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The penetration parameters Fzs/p, p/Gz, ', and p/Az, ' have been compared as functions of energy for a
number of reactions induced by proton or alpha-particle bombardment of light nuclei. It was found that
these parameters behaved quite similarly in the energy range considered, particularly for L&0. The limi-
tations on the applicability of barrier "penetration factors" in the treatment of reaction cross sections are
investigated by computing a number of typical cases, making use of the one-body model with allowance
for absorption of the incident wave. Several sets of values of nuclear radius and well depth were used.
The relation between the one-body cross section without absorption and the channel penetration parameters,
fzs/p and. p/gz', is treated in some detail for the Li"(p,n)n reaction. Breit s consideration of the case of
very strong absorption 0-L, ~ 1/AL~, is also presented. The connection between the one-body model without
absorption and a one-level dispersion formula in the vicinity of sharp resonance is used to tabulate the
properties of a number of one-body resonances. In a number of cases resonances were found to be broadened
markedly by the absorption of the incident wave in nuclear matter.

I. INTRODUCTION
' 'N the past, "penetration factors" have been applied
~ - extensively to study nuclear reactions involving the
absorption or emission of charged particles. Such a
factorization is supposed to split o6 the barrier de-
pendence of the damping constant F which characterizes
the prescribed disintegration channel. The residual
factor contained in I' is then to depend only on the
behavior of the compound nucleus in releasing disinte-
gration products in the absence of the barrier.

With the exception of certain limiting cases, however,
this procedure is incompatible with evidence obtained
on the basis of simplified models of the nucleus. In the
general case it is found that barrier effects cannot be
separated from those of specifically nuclear origin.
Excitation functions calculated for such models provide
a useful measure of barrier penetration and resonance
effects, but it is not intended to substitute them for
more complete considerations of many-body features
of the reactions.

Various combinations of the regular and irregular
Coulomb functions, Ill, and Gl., evaluated at the
nuclear surface, have been proposed as penetration
parameters. The form I'~Iiz'/p is perhaps the most
widely employed penetration parameter. As will be seen
later, it represents a limiting case of the one-body model
of the nucleus. Konopinski and Bethe' used the relation
F ~ p/Gzs, suggested by Kapur and Peierls, s to study
several reactions with light nuclei. Christy and Latter,
guided by the considerations of Wigner' and Wigner
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and Eisenbud, ' applied the penetration parameter p/A z'
to the study of a number of reactions with light ele-
ments. The damping constant F is also expressible in
terms of the quantities fz'/p or p/gz,

' under special
conditions. Here, fz, =Fz, cosXz+Gz sinEz and gz
=6~ cosEI,—Ill, sinEI. are Coulomb functions cor-
rected for the presence of an average nuclear potential,
which produces a phase shift El,. Breit' obtained the
relation F cc fz'/p for a weakly coupled resonating
nuclear element under the idealization of sharp local-
ization in space; a similar result is obtained in his
schematic treatment of nuclear resonances. ' For a
strong repulsive interaction in a large region, however,
the result I'~ p/gz,

' is obtained. The reason for con-
sidering all these possibilities is that for diferent nuclear
models one or another penetration parameter can be
used in a simple formula. The parameters listed above
apply to limiting cases of the more general conditions
determined by the location of resonating elements in
the compound nucleus, the competition from other
channels, and other factors.

The publication of extended tables of the Coulomb
functions' eliminates the uncertain and possibly large
errors introduced by the employment of the J.W.B.K.
approximation to the square of the Coulomb functions.
But the absence of a unique definition of a penetration
parameter emphasizes the uncertainties and need for
caution in the application of "penetration factors. "

In some cases, such as the escape of n-particles from
radioactive nuclei, the main interest has been in the
approximate energy dependence of the mean life. Here
it does not matter much how the barrier penetration
effects are treated, nearly equivalent results being
obtained by diGerent methods. For light nuclei, how-
ever, one can obtain appreciable differences depending
on which of the current conventions is used. The main
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distinction between these problems is the fact that in
studies of reactions of the lighter nuclei one is concerned
with relatively wide resonances and with the interpre-
tation of yield ~ersus bombarding energy data. A varia-
tion of a coefficient by a factor 2 or 4 can be of con-
siderable interest if one tries to test diGerent hypotheses
regarding the location of virtual energy levels. Such
problems did not arise in the work of Gamow' and of
Condon and Gurney" on the original explanation of
the Geiger-Nuttall relation. It has been shown by
Ostrofsky, Breit, and Johnson" that the nuclear model
used and the barrier eQects can combine themselves in
such a way that the simple application of a barrier
"penetration factor" can be seriously in error. This
fact is obvious through an inspection of their graphs
which give very diGerent yield curves depending on
the model used.

In the present paper, the mutual consistency of the
penetration parameters is tested, and their applicability
is determined by computing theoretical yield-energy
curves making use of simplifying assumptions somewhat
similar to those of OBJ. Only one reaction is studied
from the point of view of comparison with experiment.
In other cases, the object is to enable an experimental
worker to form a reasonably immediate judgment
regarding the eGect of a change in the model on the
shape of the cross section-energy curve. In many cases
below, the words "penetration parameter" are used in
preference to "penetration factor" so as to emphasize
the fact that a potential barrier affects the cross section
in a somewhat more complicated manner than through
the application of a factor. On the other hand, it will

be seen that in some cases "penetration factors" give a
good representation of the more accurate relations.

For the sake of simplicity, the calculations on the
energy dependence of cross sections are conhned to the
one-body model, with the inclusion of eGects of absorp-
tion of the incident wave. The phase shift EL contained
in the delnition of fz and gz, is therefore determined

by a one-body approximation. The variety of situations
covered has turned out to be so great that only a small

fraction of the available material could be prepared for
publication. "On the other hand, some of the penetra-
tion parameters studied below have a general signi6-
cance also in a many-body approach as has been shown

by Breit. ' On the whole, the study indicates that less

care has to be exercised regarding the choice of the
penetration parameter when barrier eGects are pro-
nounced.
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Notation and Symbols'

Fz——regular Coulomb function: Fz sin(p —stLs
—rl(ln2p)+ez). Gz ——irregular Coulomb function: Gz
~cos(p q—L~ rf—(ln2p)+ez) Az. , yz ——phase amplitude
variables: Az= ~Fz'+Gzg ~& with Fz=A~ sinpz, and
GL=ALcosqL, and qL=O when p=0. p=kr, where ~

is the interparticle separation and k= ized/k=2m/A. The
quantity p is the reduced mass and v is the relative
velocity of the colliding particles.

tf =ZZ'e'/he, where Z and Z' are the atomic numbers
of the collision partners. Qz, ——solution of the one-body
radial equation,

fd'/dr'+ (2'/k') (E'—V+ (ih/2) P
—L(L+&)/r') j6z= o.

