b„4H+b„'yg, —„n".

The above is just the statement of the strong conser-
vation laws.

One should not expect the Bianchi identities and
hence the strong conservation laws to hold in the total
phase space Z. The covariance of the Lagrangian theory,
which is responsible for both the Bianchi identities and
the conservation laws, is rejected in the canonical
formalism by the existence of the primary constraints.
Since the constraints are satisfied only in Z&, it would
be unrealistic to expect to find identities and conser-
vation laws, resulting from the covariance of the theory,
which are valid in regions of Z where the constraints
are not satisfied.

3.5 Surface Integrals

The arguments leading up to the surface integrals for
the equations of motion are the same here as in the
Lagrangian case, Sec. II. Formally the surface integrals
are the same. Unfortunately, however, although the
superpotentials may be found in principle, even the
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restriction to a quadratic Lagrangian does not permit
their explicit calculation. Bergmann and Scliller, by
making a specific assumption about the transformation
properties of the Lagrangian density, are able to derive
expressions for the superpotentials. "In their formulation
the superpotentials are easily carried over into the
Hamiltonian formalism. However, in any case the
determination of the Bianchi identities follows from
similar arguments to those presented in this paper.

In a particular theory, such as the theory of gravi-
tation, the calculation of the superpotentials should
not lead to any serious difficulties. From Eqs. (3.19)
and (2.13) with v=4, one sees that modulo the primary
constraints

(3.38)

Therefore, in the theory of gravitation one can show
that, "
P [s41 —I sgA & (I 4LABns I aIABn4)y (3 39)

If we substitute for the ~A from Eq. (3.3), the above
expression for U„&"& agrees with that obtained from
Eq. (2.23). The antisymmetry in s and 4 can be shown
explicitly by making use of Eq. (3.9) and dropping
extra factors containing g„:

P [@4[ r (~ sLAc44 ~ 4I Ac48)+ ~B

+ s (+ sLAB+4 I 4LABns)~ (3 40)

Thus, for the theory of gravitation we can write out
the surface integrals explicitly.

IV. DISCUSSION

As a result of the existence of strong conservation
laws in a generally covariant 6eld theory, there exist
superpotentials whose divergences yield the components
of the energy-momentum tensor, T„".We have shown
that by means of these superpotentials the total energy
and momentum contained in a three-dimensional region
of space can be calculated by a two-dimensional surface
integral taken over the boundary of that region.

"P.G. Bergmann and R. Schi11er, Phys. Rev. 89, 4 (1952).
"The definition of A."~ ' in the theory of gravitation is given

by Sergmann, Pen6eld, Schiller, and Zatzkis, Phys. Rev. 80, 81
(1950).
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I'"urthermore, we were able to set up certain two-
dimensional surface integrals which were independent
of the surface of integration and which yielded the
equations of motion for any singularities (particles)
enclosed by the surface. In the canonical formalism
the fact that the constraints together with the Hamil-
tonian form a function group enabled us to obtain the
Bianchi identities and, hence, the strong conservation
laws in terms of the canonical variables. Thus, the
superpotentials and the surface integrals can be found
in the Hamiltonian formalism.

Up to now the investigation of gravitational radiation
has been unsuccessful because of the necessary restric-
tion to small particle velocities (compared with the
velocity of light) in the Einstein-Infeld approximation
method. ' " If this restriction to slow motion is re-
moved, then the field equations cannot be integrated
beyond the first order without know1edge of the motion
of the particles in advance. However, by using the
Hamiltonian forma1ism, one can build up a solution of
the 6eld equations as a Taylor series with respect to
time. Since the constraints and Hamiltonian form a
function group, one need only choose the initial condi-
tions such that the primary and secondary constraints
are satisfied. Having done so, one then proceeds as
though there were no constraints. Thus, the problem
of investigating gravitational radiation is reduced to
the choice of initial conditions and the evaluation of
certain surface integrals.

Since the energy and momentum of the 6eld can be
calculated by means of surface integrals, there is no
need to separate the self-6eld of a particle from the
total field. Indeed, because of the nonlinearity of the
field equation one cannot make this separation. It
appears conceivable that when the gravitational field
is quantized the usual renormalization of the mass and
charge may not be necessary. The role played by the
equations of motion in a quantized theory is still open
to question. There seems to be no way of interpreting
equations of motion within the framework of quantum
mechanics as it exists' today. However, this question
will have to be investigated further.

In conclusion, I wish to express my appreciation to
Dr. Peter G. Hergmann for many valuable discussions.

"L.Infeld and A. E. Scheidegger, Can. J. Math. 3, 195 (1951).
"A. E. Scheidegger, Phys. Rev. 82, 883 (1951).


