
PH YS ICAL REVIEW VOLUME 89, NUMBER 1 JAN UA R Y 1, 1953

Electronic Energy Bands in Metals
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A method is presented for calculating the energy levels of a crystal. The method is based on 6nding a
variational principle for the energy levels in terms of the Wannier functions instead of the usual Bloch
wave functions. The variational principle does not give the energy E(k) directly, but if E(k) for a particular
band is expanded in a Fourier series in k, then the variational principle gives the Fourier coefficients of
E(k) in this expansion. The maxima and minima properties of the variational principle are investigated.
The variational principle is properly modified for application to valence bands. The types of trial functions
that will arise is discussed, and the method is applied to a one-dimensional crystal. Our results are compared
with the results of the method of orthogonal plane waves for the same problem.

I. INTRODUCTION

HE most direct method available for the calcu-
lation of the energy levels of an electron moving

in a periodic potential is the cellular method; that is,
we solve Schrodinger's equation within one of the
atomic polyhedra for that solution which satis6es the
proper boundary conditions on the surface of the poly-
hedron. This method is dificult to apply in practice
because of the awkward shape of the surfaces of the
atomic polyhedra. Slater' has given an approximate
way of satisfying these boundary conditions, and
several metals have been treated in this way.

The idea behind our approach is to 6nd a variational
principle for the energy levels of a crystal which involves
only the Wannier functions instead of the usual Bloch
wave functions. The hope is that such a variational
principle will avoid the di%culties of having to 6t the
boundary conditions on the surface of the atomic
polyhedra, and at the same time, the integrals arising
will extend over a few cells of the crystal rather than
over the entire crystal.

In the following paragraphs, such a variational
principle is presented. The variational principle does
not give the energy directly, but if Z(k) for a particular
band is expanded in a Fourier series in k, then our
variational principle allows us to calculate the Fourier
coefficients of E(k) in this expansion.

We have applied the method to a one-dimensional

crystal chosen to resemble lithium, and we have com-

pared our results with those obtained by the method of
orthogonal plane waves" when applied to the same
problem.

crystal which involve just the Wannier function; that
is, the usual wave function does not occur.

For the sake of simplicity, we shall prove all our
results for the one-dimensional crystal. For the most
part, our results can easily be transferred to the three-
dimensional crystal.

Before proceeding further, we would like to give here
the de6nition and some of the properties of the Wannier
function.

Let us consider a one-dimensional crystal whose
atoms are separated by the distance u and are located
at the points x„=rta. Let V(x) be the periodic potential
due to the atoms, and let fs(x) be the eigenfunctions of
an electron moving in this potential and having the
energy levels E(k). Then

Xgs(x) =8(k)Ps{x), (2.1)

(2.2)

F is the total number of atoms in the crystal and the
sum over k is only over those values of k which corre-
sponds to the particular band we are considering. For
the lowest band k would go from —w/a to +s/a.

The Wannier functions defined by (2.2) can be
obtained from each other by a simple displacement,

U„(x)= Uo(x —x„), (2.3)

and they form an orthonormal set,

SC being the Hamiltonian for an electron moving in a
periodic potential V(x).

The energy levels of the electron will occur in bands,
and to each band we associate a set of Wannier func-
tions according to the definition,

U (x)=N ipse ' ~ps(x)

II. THE VfANNIER FUNCTION AND ITS PROPERTIES
&xUo(x —x )Uo(x —x„)=5„. (2 4)

Since we are interested in obtaining a variational
principle for the energy levels of a crystal in terms of
the Wannier functions, our immediate problem is to
6nd a set of equations for the energy levels of the

The Wannier function of a free particle can be easily
calculated. Here Ps ——exp(skx)/L&, where L=Na is the
length of the crystal. Equation (2.2) gives

' J. C. Slater, Phys. Rev. 45, 794 (1934).
s C. Herring, Phys. Rev. 57, 1169 (1940); C. Herring and

A. G. Hill, Phys. Rev. 58, 132 (1940).' R. Parrnenter, Phys. Rev. 86, 552 (1952).

1 sin(trx/u)
Up=

ga orx/e
(2 5)
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as the Wannier function of the lowest band of a free
particle.

The type of asymptotic behavior indicated by (2.5)
is characteristic of the Wannier function. As x becomes
large, it oscillates while its amplitude decreases like 1/x.