V(r) and P(r) are real quantities such that V(r)
=ZZ'e'/r and P(r) =0 for r) rs, rs is the radius of the
compound nucleus; E' is the energy of relative motion.
For r&ro,

Pz=e'~s(Fz cosKz+Gz sinKz).
ss= (2p/hs) LE' —V+ (ih/2)P/rs= (k'r)s

= (ks'+ikt')'r'= (o.+ip)
where ks', k&', o., and P are all real quantities. They
satisfy

(2p/k') (E'—V)r'= (ksr)'= (ks'r)' —(kt'r)'= n

(p/k) Pr'= 2ks'k t'r'= P.

The symbol k&' is called the absorption coefficient.
In the cross-section formulas, the following symbols

and abbreviations are used:

0-L=partial cross section for a reaction.
3z= dFz/Fzdp diaz/5'zdp i-

f ~i= (f dFz)/(Fzdf ) («Sz/Sz«—).
I'L L ~ L ~0

s= sin(2ks'r); c= cos(2ks'r); sk= sinh(2kt r); and
eh=cosh(2kt'r). The abbreviation Re stands
for the real part; Im stands for the imaginary
part.

Guide to Figures
- The following symbols and abbreviations have been

used to simplify the labeling of the figures:

EM, =energy of incident particle in Mev.
E'M, = relative energy of motion in Mev.

U=
~

V~ where V is the real part of the nuclear
potential.

k'3 =0 denotes the case of vanishingly small absorp-
tion.

Ql= loglOH1= logls(FL /P) ~

~2 log10112 log10(P/GL ) ~

it=logms t=»gM(fz, '/p).
Is= logna s=logts(p/gz').
2= logtsL10"

(czar/2s.

P) cm'j.
(P=logtsL10 s(2L+1)res(Fz/p)s cms).
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Incident channels for proton and alpha-particle
bombardment are designated by Z"(p, ) and Z"(n, ),
respectively, where Z~ is the target isotope.

II. SCOPE OF CALCULATION

Under simplifying assumptions discussed in a later
section, reaction cross sections have been calculated for
the following conditions: (a) Incident particle: proton
or alpha-particle; (b) Target nucleus: the elements
from lithium to silicon; (c) Energy: from 0.5 to 5.0
Mev; (d) Relative angular momentum: from L=O to
1.=4. Although these target elements and energies
present no difficulty for proton bombardment, certain
combinations of element and energy must be omitted
for alpha-particles. The target element Si is the heaviest
element for which Coulomb functions are available'
with incident alpha-particles. The calculations have
been made for values of the nuclear radius, rp, given by

re=CA', C=1.6X10 " or 2.1X10 ts cm& (1)

where A is the mass number of the compound nucleus.
The smaller of the two values of C corresponds approxi-
mately to some of the nuclear data in conventional
interpretations. The larger value was used for two
reasons: (a) it was desired to ascertain the effect of a
change in re, (b) when a nucleus is bombarded by
deuterons one has, in general, a variety of processes
taking place, starting with a typical oppenheimer-
Phillips transfer and ending with the formation of a
compound nucleus; a somewhat intermediate stage
consists in the formation of a compound nucleus having
a loose structure, with the deuteron being attached to
the main body of the bombarded nucleus through the
tail of either the neutron or the proton wave function.

The masses of the target nucleus and incident particle
were approximated as integral multiples of the proton
mass. The Coulomb parameter' q, which is large at low
energies, is slightly in error because of the latter
approximation. This means that the calculations apply
to slightly lower energies than intended. But even for
alpha-particle bombardment, the correction is only
0.6 percent, an amount which is negligible in comparison
with the uncertainties of the one-body model.
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III. COMPARISON OF BAKRIER PENETRATIONS

The parameters IIt Fr,'/p and IIs= p——/Gr, ' have been
calculated for the reactions of protons on Li', 3",N'4,

Ne", Mg" and Si", and compared with the results
obtained by Christy and Latter, ' who used a form
proportional to IIs——p/Al. '. In the low energy limit
these forms become equivalent, since for this limit
FI.GI.~ p and Ill,&&Gg. Therefore, all three reduce to
the limiting form exp f —2s rf). Since the principal
energy dependence of the partial cross section o.& is
given by the factor (1/s')e ' & at suKciently low
energies, or, ~ I'/Z in the low energy limit.

For the six target elements employed, the parameters

,60 20 .80 .90 F I~2 l.lo
Qev

2.78 2.04 L 56 lg3 E AQ6
Qev

L20 I.30 IAO

.694 .S9I .SIO

FIG. 1. Comparison of penetration parameters for Li'(p, ):
$1 vs EM, & and p2 vs EM, &. The curves were normalized by
Gtting the 1.=0 pair at 8=3 Mev. ro= 1.6&(10 "A& cm.

II» and II2 showed closely similar behavior as functions
of energy. For large L the ratio IIt/IIs is practically
independent of energy in the range from E=0.5 to
3.0 Mev.

The comparison of IIj and II2 is illustrated" for
proton bombardment of Li7 in Fig. 1. It is seen that
the curvatures of the two parameters diGer markedly
for 1.=0. For example, the Li' curves intersect at
8=0.62 Mev when 6tted at 3.0 Mev. The relative
curvature of the L=O parameters exhibited an inter-
esting variation as a function of the atomic number Z
of the target nucleus. For Lir, the curve p/Gss is concave
upward; this curvature decreases with increasing Z'
until, for Si", it has reversed, and the curve for p/Gss
is everywhere above the Fe'/p curve.

The curves" computed for the radius rp= 2.1g 10—"3&
cm agreed qualitatively with the results obtained for
the smaller radius with minor exceptions. For example,
using the same normalization employed for the smaller
radius, the second intersection of II» and II2 for 1.=0
is shifted to an energy less than 0.5 Mev.

Konopinski and Bethe' obtained a remarkable 6t to
the Li'(p, n)n experimental yield" up to 8=1 Mev
by assuming that I"~ II~ with I,=1 and rp=1.65
X10 "(A—1)& crn. They also showed, in accordance
with the selection rule corresponding to a spin I=+~
and odd parity for the ground state of Li~, that the
data could not be 6tted to a penetration parameter II2

"Rumbaugh, Roberts, and Hafstad, Phys. Rev. 54, 657 (1938).
Herb, Parkinson, and Kerst, Phys. Rev. 48, 118 (1935).
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Fro. 2. Comparison of the penetration parameters FI'/p and
GP/p for Li'(P, ) over an extended energy range: 8& and 0& es
+M,

—
& for r0 ——1.6)&10 "3' cm and 1.=1. The curves were

fitted at 0.5 Mev.

with 1.=0. The results of the preceding paragraph
indicate that their 6t can be duplicated quite closely
with a IIi parameter for I.= 1. In Fig. 2 these param-
eters are compared over an extended energy range. It
is seen that the greatest disparity occurs roughly in
the vicinity of the top of the potential barrier, E=6.78
Mev. The intersection phenomenon noted earlier for
the I.=O case is apparently present here also, occurring
off scale beyond 8=11 Mev. In Sec. VI, the Li'(p, rr)n
reaction will be discussed on the basis of the one-body
model of the nucleus.

