of magnitude given by recent experiments. Here we have another possibility of being able to explain the existence of various heavy' particles and, at the same time, to remove part of the infinities. Nevertheless, we should like to remark in a general sense about the provisional character of our theory, First, it has been recognized that higher order corrections might seriously modify the results obtained. Second, the consequence of the mass relation (7) is of such a radical nature that we cannot determine discrete values for the masses of elementary particles. Ke feel that, besides the phenomenological prescription of the compensation, another principle would be necessary for us to solve this problem. Third, granted that we ignore such a circumstance for a time, we are still required to introduce more cohesive mesons in order to be consistent with the experimental fact that there may be numerous mesons. For instance, the evidence for χ -mesons (\sim 1470 m) and ζ -mesons (\sim 550 m_e) suggests a possibility of considering two kinds of cohesive mesons, namely, c_1 mesons (\sim 1474 m_e) for the nucleon and c_2 mesons (\sim 595 m_e) for the heavy nucleon. Of course, the latter gives rise to a new infinity for the nucleon which may be canceled out by assuming a third cohesive meson. Finally, we are still not sure of a scheme to take into account the τ -meson and κ -meson (if it is a Fermion).

At any rate, we may conclude from this work that there may be intimate relations between masses of elementary particles and some of the divergences inherent in the current field theory.

The writer wishes to express his thanks to H. Yukawa, R. Serber, A. Pais, N. M. Kroll, and G. J. Yevick for their kind discussion.

[~] On leave from Kyoto University, Kyoto, Japan. ' H. Erratsu, Prog. Theoret. Phys. 6, 643 (1951); Phys. Rev. 85, 483

(1952), These and Processors and Processors and Processors and Processors and Processors and Processors of heavy particles will be treated in this paper. It will be seen that our argument proceeds in almost the same way a experiments.
⁵ A. Pais, Phys. Rev. 86, 663 (1952); Nambu, Nishijima, and Yamaguchi,
Prog. Theoret. Phys. 6, 615 (1951); S. Oneda, Prog. Theoret. Phys. 6, 633

Prog. 1
(1951).

Pure Nuclear Quadrupole Spectrum of Bi²⁰⁹ in Bismuth-Triphenyl*

H. G. ROBINSON,[†] H. G. DEHMELT, AND WALTER GORDY Department of Physics, Duke University, Durham, North Carolina (Received January 23, 1953)

DURE nuclear quadrupole resonance in solids, observed first by Dehmelt and Krüger¹ in 1949, has now been found for several nuclei. This type of spectrum has, however, not been previously investigated for Bi.

The only stable bismuth-isotope, Bi²⁰⁹, has a spin $I=9/2$ well established from optical spectra.² The quadrupole moment also has been optically determined³ as $O(Bi^{209}) = 0.39 \times 10^{-24}$ cm². Corresponding to the spin value of 9/2, the nuclear quadrupole spectrum is expected to consist of four lines, all of which have been found in $Bi\phi_3$ by use of super-regenerative detection techniques described by Dehmelt and Krüger.¹ The observed frequencies which are given in Table I can be fitted to the theoretical values⁴ for the case of deviation from axial symmetry:

$$
v_1 = (1/24)eQ_{qzz}[1+9.03333e^2-45.690667e^4],
$$

\n
$$
v_2 = (2/24)eQ_{qzz}[1-1.338095e^2+11.7224048e^4],
$$

\n
$$
v_3 = (3/24)eQ_{qzz}[1-0.185714e^2-0.12329457e^4],
$$

\n
$$
v_4 = (4/24)eQ_{qzz}[1-0.080952e^2-0.00425796e^4],
$$

 ν_1 to ν_4 corresponding to the transitions $\pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2}, \pm \frac{3}{2} \leftrightarrow \pm \frac{5}{2}$, and so on.

The calculated frequencies v_1 , v_2 , v_3 are obtained when v_4 is assumed equal to the observed value and $\epsilon^2 = 7.875 \times 10^{-3}$ is used for the asymmetry parameter. The quadrupole coupling constant then is $eQq_{zz} = 669.06 \pm 0.13$ Mc/sec.

In $Bi\phi_3$, bismuth forms three covalent bonds with some ionic

TABLE I. Comparison between calculated and measured frequencies.

	Measured Mc/sec	Calculated Mc/sec	Line half-width kc/sec
$\boldsymbol{\nu}_1$	29.785	29.7815	\sim 25
v2	55.214	55.2075	\sim 15
ν_3	83.516	83.5089	\sim 20
ν_4	111.438	assumed	\sim 20

character. The structure can be described as

$$
Bi^+ - \phi \atop \phi^-
$$

since from the difference of the electronegativity values $x_{Bi} = 1.8$ and x_0 = 2.5, about 35 percent (\approx ³) ionic character is expected.⁵ The rather large observed Bi coupling reveals that the Bi bonding orbitals are not pure p but have significant s character. It is s admixture which accounts for the fact that an appreciable field gradient exists, and therefore, quadrupole coupling is observed in the Bi ϕ_3 molecule. Three pure p bonds would lead to a vanishing field gradient q_{zz} .

The quadrupole coupling constant found in the molecule can be expressed as fractions of the coupling constant for an unbalanced atomic $6p$ electron:⁶

$eQq_{zz}(\text{Bi}\phi_3) = 3\alpha(1+2\beta)eQq_{zz}(\phi),$

 α denoting the fractional s admixture and β the ionic character of the Bi–C bonds. The coupling per 6p electron, $eQq_{zz}(p)$, can be evaluated from the doublet separation of a single p electron in the $6s²6p³$ configuration of atomic Bi. A simple but probably not very accurate approach is linear extrapolation from the measured doublet separation of 6p for Bi V, which equals 2.8×10^4 cm⁻¹, and of 6s²6p for Bi III, which is equal to 2.18×10^{-4} cm⁻¹; in this way one obtains, $\Delta \nu(p, B_i I) = 1.4 \times 10^4$ cm⁻¹. With $Z_1 = 79$ this gives $q_{zz}(p, Bi I) = 5.2 \times 10^{16}$ esu. With the optical value of Q this yields

$eQq_{zz}(p) = 1500$ Mc/sec.

Comparison with the value observed in the $Bi\phi_3$ molecule leads to

$3\alpha(1+2\beta) = 669/1500.$

From this, with $\beta = 0.35$, one obtains 8 to 9 percent s admixture, which is in accordance with general expectations of hybridization in the nitrogen group of elements.

The rather large asymmetry of the field gradient, $\epsilon \approx 9$ percent, could be caused by bond strains which are to be expected for this rather bulky molecule in the crystalline state.

The BiC13 quadrupole spectrum has also been investigated. A number of lines have been found, but the spectrum has not yet been analyzed.

Supported by the U. S. Office of Ordnance Research.
Shell Fellow.

⁴ Supported by the U.S. Unite of Ordinance Research.

¹ H.G. Dehmelt and H. Kriiger, Z. Physik 129, 401 (1951); R. V. Pound,

¹ H.G. Dehmelt and E. Back, Z. Physik **43, 321** (1927).

² S. Goudsmit and E. Back, Z. P

The Diamagnetism of an Enclosed Electron Gas

H. A. NYE University of Buffalo, Buffalo, New York (Received December 8, 1952)

" N recent papers, Osborne' and Steele² discuss the diamagnetism of a free electron gas in a finite container from the point of view of number theory. In these papers interesting effects are uncovered