It should be noted that (2.2) may be turned around
and solved for Pk(x) in terms of Uo(x —x„),

Pi, (x) =E—&g„e"*U0(x —x ) (2.6)

XU=Q e „U(x—x ). (2 7)

Here e„ is the Fourier coefficient in the Fourier series
of E(k):

This expression may be interpreted in the following
way. If we consider fi, (x) within a single band, then
within that band we can represent Pi, (x) by a Fourier
series in k. Equation (2.6) is just this Fourier series for
Pi, (x) and the Wannier functions Uo(x —x„) are the
Fourier coefficients of the series.

Having defined the Wannier function Uo(x), we may
ask now for the differential equation that it must obey.
This equation can be obtained from Schrodinger's
equation (2.1). We substitute for P&(x) using Eq (2.6.)
and then sum over k, which varies over a band.

We get

are the following:
XU=+„e„D"U, (2.11a)

(2.11b)

"dxU*D"U=O, e= &1; a2 . (2.11c)

III. THE VARIATIONAL PRINCIPLE

Here D is the displacement operator, D+"f(x)=f(x&eu), and has been introduced to make clear
that there is but one function, U(x), involved in the
set of Eqs. (2.11).

In order to see that the e„are now determined, we
can imagine the following procedure in solving the
above equations. We can regard Eq. (2.11a) as an
eigenvalue equation for 6p in which Eyi egg ' ' 6y„~ ~ ~

occur as parameters. Then we can solve (2.11a) to find
eo= co(I'll) 6y2) ' ' '

q Eyn) ' ' ' ) ) and U= U(xi col) 6y2p
~ ). And we can take U(x; ~~i, e~~, ) and put it
into J'dxU*D"U=O and thus get a set of equations for
6yy) Cyan)

g(k) g e eikxn

~ =Ã 'Qp e '"*"E(k).

(2.8)

(2.9)

We will now find a variational principle for the
Wannier function U(x) which will yield the Eqs. (2.11).

Consider the integral

We have dropped the subscript zero on U(x).
The variational principle we will soon derive will not

give Z(k) directly but will be an expression for these
Fourier coefficients e„.We would like to point out that
e„can be expressed simply in terms of the Wannier
functions,

~p= ~xU*3.'U, (3 1)

(3.2a)

where the function U is restricted by the conditions

e = dxU*(x+x )XU(x). (2.10)
and

This is obtained by multiplying both sides of (2.7)
by U(x+x ) and using the orthogonality property of
U(x+x ).

We would like now to re-express our problem of
6nding the energy levels of the crystal just in terms of
the Wannier functions alone, that is, to eliminate the
wave function fz(x) entirely.

It is clear, however, that Eq. (2.7) cannot be regarded
as an equivalent equation to the Schrodinger equation
(2.1) for determining the energy levels of the crystal.
Equation (2.7) contains a great number of unknown
constants, the e„, and they cannot all be determined
by a single equation.

The extra conditions on U(x), which are not con-
tained in Eq. (2.7) and which we must add so that the
e shall be completely determined, are the orthogonality
conditions J'C U„x*U =i)„.

A set of equations which involve only the Kannier
functions and which are equivalent to the Schrodinger
equation for determining the energy levels of the crystal

dx U*D"U= 0. (3.2b)

We will prove that the requirement that Ip be an
extremum will yield the Eqs. (2.11), that lo takes on a
minimum value, and that this minimum value is ~p.

In other words, the above equations will give a varia-
tional principle for Lp.

First let us prove the extremum property of Ip.
Introduce the Lagrangian multipliers X„, m=0, & j. ~ ~

for the restrictions (3.2) and compute BIO. We get

+((XU)~—Q )i D ")BU)=0, (3.3)

so that we have
XU=Q )~ D"U, (3.4)

which is the desired equation for U. It is dear that the
Lagrangian multipliers X„are just the Fourier coeS-
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cient o„ in the Fourier expansion of E(k). Also the
extremum value of Io is obtained when U is the Wannier
function satisfying (3.4), and thus the extremum value
of Ip is pp according to Eq. (2.10).

In the same way we can form the integrals

I = ~dxU*XD "U— (3.5)

and with the same side conditions on U given by (3.2),
these integrals have extremums when U is the Wannier
function satisfying Eqs. (2.11) and the extremum value
of I„is e„.

We have therefore obtained a variational principle
for the Fourier coeScients, o„, of the energy E(k). We
have not so far demonstrated whether the I have
minima or not. We will do this in the next section.