Christy and Latter calculated II3 for protons incident
on some light nuclei up to F",using the constant nuclear
radius e'/mc'=1. 3X10 "cm. A qualitative comparison
of their curves from 0.5 to 3;0 Mev with those described
here shows that they are similar functions of energy to
within the estimated variation due to the different
choice of radius. A more quantitative comparison is
illustrated in Table I for Li'(p, ) with re 1.6X 1——0 "A'
cm. For I.&1 in the energy interval considered, the
difference between Al, and Gr, is completely negligible
because of the high barrier and, thus, II2=II~. Since
the minimum barrier occurs for I-=O, the disparity
between II& and II3 is greatest here at a given energy.
It is seen that II~=II3 in the I-=0 case up to about
1 Mev, and II~ ——II3 up to about 2 Mev for A=1. In
the latter case, moreover, the two parameters only differ

by 3 percent at 3.0 Mev.
'

A comparison of the energy dependence of the pene-
tration parameters with that of the collision cross
section will be discussed later in connection with Fig. 6.
The shape of the curve for parameter It will be seen to
be similar to that of the curve for the log of the yield
calculated for a special choice of the potential energy
well. An inspection of Figs. 1 and 3 of OBJ shows,
however, that a considerable variation in the shapes of
(o., E) curves is obtained as a result of varying the
assumed potential wells. If one wishes to determine the
value of 1.from the experimental data one is confronted

IV. SUMMARY OF THE ONE-BODY MODEL

The calculations in the present paper are arranged
along lines similar to those of Ostrofsky, Breit, and

TABLE I. Energy dependence of the penetration parameters II&
and II3 for Li (p ) with ro=1.6X10 "A& cm.

L=I

0.5
1.0
1.5
2.0
3.0

0.1806
0.5227
0.8761
1.280
2.305

0.1804
0.5202
0.7679
1.001
1.357

0.01844
0.09604
0.2106
0.3545
0.6560

0.01844
0.09601
0.2102
0.3524
0.6408

' G. Breit, Rev. Sci. Instr. 9, 63 (1938).
"Heydenburg, Hudson, Inglis, and Whitehead, Phys. Rev.

73, 241 (1948); Phys. Rev. 74, 405 (1948); D. R. IngIis, Phys.
Rev. 74, 21 (1948).

therefore with the necessity of eliminating the inQuence
of these variations. 7Vhile it is true that the data can
be Qtted by means of L=1, it is hardly possible to
consider them as a proof that 1.= 1.The actual situation
does not consist in accounting for the data without a
partial inAuence of resonance as might perhaps be
concluded from a cursory examination of the paper of
Konopinski and Bethe. It is also necessary to eliminate
the variations in shape which can arise as a result of
varying assumptions regarding the interactions inside
the nucleus. These variations have been referred to in
the OBJ paper in terms of a partial approach to reso-
nance so as to correlate the curves more vividly with
the assumed changes in potential wells. On the other
hand, the assignment of I= 1 to this reaction is highly
probable as has been brought out by Breit" and by
Konopinski and Bethe. ' It has been pointed out by
Breit in the same connection that the distinction
between different values of I becomes artificial because
one has to consider the possibility of perturbations
from such configurations as p's and p'd of the Li'
nucleus which can react with incident s-particles with-
out violation of the parity rule. The perturbations are
considered to arise as a result of the incidence of the
proton so that one has a compound nucleus in an
even state even though one is dealing with an s-proton.
For this reason the effect of the partial wave J=0
cannot be excluded by parity considerations alone and
conclusions regarding which of the partial waves is
dominant are more dificult than simp1e sticking
probability considerations would lead one to believe.

An incident p-wave can cause the appearance of a
perturbing configuration in a distant co11ision and the
perturbing configuration can then interact with the
s-wave. The energy dependences of distant p-wave
collisions and close s-wave collisions are somewhat
similar and an appreciable range of energies within
which the two interactions can take place may be
expected to exist. The Li'(p, n) n reaction will be
discussed briefly again in connection with the work of
Inglis and collaborators. "
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Johnson, who made use of an absorption coefficient for
the incident wave in the nuclear matter in order to
account for the conversion of the wave from the incident
channel to disintegration channels. The same device
has been used later by Fxshbach, Peaslee and Keiss-
kopf' and by Serber et ct.'7 It is realized that the
formation of compound states owing their stability
essentially to the participation of many nucleons is not
taken account of in such a treatment. On the other
hand, corrections for the formation of such states can
be made in a number of ways as is well-known.

In the one-body model, the real potential V(r) is
replaced by the complex potential V(r) —(ih/2)P(r)
for r&rp. The introduction of a negative imaginary
potential within the nuclear radius rp provides for
absorption of particles from the beam at a rate Pl 4

l

'
per unit time per unit volume, where 4' is the complete
wave function, i.e., an incident plane wave of unit
density modi6ed by the Coulomb and nuclear po-
tentials.

The partial reaction cross section without spin is
obtained in the usual way. There results,

~ra
O.L

——(A.'/harv)(2L/2)
l @L(ro) l'j P(r) luzl'«. (2)

0

This formula differs from a corresponding one in OBJ
only through the use of I' which is a function of r rather
than a constant. The formula can be expressed in terms
of the wave function and its logarithmic derivative at
the nuclear surface by noting that

&o

P(r) luLI'«= —»m(dSL/5L~p)~=~o

Since at the nuclear surface QL must satisfy the usual
one-body conditions'

$L= FL/[1 —FLGLSL NFL 8L), (4)

&L =~FL/(F L~p) dSL/(—SL&p),

the partial reaction cross section can be written as

(r L (A.'/n) (21——+1)((FL' Im5L)/
l1—FLGL8L —NFL'bzl }, (5)

an equation which can be derived by an application of
Green's theorem in a well-k. nown manner. Since the
cross section must vanish when I' vanishes, Impel, is
different from zero only if the potential has an imagi-
nary part.

The condition on QL at the nuclear surface in Eqs.
(4) determines the one-body phase shift EL.

tanEL (gLFL QL FL)/(ILL GL QLGL ) (6)

where a prime indicates diRerentiation with respect to
p. The penetration parameters Irz= fL'/p and m2= p/gL'

'6 Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).
'7 I"ernbach, Serber, and Taylor, Phys. Rev. 75, 1352 (1949).

&o

(uL)'= mL l

uzi�

'dr; ' wL(r)dr= 1.

The quantity ujL(r) « is the relative intrinsic probability
of inducing the reaction in the interval. dr at r. For
equal probabilities in equal intervals, Iz L(r) reduces to
the constant 1/ro It is s. een in Eq. (8) that, in the
limit of very small absorption, al, is a function of real
quantities only, proportional to I' and containing a
resonance denominator. The resonance property, which
arises from the junction of the internal and external
wave functions at the nuclear surface, is also present
in very modided form for the case of nonvanishing I'.