It might be noted here that our variational principle
seems clumsy because of the many conditions (3.2)
which must be satisfied by the trial function. Actually,
it is only necessary to satisfy these conditions for the
first few values of e, m=0, 1, 2 ~ . For higher values
of m, the conditions mill be automatically fulfilled
because the overlap between U(x) and U(x —x„) will

get smaller as x„get larger.

I= ) dxP*Kf, (4 1)

where P must satisfy

) dxf*g= i. (4.2)

By the usual Rayleigh-Ritz principle, I has a minimum
value and this minimum value is simply the lowest
level E(0) of the Hamiltonian K.

Now consider the integral Io. It is similar to the
integral I, except that the class of functions which

.may be used in computing Io is more restrictive. We
have the added restrictions J'dxU*D" U = 0. Since
I&E(0), then Io&E(0) also. Thus, Ip has a minimum
value, and this minimum value is larger than E(0);
that is, we have not only shown that ~0 is the minimum
value of Io but also that op&E(0).

We have shown that ~0 is the minimum value of Io,
if U obeys the restrictions (3.2), but this is not true of
I~~, I~2 I~ . These last integrals have neither
minimum nor maximum. (See Appendix I, for proof. )

IV. THE MINIMA PROPERTIES OF I„
We wish to establish now the minima properties of I„.
First let us treat Io. To show that Io has a minimum,

it is only necessary to show that Io has a lower bound;
that is, that is always larger than some definite quantity
when the trial function U obeys the proper restrictions.

Consider the integral

However, we can establish the following integrals
which do not have minima:

Io+ o (Il+I 1)&op+ o (pl+ o 1) (4.3)

Io+ o(6+I-x)+o(Io+I o)-
&oo+ o (op+ o 1)-+ o (o2+ o—o) p (4 4)

and quite generally,

m —1 nz —2 I
Io+ (6+I-i)+ (Io+I-o) + (I~+I-—~)

m —1 1
&op+ -(oi+o i) . .+—(o +o -) (4.5)

nz m

We shall prove (4.3) and the rest follow in the same
way. We have only to prove that Ip+-', (I&+I &) have
a lower bound. Now I=fdeP*XQ, where fdnPP=1
does have a lower bound; in fact, J'dxf*KQ)E(0).

Therefore, let

P= (1/%2)(1+D)U, (4.6)

where U' obeys at least the first two of the conditions
(3.2). Then, we get for I,

I= ~dxU*[1+-', (D'+D ')]U

=Ip+o(Ig+I i).
(4./)

Thus, Ip+-', (I~+I ~) &E(0), and it has a lower bound
and also a minimum value, which must be op+ —',(o~+ o ~).

,
"dxU*U& &=0.

This turns out not to be sufhcient. What is required
is that U should be orthogonal to all the Wannier
functions of the lowest band, that is,

d~U*D-U&»=0. (5.2)

V. THE VARIATIONAL PRINCIPLE FOR THE
VALENCE BANDS

The variational principle that we have derived will

give the energy levels of the lowest band. However, in
practice, we are interested in finding the valence bands.

For example, suppose we wish to find the energy
levels of the second band which lies above the first or
lowest band. What restrictions must be put on the trial
function U(x) so that Ip as calculated by Eq. (3.1) will

converge to the eo of the second band and not to the 60

of the first bandP
We might guess that the trial function U(x) should

be orthogonal to the Wannier function U&'&(x) of the
lowest band; that is, we should require that
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FIG. 1. The shape of the potential assumed for our
one-dimensional calculation.

ters, the internuclear distance a, the potential depth Vo,
and the well width d, so that the erst band is very
narrow. An electron whose state is in the erst band is
essentially bound to the atom with an "orbit radius"
of about d.

The ratio a/2d, which is the ratio of the internuclear
distance to the radius of the inner a lowest band was
taken fairly large; we let a/2d =3, 4, 5, 7, and 10. The
corresponding ratio for lithium is about 15. VVe will
see that the larger this ratio is, the better will be the
trial function we will use.

Now our trial function must be orthogonal to the
Wannier functions of the lowest band, as we are trying
to locate the second band. Thus, if we denote by p(x)
the Wannier function of the lowest band, we will write
our trial function as

This result is suggested by the following. Let us
expand U in the wave functions QI, (x) of our Hamil-
tonian K,

(5.3)
Then

I,=g& (a, ~'E(k). (5.4)

If we wish (5.4) to yield the eo of the second band,
Eq. (5.4) suggests that we require a& ——0 for all values
of k which lie in the first band; that is, U(x) should be
orthogonal to all the wave functions of the erst band.
This actually is the case and is proved in Appendix I.

Now the requirement that a~ ——0 in the first band is
equivalerit to Eq. (5.2), because, as

U(x) =u(x) —P„c„y(x—x ); (6 1)

c„= dxq*(x —x„)u(x). (6.2)

and we will chose c so as to make U(x) orthogonal to
p(x—x„), as is required by (5.2).

Since the lowest band is very narrow, the Wannier
function p(x) of this band is given to a good approxi-
mation by just the atomic wave function, that is, by
just the bound state wave function for a well of depth
Vo and width d. (See Appendix II for discussion of this
point. ) Further, we also assume that the functions
overlap very little and are mutually orthogonal. Thus,
the coefficients c„ in (6.1) are given by

g k in first band

then Eq. (5.2) gives

ugt:"~= 0.
k in first band

(5.5)

(5.6)

The only quantity as yet undetermined in our trial
function (6.1) is the function N(x). Now as we are
6nding the energy levels of a valence band, we expect
the wave function of the particle to be fairly close to
the free-particle wave function. Thus, we expect that
u(x) should resemble the free-particle Wannier function
given by (2.5), that is,

Equation (5.6) says that the Fourier coefficients of
the function aj„where k is restricted to the lowest band,
are all zero. Thus, it follows that uA,

=—0 for k is the
lowest band.

1 sin(xx/a)
u(x) (6.3)

VI. ON THE CHOICE OP TRIAL FUNCTIONS

Having the variational principle, we are now faced
by two problems. How good is the variational principle,
and what sort of functions shall we use as true functions'

Such questions cannot be answered very well without
considerable calculation for the case of an actual metal.
Nevertheless, we thought it might be worth while to
apply our variational principle to a one-dimensional
crystal which was so chosen as to resemble the metal
lithium. We believe that this simple calculation will tell
us how the calculation will proceed for an actual metal,

We chose our crystal potential to be made up of
square wells as shown in Fig. 1. We chose the parame- U(x) =N(x) —coq (x). (6.4)

Now, we will construct the simplest possible trial
function out of (6.1), (6.2), and (6.3) by considering
the case where the ratio of the interatomic distance to
the radius of the inner orbit of the electrons is large.
For our problem this ratio is a/2d. For actual metals
this ratio is quite large.

From (6.2) and (6.3) one can see that the coeKcient
c„decrease as m increases. In fact, as we can expect
rp(x) to have the general form y(x) exp( —x'/d'), the
c will decrease very fast. We will suppose that our
ratio a/2d is large enough so that t;& and c i are already
quite small and just the co term in (6.1) is sufhcient.
Our trial function is then
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Now in our choice of u(x), we must keep in mind that
the trial function must satisfy the conditions (3.2),
fdxU*D"U=O. We see that if we choose u(x) as
given by the free-particle Wannier function, then (6.4)
will automatically satisfy the conditions (3.2), in the
sense that c~, c2, are considered small. For since
J'dxu*D"u= 0, then

The position of the lowest level of the band is

E(0)=hep+2heg,

and the width of the band is

(6.11)

DE= (i'b'~'/2ma') —4heg. (6.12)

Using our trial function (6.6), Aep and Ap~ are found
to be

dxU*DU= —(cp*c~+cpc ~*), (6.5a)
and

Aep= (A —1)ep+A [VA cp Eb5, (6.13a)

and

dxU*D"U= —(cp*c„+cpc „*), (6.5b)

and the right band sides of (6.5) are nearly zero.
Thus, the trial function used in our calculation is

1 sin(prx/a)
V=A —cpq (*),

ga prx/a
(6.6a)

where A is the normalization constant,

A = 1/(1 —cpe). (6.6b)

e~= 4+~p~, (6.7)

There are no parameters left in (6.6) to vary. We
will simply use (6.6) to calculate p„, the Fourier coeffi-
cients of the energy, according to p„~J'dxU*KD "U;
and having e„, we can find the energy

E(k) =P„e„exp(ikx„)

There are some properties of e„and E(k) we can
foresee immediately. We will write

6pg ——(A' —1)e&. (6.13b)

Here E~ is the energy of the narrow inner band, and
we have dropped terms which seemed of the same order
as c~. VA„ is the average value of V over a cell.