Since resonances may be defined in various ways the
term 90' resonance will be reserved for describing the
condition in which EL,=90'. For a 90' resonance,
QL

——e'xz (FLcosF L+Gz, sinEL) = iGL, dgL/(QL«)
=ANGL/(GL«) and so (1 FLGLSL) =0—. This condition
corresponds to a m, axirnum of a.„/A.' with respect to
variations of El., where O.„denotes the partial elastic
scattering cross section. It can be shown with the help
of Eqs. (4) that the maximum of the wave function
inside the nucleus is not reached at the same energy as
the maximum of a„/h. '. For high barriers, however,
0„/A' and lgL(ro) l' are nearly proportional to one
another. '

It is of interest to note that the "no-absorption"
formula can be written as

~L——(4~Pro'/I )(2K+1)(uL')(~I/p), (10)

where x~ is the penetration parameter defined by Eqs.
(7). If (uL') is practically independent of energy then
o. ~ ~I/E for this special case.

In order to apply the one-body formula to study
various reactions, the internal potential V—(ih/2)P
has been put equal to a constant. 'The internal radial
wave function is then

QL(s) = (ms/2) '*JL+;(s),

where JL~y(s) is the Bessel function of half integral
order. The derivative, dgL/«, which occurs in 8L, is
evaluated by the well-known recurrence relation;

~SL/«= (1+1)SL/s —SL+I= —(IBL)/&+ SL I (12)

and then given by

mz= (FL'/p)/l1 F—LGLbL iF—L'BLl',

xm ——1/L(A L'/ p) —Ir Ig.

The physical implications of the reaction cross section
given by Eq. (5) are most easily seen for the special
case of vanishingly small absorption. Equation (5)
then reduces to one of the OBJ results:

0L= (4~Pro'/~) (2J+1)((FL/p)'(uL')/
L(1 FLGL—4)'+FL'eL')) (8)

where
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The calculation of the cross section thus reduces to the
problem of evaluating the Coulomb and'complex Bessel
functions at the nuclear radius, rp. The required sepa-
ration of Qi, (s) into real and imaginary parts is effected

in principle by expressing pI.(s) in terms of the trigo-
nometric and hyperbolic functions. In practice this is
quite tedious for L&0. Using this separation procedure,
OBJ derived the partial cross section for s-waves:

(2orP/n) (sh/k, ' —s/ko')
gp~—

(
k'

~

'(Fo'+Go') (ch+ c)+k'(Fo '+Go ') (ch —c) —2k(ko's+ ki'sh) (FoFp +GoGp ) —2k(ki's —ko'sh)
(13)

The abbreviations employed here are listed under
Notation and Symbols in the Introduction. It is inter-
esting to note that the Coulomb functions occur in
combinations which make the introduction of the

phase amplitude variables, Ap and rpp convenient.
For calculational purposes, the partial inelastic cross

section is expressed in terms of its real and imaginary
parts:

(2L+ 1)(FI.'/p) Im(P4)
~i,= (h.'/or)

L1 —FIGI.{Re(poI)/P}+FI.'{Im(P4)/p} jo+pEI.' Re(phd)/P Ic F G {Im(pb )/p}g'
(14)

V. APPROXIMATIONS TO THE REACTION
CROSS-SECTION FORMULA

It was seen in the preceding section that the primary
difficulty in obtaining an exact and convenient expres-
sion for the one-body cross section was due to the
presence of complex Bessel functions in Eq. (14). This

difhculty is circumvented in practice by appropriate
approximations.

If P is small, for example, the quantity F(s) = (sd5'I)/
(QIds) can be expanded in a Taylor series about the
real point kpr. Thus,

I (s) = I'(k r)y-'ihP — I'(s) + ". (15)
r7(,'NP) -I o

It is observed that Eq. (15) gives the real and imaginary

parts of I" as a sum of even and odd powers of I',
respectively.

The differential coefficients in Eq. (15) can be evalu-
ated by a method employed by Breit, Thaxton, and
Eisenbud. "Their procedure determines the coeKcient
of —,'i' to be

--F'(s)
a(,'ihP) -p,

= —(&r'/@') (1 —5'z i5'z, +I/gz'). (16)

Coefficients of higher powers of 2ikP are increasingly
difFicult to evaluate in closed form.

For I' very small it is sufFicient to keep only the
first two terms in the expansion (15). Substitution of
this approximation into Eq. (14) yields the cross-section
formula,

(2L+1)(Filp)'(uI')
o I, ——(4orPrpo/n)

2 2 2 2L1 FzGz5c+(Pp—ro/&)F~ (uI )j'+p'z 4+ (Pyro/&)FzGr(ug )j (17)

where (ufo) is defined by Eq. (9). If the terms in the
denominator of Eq. (17) containing P are put equal to
zero, the OBJ cross-section formula Eq. (8) for vanish-

ingly small absorption is obtained.
Since the expansion for I'(s) is not convergent for all

values of I' and the calculation of the higher order
diGerential coeKcients is quite tedious, an alternative
method has been adopted. In this approach a series
expansion of QI, (s) is made which converges for all
Gnite values of 2', namely,

SL+' S2 26
e"

s) 1 ——
1 3 5 (2L+1) 2(2L+3) 8(2L+3)(2L+5) 48(2L+3)(2L+5)(2L+7)

gL+1

13 5" (2L+1)

The corresponding series for I"(s) may be written in the form

(2L+1){1—s'/t 2(2L+1)j+s'/L8(2L+1)(2L+3) j— }
I (s) = —L+

0
"Breit, Thaxton, and Eisenbud, Phys. Rev. 55, 1018 (1939).

(18)

(19)
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by employment of the recurrence relation (12). It is
seen that the series (19) is an even function of z. The
identi6cation of the real and imaginary parts of Qq(z')
is facilitated by dining

Re(z') =n= (kor)2; Im(z') =p= pP/&. (20)

The quantity n is therefore the square of the wave
number for the nuclear region when P=O, and P is
proportional to P. One may expand therefore as follows:

Q,(n+iP)=pa„(n, L)(iP)-; a, (n, I)=Q,(n), (21)

where the zeroth coeKcient, ao(n, L), is given by

ao(n, L) =1—n/[2(2L+3) 3+n'/[8(2L+3) (2L+5)j
—n~/[48(2L+3) (2L+5) (2L+7)j+"

=1 3 5 (2L+1)5:r,(kpr)/(ky)1+' (22)

The second equality sign in Eq. (22) results from the
relation of Qr(n) and the spherical Bessel function of
real argument.

The coeflicients a„(n, L) in the series (21) for
Ql, (n+ip) can now be expressed in terms of the real
functions Qr, ~ (n) by noting that Eq. (21) can be

written in the alternative form,

Q(n+iP) =Q(n)+(iP) [~Qi/~(iP)3z-o

+[(iP)'/2!j[~'Qz/~(iP)'jz 0+
=Q.( )+('P) [~Q.(-)/~-j

+[(iP)'/2! j[a'Qz, ( n)/8 n12+ . (23)

The second equation in (23) is a consequence of the
symmetry of Qr, in n and ip Em. ployment of the Besse)
function identity,

2[4/d(x )1[J„(x)/x")=—J„(x)/x"+', (24)

yields the series,

Qr(n+iP) =Ql(n) (i—P)Ql~g(n)/[2(2L+3)]+
+(—iP) "Q~+-(n)/[~ 2"(2L+3)

X(2L+2n+1)j+ . (25)

Since Eq. (19) can be written as

F(z) = —L+[(2L+1)Qr, ,(n+ iP) i/Qg(n+ sP), (26)

the series (25) permits the calculation of the change of
F(z) with respect to E, V or P in a straightforward
manner. In terms of the 5'r,+„(n), Eq. (26) becomes

~"m. .(-)+ «-1)-('P).a... ,(-)/'2-(~")-)+
Y(z) = —L+

[Bz(n)+" ((—1)"(iP)"Bz+-(n)/~!2"(4~)")+ "1 (27)

with the aid of Eq. (18).The quantity Y(z) is expressed
in terms of real Bessel functions by means of Eq. (27)
and is much more convenient for numerical work than
Eq. (19).

There is a third method for obtaining the real and
imaginary parts of F(z) which utilizes the recurrence
relation

[Y( ) (L+1)XF( )+(L+1)j= = P (28)

obtainable with the help of Eq. (12). Separation of
Eq. (28) into real and imaginary parts gives

Re[Yz~~(z)+L+1j

n[ReFz(z) —(L+1)g+P ImFz, (z)

[ReFz(z) —(L+1)j'+ [Im Fz(z))'
(29)

n ImFg(z) —P[ReFz(z) —(L+1)g
ImFzpg(z) =--

[ReFz(z) —(L+1)j'+ [Im Yz(z)j'
Since the real and imaginary parts of F(z) for L=O
may be determined by the relation Jo(z) =sins, which
was used to obtain the zeroth partial cross section (13),
values of these quantities for 1.&0 are determined by
repeated application of Eqs. (29).

There are two objectionable features of the recurrence
method (29). First, Eqs. (29) obscure the physical
origin of the quantities calculated. In this respect, the (31)

series calculation of 5'r, (z) is superior, since the latter
shows clearly the dependence of F(z) on P, V
and 8, and its rate of change with respect to these
parameters. The second objection to the recurrence
method is that Eqs. (29) require, for given L, the
calculation of all values of @~/Qz dz between L'=I.
and L'=0. Therefore, the chance for errors is corre-
spondingly large, and their detection correspondingly
diQicult. The recurrence method is most useful when s
is so large that the series calculation requires the
evaluation of an inconvenient number of terms.

It is of interest now to consider another limiting
form of the total reaction cross-section formula (14),
namely, the case of very strong absorption, P. The
consequences of this condition have been examined by
Breit, who derived the result reported below in connec-
tion with the present work. The result but not the
derivation has been stated in another connection. '

For strong absorption the wave function is strongly
damped in the nuclear region, since the probability is
great that a particle will be absorbed from the beam
before penetrating the nucleus appreciably. Since

kg'= ko'= [pP/2!s$& (30)

for P very large, the real and imaginary parts of s are
unbounded as P increases. It is therefore permissible
to employ the asymptotic form of 5'z,

6&~am[z —(Lz /2) ].
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The function I& which is normalized to unity at the
nuclear radius, t'p is approximately given by

t sin(s —Lor/2) 3/csin(so Lor/2) 3 (32)

Since sinh(kr'r) and cosh(kr'r) have the common
asymptotic form exp$k, 'r/2], Eq. (32) can be written as

ur, exp( —kt'(ro —r) }exp( r'kp'(ro —r) }. (33)

Thus, the normalized interior solution N~ decays expo-
nentially towards the center of the nucleus as was
expected, and is independent of L in the limiting case
of strong absorption. In this limit,

per~ r(du/—udr) iko'r kt'/r—. (34)

Substitution of Eq. (34) into the cross-section formula
(14) yields

(2L+1)Fr,'ko'ro/p
o z, (A'/or)

&&+~IGrkr'ro/p+~I, ko'ro/p] +p'rGrko'ro/p &r. k—r'ro/P j (35)

The neglect of unity in the denominator of Eq. (35)
and the use of the asymptotic forms in Eq. (30) for kr'

and kp' give the final result,

TAsr.m II. Values of the depth of the potential well. '

Target nucleus

Li~
C1S
O16

Na~
$j28

Target nucleus

He4
Lie
Bes
@11
C19
+14
Ols
FIa

I. Incident protons
A

40.00
17.6
13.4
21.00
10.86

2. Incident alpha-particles
A.

10.0
11.55
13.10
15.48
11.40
8.13
8.17

14.38

31.7
11.06
8.07

16.79
7.73

B
5.80
8.55

10.71
13.61
9.63
6.56
6.75

13.12

ps The symbol A indicates that the radius is 1.6 X10»A& cm. The symbol
8 indicates that the radius is 2.1 &(10»A& cm.

where Ap= (k/2PP)'*. It is seen that the dependence of
or,e in Eq. (36) on the Coulomb functions is the same
as that of the "penetration factor" employed by
Christy and Latter. The quantity Ap is proportional to
the particle wave number in the nuclear region. As
P—+~, Ap~0 and 0~ vanishes. This paradox may be
explained as follows: the wave function is so strongly
damped by the presence of large P that the. probability
of finding the particle in the nucleus decreases faster
than P increases, causing a decreasing cross section.

The simplicity of the result owes its origin to the
fact that the wave function decreases at the surface of
the nucleus in a thin layer. Within the layer which
forms a kind of a skin around the body of the nucleus,
the decay of the wave amplitude is given by a simple
exponential function provided the skin thickness is
small in comparison with the nuclear radius. This
situation is very similar to that arising in the familiar
case of "skin eGect" for high frequency electric currents.
Here also the case of small skin thickness gives an
especiaHy simple answer.

VI. CROSS SECTIONS FOR VANISHINGLY
SMALL ABSORPTION

It was seen in Secs. IV and V that the one-body
model gives a formula for the reaction cross section
which admits factorization in terms of a penetration
parameter only in certain limiting cases. In this section
the one-body cross section without absorption, Eq. (8),
is applied to the study of some of the reactions listed
in Sec. III.