VII. COMPARISON WITH THE METHOD OF
ORTHOGONAL PLANE WAVES

(7.1a)Pe(x) = e'"*/I & ceye(x—),

In the above we have presented what seems to be a
suitable, yet simple, trial function for the valence band.
We though it would perhaps be worthwhile to compare
our results with those of some other method. We chose
to compare our results with those of the method of
orthogonal plane waves, because this method seems
capable of some accuracy and because with our choice
of trial function there is a close connection between the
two methods. (See Appendix III.)

In the method of orthogonal plane waves, 4 the wave
function fb(x) is expanded in a set of plane waves made
orthogonal to wave functions of the inner bands.

For our problem, let the orthogonal plane wave 81,
be defined by

(6.8)

Then the e„are given by

where the i„are the Fourier coefbcients of a free
particle, that is,

k'k'/2nz=g e e'"~.
and

ye N '*Q„e'"*"q——(x——x„),

ce——— dxq *(x)e'"*.
g$j

(7.1b)

(7.1c)

and
ep (k'/2m——a') (pr'/3)

e„=ep(( —1)"/n') (3/pr') (6.9b)
pe pA. A+b (x)——,

(6 9a) Then our trial function is

(7.2)

for the lowest band.
Now the e„do not decrease very fast, since ~ goes

like 1/u'; but it seems very likely that the Ae do
decrease very fast, and our calculation seems to verify
this behavior. In fact, according to our trial function
(6.6), as a/2d gets larger, cp—+0 and U approaches the
free Wannier function, and Ae —+0.

We have supposed that our a/2d is large enough so
that only A&0 and de& are signi6cantly diGerent from
zero. We believe this to be consistent with the approxi-
mations already made relative to c&, c2 ~ ~ c„~~ .

Thus, E(k) is given by

E(k) = (k'k'/2m)+hpp+2he~ coska. (6.10)

Note that e& and e & are real and equal in our pxoblem.

where
A =A (e'"*/J.& ceye), —

A'= 1/(1 —cee).

(7.3)

With this trial function, E(k) is given by

1 APke

E(k)= +VAq ce Eb '. —ic. 2m
' See references 2 and 3 for the details of this method.

(7.4)

where k„=2pre/a.
For purposes of comparison with our method, we

took just one term in (7.2), since with one term the
amount of labor involved in both methods will be
about the same.

Thus, the orthogonal plane wave trial function was
taken as
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TABLE I. A comparison of the results obtained for the valence
band of a one-dimensional crystal. E(0) is the lowest level of the
band, and nE is the width of the band. Units of energy are its/2ttttp. U(x)=X &pkpk(h),

a/2d Exact Our method OP& method
is the function that minimizes the integral

Z(0)

E(0)

Z(0)

E(0)

&(o)

1.00
0.40
1.00
0.20
1.00
0.12
1.00
0.06
1.00
0.03

1.06
0.39
1.08
0.198
1.003
0.12
1.05
0.06
1.04
0.03

1.24
0.031
1.15
0.087
1.10
0.049
1.07
0.04
1.04
0.02

Ip )
tlx——U*3.'U,

subject to the restrictions

ldxUaU=1

and

(I.2a)

VIII. THE CALCULATION AND RESULTS
)~ChU*D"U=O, n= ~1, ~2 (I.2b)

For the actual calculation we chose Vp=(sr/2)'It'/
2md', and we rather arbitrarily put B=1 Ii'/2mtP. The
narrow lowest band was located at Eb= —1.59Its/2md'.

The atomic wave function ps(x) associated with the
lowest band was approximated by a Gaussian,

ps(x) = (2'n/vr) i exp( nx'—),

and o. was chosen by minimizing the energy of a particle
in a square well of depth Vo and width d. We found
n =0.510/d'.

The results of the calculation are given in Table I.
The lowest level E(0) and the width AE of the valence
band were calculated exactly, by our method and by
the method of orthogonal plane waves. The calculation
was repeated for different values of a/2d (a/2d=3, 4,
5, 7, and 10).

When a/2d gets very large, our results and those of
the method of orthogonal plane waves approach the
correct results. However, as a/2d gets smaller, it would
seem that our method gives considerably better results.

The calculation was done rather roughly; the last
decimal place given is somewhat uncertain. However,
the accuracy is sufhcient for the main purpose of this
one-dimensional problem, ~is. , to gain some under-
standing as to how the method is applied and what
sort of trial functions should be chosen. It shows that
one can expect to attain accuracy without too much
labor in the three-dimensional problem, and it indicates
some superiority over the method of orthogonal plane
waves.