For the rectangular well, Eq. (9) becomes

p
1'o

(ur )= (1/rp) ' ur dr= (1—Qr rtir+r/5'r')/2, (37)

where Qr, is a function of the real argument koro, and is
related to the Bessel function Jl+.,(kpro) by

5+—(m.kpro/2) Jz,~i. (38)

Since the depth U =
t
V

~

of the one-body well is subject
to considerable uncertainty, several values of U, in
conjunction with the two nuclear radii selected in III,
have been employed. These are designated the binding
energy, " "zero," and special Van Vleck" well depths,
respectively. As the name implies, the second named
well depth simply corresponds to the case U=O. The
special Van Vleck well depth is the ordinary Van Vleck
well depth evaluated for zero bombarding energy. This
device removes the small velocity dependence of the
latter well. The values of the binding energy well
depth are listed in Table II.

For small values of P it is convenient to make use of
Eq (8) and . to tabulate the quantity o. v/I( 2Por). This
procedure leaves the absolute magnitude of the cross
section unspecified, but permits comparisons of the
yield curves for diGerent assumptions about the po-
tential well. The factor e/2s. has been inserted in order
to deal directly with a quantity proportional to the
number of incident particles inside the nucleus, for a
unit Qux of incident particles.

In order to show details of the cross section away
from resonance, a logarithmic scale was adopted for
o z,e/2rrI'. For proton bombardment, the quantity

'9 See Appendix.
~~ J. H. Van Vleck. , Phys. Rev. 48, 467 (1935); Ostrofsky,

Bleick, and Breit, Phys. Rev. 49, 352 (1936).See Appendix.
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&=logio/(ozv/2sP) X10" cms] was plotted against
EM, &, and, for alpha-particles, Z, was plotted against
~Mev

If 8z——0 and (Nz')=s in Eq. (8), then ozv/2srE
=(2I.+1)rs'(&z/p)s. The quantity on the right side,
which is proportional to II~/p and has the same low

energy dependence as ozv in Eq. (8), namely, ozv
~e ' v/v. It may be used as a "penetration factor"
measure of the one-body cross section, but it is seen
that the only justification for such a terminology is in
the relation of the "penetration fa'ctor" to 0Le.

Some" representative results are displayed in Figs.
3—5. Comparison of the 2 and (P=iogteL(2I+1)rs'
X(Fz/p)'10" cm') curves in Figs. 3 and 4 show that
their large structural di6erences are by no means
localized in the immediate vicinity of the one-body
resonances. These diGerences persist both above and
below resonance. Both 2 and (P, however, show the
same rapid increase in the low energy region as EM„
increases, since the major energy dependence here is
due to the factor (Fz/p)'.

Many of the calculated one-body cross sections
exhibited no resonance in the energy interval plotted.
The presence of a resonance just outside the interval
however, decidedly altered the shape of Z in comparison
with (P. As has been shown by OBJ, conclusions drawn
from 6tting nonresonant excitation functions to various
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Fzo. 4. The "no-absorption" cross sections for N"(n, ) and
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reaction N'4(n, ) with ro=2.1X10 "zl& cm and U=656 Mev.
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Fzo. 3. One-body cross sections for AP'(p, ) and Siss(p, ),
compared with a "penetration factor" cross section. Dashed lines:
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for kq'=0. 111&(10's cm ', solid lines: (P vs (EM»} &. All curves
were computed for L=3, U='28.63 Mev, and ra= 1,6&(IO "A&cm.

"penetration factors" may diverge widely from those
deduced from a potential well calculation.

The regularities, as a function of the atomic number,
which appeared in the penetration parameter curves of
Sec. III should be absent in the reaction cross sections
computed with the binding energy well depths since the
latter are not smooth functions of Z'. For the special
Van Vleck and zero well depths, however, these regu-
larities should persist since these well depths are inde-
pendent of Z'. This expectation is conhrmed in Fig. 4
for the triad C" N'4 and 0" under proton bombard-
ment and with the two special Van Vleck well depths
corresponding to the two choices of radius. It is seen
that the energy of a particular resonance decreases as
Z' increases. The relatively depressed values of 2 for
Si"at low energies are e6ected by the Coulomb barrier.

An apparent difhculty in evaluating the cross-
sectional formula (8) occurs when the quantity bz
becomes indnite. This situation arose in the course of
the calculations whenever Qz, vanished. The vanishing
of Pz causes no anomaly in the cross section, however,
as the following argument shows.

If in Eq. (8) gz, approaches zero, then 5z, becomes
very large, and so unity can be neglected in comparison
with FL,GI.SJ. in the denominator. The resulting partial
cross section is then

oz= (4s Prps/v)(2L+1)(uz')/(pzfzbz)s. (39)
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the maximum of ~i is then shifted up to about 8=3.2
Mev.

No attempt is being made here to consider the eGect
of diQerent relative spin orientations. Such considera-
tions can presumably be carried out best in the frame-
work of a "dispersion theory" representation. The
problem has been considered from this viewpoint by
Inglis et al." On the other hand, calculations of the
present paper show that the experimental resonance is
much narrower than that indicated by the "one-body"
treatment as would be expected on most theories of
many-body eGects.

The logarithms of the penetration parameters
s i= fr.'/p and so ——p/grs for the Lir(p, ) reaction have
also been plotted in Fig. 6. Comparison of the Z and
fi= logroll y curves shows that they have similar shapes,
but that the maximum value of I& occurs at a slightly
higher energy. This shift is due to the energy dependence
of the factor (uz, ')/p in Eq. (10), which is important for
a broad resonance. In this quantity in the present case
the factor 1/p accounts for most of the variation as E
is varied from 1 to 2 Mev. But for a sharp resonance
g and Ii will be similar functions of energy, with their
maxima occurring for the same value of E. Away from
resonance the factor Iiz/p in 2 and Ii contains the
principal energy dependence of these two functions.
The reason for the presence of the sharp maximum in
the Is=logms. s function can be seen with the help of
Eqs. P) which defme the barrier parameters s i and s s

g
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t0- lo.lonev; L &

~ s s . w 13glf3
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Mev

L23 E„

I.IO L20 I30 L40

.826 .694 .59I .5 IQ

.60 .70 AIO

2.76 2.04 I.56

Fro. $. One-body reaction cross sections for N" (P, ), 0"(P, ),
Si"(p, ), and C"(p, ). Solid lines: 2 ss (EM, ) & for U=28.63
Mev, r0=1.6X10 '3A& cm, and ki' 0; Long-short dashed lines:
2 os (EMsv) & for U=19.10 Mev, ro=2.1X10 "A& cm, and
P& ——0; Dashed lines: 2 os (EM„) & for U=28.63 Mev, ro 1.6——
&10 "A& cm and k~'=0. 111)&10"cm '. For all curves, J=0.

if the terms in Eq. (39) not containing (gz,) ' are
neglected, Eq. (39) can be written as

op = —(2s Pro /&) (2L+ &)Pz+t/L(pro)'Az'5'z, tj. (40)

with the aid of Eq. (37). Hence, the cross section is
Qnite and changes smoothly in the neighborhood of a
zero of gz, .

The analysis of the Li'(p, n)n reaction illustrates
some of the limitations of the one-body model. The
yield" of this reaction exhibits a broad maximum at
E=3 Mev and theoretical Gts" to the angular distri-
bution ascribe this condition to two levels of the
compound nucleus Be . The 6rst level, approximate]y
1 Mev wide, occurs at E=3 Mev with I=2 and even

parity; the second level, approximately centered on
3 Mev, with a width of several Mev, is supposed to
have I=O and even parity, and be excited by both p
and f protons.

In Fig. 6 the behavior of the one-body cross section
for the Li'(p, n)n reaction is shown. The well depth,
V=19.52 Mev, was chosen to give a resonance of 0&

at about 3 Mev. It should be noted that the quantity
plotted, 2, is a function of 0 je. With the other param-
eters equal to those of Fig. 6, the value U=18.6 Mev
satisfies the 90' resonance condition at X=3 Mev. But

~'Hornyak, Lauritsen, Morrison, and Fomler, Revs. Modern
Phys. 22, 291 (1950).
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resonance at about 3 Mev.
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o r, ——A/[(E —Ep)s+B], (41)

in terms of the one-body model. Since frs+ gr.'= Ar.', pr i
always must satisfy the condition prt&Ai. '/p, the case
of equality representing a singular point of +2, For a
broad, Qat resonance m& varies slowly over a wide range
of energy values, while Ar„'/p decreases rapidly as E
increases from 0. These circumstances provide an
opportunity for Ar.'/p to "catch up" with pri, as is
exemplified by Is in Fig. 6. The singular point of I&,

i.e., the point at which Al, '=xi, cannot occur on the
low energy side of the resonance of lt in Fig. 6 because
the quantity Ai'/p is decreasing monotonically as E
increases.

The half-widths of the one-body resonances depend
strongly on the energy and angular momentum for
which they occur. In general, the half-width decreases
with increasing angular momentum and decreasing
energy. To obtain a quantitative estimate of this
dependence, the half-widths were calculated from the
curves by treating the resonances in a way similar to
that of Breit and Yost."

The one-level dispersion formula near sharp resonance
suggests that the partial cross section may be written as

TABLE III. Half-widths of resonances for incident protons. '

Isotope

N14
C12

Be'
@11
AP'
SPS
F19
Na"
AP'
Si"
Ne'
Mg'4
AP'
$jS8

A
A
B
B
A
A
B
B
B
B
B
B
B
B

2
2
2

3
3
3
3
1
1
0
0
0
0

U(Mev)

28.63
28.63
19.10
19.10
28.63
28.63
19.10
19.10
19.10
19.10
0.00
0.00
0.00
0.00

Bo(Mev)

0.67
2.75
2.6
0.83
1.9
1.45
2.7
0.85
2.00
1.72
2.20
2.10
2.04
2.10

2 F(Mev}

0.0006
0.3
0.5
0.01
0.002
0.0002
0.08
0.00006
0.4
0.1
2
1
0.7
0.6

of the dependence of the half-width on energy. The
behavior of the one-body cross section as a function of
well depth for constant energy of relative motion is
shown in Fig. 7 for the 8"(n, ) reaction.

Another interesting feature is the dependence of the
resonance height on energy. At a 90' resonance, the
partial cross section is given by

a The symbol A indicates the radius is 1.6)&10»A& cm. The symbol 8
indicates the radius is 2.1 &(10»A& cm.

(or) ...= (4~Pre'/p) (2J+1)(mI.')/(pFr8r)'. (42)

Since the half-width is given by 2
~
Fr, 8i/C ~, it can be

concluded that the area under the resonance curve is
roughly constant, i.e., independent of the energy at
which the peak is located.

The occurrence of Ill,' in the expression for the half-
width indicates that the penetration parameter con-
taining Ill,' is in some degree applicable to this model.
The assumptions which led to this identification were
that: (1) the resonance is sharp, (2) the quantity
(1 FrGr. br) is a—linear function of the energy in the
resonance region, and (3) 8'r, is a constant near reso-
nance. These approximations are not completely valid,
but, in many cases, the penetration parameter II&

should suKce in getting orders of magnitude.
Figure 8 consists of contour plots of the cross section

as a function of bombarding energy and well depth for
the C"(p, ) reaction. These curves confirm the expec-
tation that increasing the depth of the potential well
decreases the energy at which the resonance occurs,
and indicate how the shape of the resonance peak
depends on its energy level.

A single resonance is represented by a contour ridge—a line of slowest descent —running approximately
along the E+U= const line" in the (U, E) plane, since
kp and, hence, dpi/[Pr. d(kprp) j are constant along this
line. Near resonance the latter quantity is by far the
most rapidly varying function of energy in the expres-
sion (1 FrGr. hr), which its—elf varies slowly with energy
in the region of resonance.

In the limit of zero energy the cross section contains

where A and 8 are almost constant functions of E
in the vicinity of resonance, and Eo is the energy at
which the resonance peak occurs. Since the quantity
(1 FrGr, 8r) —is very nearly a linear function of energy
in the range of interest, it is assumed that it can be
approximated near Ep in the form C(E Ep), where C—
is energy independent. The quantity 8 is identified as
(Frser/C)' by comParison with (8). The value of
E Ep AE for w—hich——Eq. (8) has a value equal to
one-half of the maximum value, A/8, is given by
AE= &

~

8
~

&, so that the width at half-maximum is

The values of Ill, 'bl, and C at E=EO have been
calculated for a number of resonances together with the
corresponding half-widths; some of the results are
listed in Table III. The table illustrates the rapid
decrease in the half-width for decreasing energy and
increasing angular momentum. It should be noted that
in the transition from a one-body resonance to the
corresponding many-body resonance, the resonance
may be sharpened appreciably.

The principal energy dependence in the expression
for the half-width is contained in the factor Fl.'. The
maximumvariation of Cis roughly an order of magnitude,
while the quantity bl. at resonance varies by only a factor
c f four or Gve at most. These circumstancesprovide a con-
venient method for investigating the energy dependence
of the half-width: for a particular element, small
changes in the depth of the potential well are made, thus
shifting the resonance peak. Since only small variations
in BJ. and C result from the altered well depths, a
constant factor times FL,' yields a qualitative estimate

~ G. Breit and F. L. Yost, Phys. Rev. 48, 204 (1935).
~ It should be noted that the horizontal and vertical scales in

Figs. 8 and 9 are unequal.
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singularities along the U axis. As is expected, however,
these singular points are removed by the introduction
of a finite damping coefFicient.
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VII. EFFECT OF ABSORPTION ON THE
CROSS SECTION

Within the limitations of the one-body model, the
results presented in the preceding section should be
valid whenever the inelastic cross section of a scattering
process is small. But, for reactions of high yield, formula
(8) is not applicable. The partial cross section o.z is no
longer proportional to the imaginary part of the
potential, but, as a function of I', reaches a maximum
and finally decreases to zero as I' becomes very large.