We are planning to apply our method to the calcu-
lation of the energy levels of lithium.

YVe would like to thank Professor Cb.aries Mullin,
Professor Eugene Guth, and Mr. Thomas Wainwright
for their help and for their discussion of the problem.

If we expand U in pk(x), U= pe akfk(x), then

Ip=pk
~
irk~'E(k), (I.3)

and gk ~ak~'=1. It is clear that to get the lowest
possible value of Io, we should make the aI, for high k

equal zero. We are restricted in this by the conditions
J'ChU*D"U=O. Since there are 1V such conditions to
fulfill, E of the aI, must be diferent from zero. As we
wish the lowest value of ak, we will make the ak of the
S states of the lowest band different from zero, and all
the other a~ equal to zero.

Condition (I.2b) now says

k in lowest band
~

ak)'e'k~=0 NWO. (I.4)

ep= 2 Z(k).
QIlI k in 'lowest band

(I 5)

It is clear that the Wannier function (I.1) will make Ip

give this minimum value.
The above proof can be easily adapted to show that

to make Io converge to the ~o of the second band the
necessary restriction is al, ——0 in the first band.

To show that I„, m@0, has no maximum nor mini-
mum, we simply calculate I„using as trial functions
the Wannier functions of a free particle, particularly
those of the higher bands. The I„so calculated can be
made as large as we please, both positively and nega-
tively.

This means that
~

ttk~' is a constant independent of
k, for k is the lowest band, since all its Fourier coeffi-
cients except the first are zero. Therefore,

~

ak~'=1/1V,
in the 6rst band, will minimize Io, and the minimum
value of Io is

. APPENDIX I. THE MINIMAL PROPERTIES OF U

Ke will present here a different proof that Io has a
minimum, because this proof can be easily extended to
the valence or higher bands.

We wish to show that the Wannier function of the

APPENDIX II. THE WANNIER FUNCTION
OF A NARROW BAND

In Sec. VI we said that for the narrow inner bands,
the Wannier function is the isolated atomic wave
function po(x). This is a little surprising, as ps(x) does
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not have the correct oscillating asymptotic behavior
for a Wannier function.

A more accurate expression for the Wannier function
of a narrow band is the following:

U= y(x) in the first cell,

U=o p(x —x„) in the eth cell.

(II.1a)

(II.1b)

To obtain (II.1), let us solve for the pl, (x) of the
narrow band by the cellular method. Within the first
cell of the crystal, we will find P&(x) = y(x), independent
of k, because it is a narrow band. Also p(x) will be
very nearly the isolated atomic wave function. In any
other cell we can obtain Pq(x) from its value in the
6rst cell. Thus, in the nth cell, Pq(x) =exp(ikx) q (x—x„).

Now since f&(x), in this approximation, is given by

P~(x) = y(x) in the first cell, (II.2a)

Pq(x) = e'"*~@(x x„) in th—e nth cell, (II.2b)

sponds to it and compare this result with our Wannier
function.

According to (7.1), the trial function is

6t =~ i,(e'"/D ci,A—), (III.1)

where Ai ——(1—ci') '.
The Wannier function which corresponds to this trial

function is obtained by

U=X &pi, 8i(x). (III.2)

The sum over k cannot be easily done. However,
there is one limit where it can be done, and this is when
a/2d-+~, when the ratio of the interatomic distance to
the radius of the inner orbit becomes very large. In
this limit c~ becomes very small, and we will put
Aq'=1 independent of k. Substituting into (III.1) the
proper expressions for ci, and for pt, according to (7.1),
and doing the sum over k in (III.2), we get

we can now use the de6nition of the Wannier function
to find and obtain Eqs. (II.1).

1 sin(s.x/u)U=—
a& xx/u

(III.3)

APPENDIX III. CONNECTION WITH THE
ORTHOGONAL PLANE WAVE METHOD

There is a close connection between our method and
the orthogonal plane wave method. To make this
connection clearer, let us take the trial function used in
the OPW (orthogonal plane waves) method, and let us
compute from it the Kannier function which corre-

Since, when a/2d is very large, only the co term is
signihcant, we see that in this limit both methods
correspond to the same trial function and should lead
to the same results. This is borne out by our calculation.

Of course, that the two methods become the same for
very large u/2d is only true for our particular choice of
trial function.