For finite absorption the sharp resonances which
were prominent features of the "no-absorption" calcu-
lations are modified appreciably. This modification of
the resonance shapes and the variation of the cross
section with E have been investigated for some of the
reactions of Sec. VI with the aid of the general one-body
formula (14) for the reaction cross section. The lengthy
calculations required to evaluate Eq.. (14) restricted
the scope of this study. For the case of incident protons
with the special Van Vleck interaction, reaction cross
sections have been computed for the isotopes C", N",
0" Al' and Si" employing L 0& 1y 2 3 4 and
rp=1.6&&10 "2& cm; and the isotopes Be', B" C"
N", F", Na"] AP and Si" with rp=2. 1X10 "A& cm
and the same range of I.. In addition, the 3"(a, )

reaction was investigated for various combinations of
U, rp, and L.

The absorption coeKcient used in the evaluation of
Eq. (14) was obtained from Fernbach, Serber and
Taylor's" analysis of total cross sections of nuclei to
high energy neutrons. The value which has been found
is k&'=0.111X10"cm '.

Two methods have been used to calculate the real
and imaginary parts of (sdaz)/(gr, dz) which appear in
Eq. (14). The major portion of the calculations was
performed using Eq. (27) of Sec. U. This method gave
values to three significant figures with the neglect of
all terms beyond the fourth or fifth in the series defined
by Eq. (27). The other method utilized the recurrence
relation for the Bessel function as given by Eqs. (29).

Some" results of these calculations, shown in Figs. 3
and 5, are compared directly with the corresponding
"no-absorption" curves. It is seen in Fig. 3 that the
introduction of absorption drastically modifies the
sharp resonances which occur for large I in the "no-
absorption" case.

The contours of the quantity 2 for the C"(p, )
reaction with absorption are shown in Fig. 9. It is seen
that the cross section now goes to zero at E=O, in
contrast to the case of "no-absorption" in Fig. 8. In
fact, the introduction of absorption modifies the contour
ridges to such an extent that, for L)0, the cross section
does not increase at all with decreasing E. For L=O
the cross section rises to a peak valu" a maximum of
a function of two variables —the location of the peak
being at 8=2.2 Mev, U=2.0 Mev.

The variation of Z with k~ is illustrated in Fig. 10
for the 0"(P, ) reaction. It is seen that increasing kt'
decreases the maximum and increases the half-width of
the resonance. Since this eGect is very pronounced even
for small values of k~', the resonance peak is barely
detectable when k&' has increased to the Serber value,
k~'=0. 111&&10"cm '. Nevertheless, the resonance may
still be identified by noting the steeper slope on the low

energy side of the resonance "peak, " and the more
gentle slope on the high energy side in comparison
with the case of no resonance. Thus, the cross section
is greater than its value would be if there were no
resonance in the energy interval considered.

l.0— -l.0 VIII. SUMMARY

2.0. .2.0

3.0. -3.0

.-- 0.7243

0 2 4 6 8
0 (Mev)

4.0— 07423~

IO I43 I4 l6

Fro. /. Resonances of the cross section for B"(o., ) as a func-
tion of the well depth U at a constant energy of relative motion
EM,„'. Each curve is a plot of 2 ss U for the constant values
of I. and EM, ' shown. For all curves, r0=1.6&10 13A& cm.
EM, '=0.7338M,v.

In the energy interval from 0.5 to 3.0 Mev it was
noted that the principal deviation in the energy
dependences of the penetration parameters Fz'/p and
p/Gzs occurred for 1.=0, and that this deviation almost
vanished for large L. This situation is illustrated in

Fig. 1 for the Li'(p, ) reaction. The dtfference,

1Oglo(p/Go') —1Ogto(&o'/p), Of the CurVeS far I=0 paSSeS

through a sequence of values from 0.112 to —0.106 and
then rises to zero as E increases to 3 Mev. The absolute

change of this diGerence over the whole energy interval
is 0.149 for L= 1 and only 0.007 for L=4, so that the
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APPENDIX

1. Btmdieg energy well depth: This estimate is pro-
vided by the binding energy of the incident particle in
the compound nucleus. The kinetic energy in the ground
state of the last bound particle is estimated by assuming
that r times the radial wave function is a sine wave
which vanishes at the nuclear boundary. Large binding
energies and large extra-nuclear Coulomb barriers
suppress the tail of the wave function and hence,
improve the approximation. For these assumptions the
well depth is related to the binding energy by U=B
+(her)'/(2 pro'), where B is the absolute value of the
binding energy, and the second term on the right is the
ground state kinetic energy. The well depth computed
from this formula, using the correct binding energy,
may be much too small for the heavier elements because
of the action of the exclusion principle in requiring the
last bound particle to occupy an excited state.

2. Vae Uleck well depth: Van Vleck considered the

—L5
I I I i I

.40 .50 .60 30 .80 E"i'2 NO LIO QO L30 LN L50
llev

$25 4.00 2.76 2.04 L56$ ~„ l.00 J3 59,59 .5l .445

FIG. 10. Effect of absorption on the one-body resonance of
0"(p, ):2 vs EM, & for constant k1'. For all curves V=28.63
Mev, ro=1.6)&10 "A~ cm, and 1.=0.

case of incident neutrons, and Ostrofsky, Bleick, and
Breit made application to the case of incident protons.
It was assumed by Van Vleck that the interaction
between all pairs of nucleons is of the Majorana
exchange type, and that the nucleons are distributed
according to the Thomas-Fermi statistical model. Addi-
tional approximations similar to those made in the
Hartree-Fock treatment are also required. Surface
eGects are eliminated by assuming that the range of
the force is small compared with the nuclear radius.
The well depth resulting from this calculation depends
slightly on the energy of the incident particle. In the
present application the velocity dependence has been
neglected, and the depth at zero energy used. The
latter well depth is called the special Van Vleck well
depth in the text.

The Van Vleck formula for the potential well is

V= —A(E(W+)+E(W )
+2L~/(~k")~'Le +' —e *'),

where the sign is negative if kp&k, and positive if
k~&k. Here,

t

W

W~=~k.~k~ j(2"); E(W)=(2~—
l)) e "dt;—

0
and

k=f(9~/) j(4ro') j&

with N equal to the number of neutrons; k~ is 2m

times the wave number of the proton inside the nucleus
and the neutron-proton potential is Ae "'. In order
to evaluate V from the above formula, a method of
successive approximations was used. The value of E
was placed equal to one-half of the mass number, so
that with the radius convention employed in Sec. III,
k and V become independent of target element. Use
of the values obtained from proton-proton scattering,
n=1.23X10" cm ' and 2=100 Mev, determined the
value of the Van Vleck well depth at zero bombarding
energy as follows:

V= —28.63 Mev for ro= 1.6X10—"A& cm,

and

V= —19.|0Mev for r0=2.1X|0 "~~ cm.


