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all nuclei with higher proton numbers are also E-capturing or
P+-active.

If now we have a stable nucleus {N, Z) for a certain odd value
of the mass number, then (N+1, Z—1) must be P -active and
(N 1, Z—+1) either K-capturing or P+-active. From what has
already been pointed out, it is clear that all nuclei on the higher
neutron number side of (N, Z) will then be ti -active and all
nuclei on the higher proton number side of (N, Z) will be
E-capturing or P+-active. Thus for a particular odd mass number
we shall have only one stable nucleus, all other isobars being
unstable.

Let us now consider what happens if the above argument is
applied to the, case of an even mass nucleus. For such nuclei we
can distinguish between the even-even and odd-odd nuclei. Let
(N, Z) be an even-even nucleus which is P=active. Then we have

Bx(N, Z) Bz'(N —1, Z+1—) &3'-Mrr (8)
Now since,

Bz'(N+1, Z—1)=Bx(N, Z) —0+Borg Bxz, —
Bz(N, Z) =Bz'(N 1, Z+1)—+8 Bzz+B—xz,

we have

B~'(N+1& Z—1) Bz(N, —Z) =Be(N, Z) Bz'(N 1,—Z+1)—
2b+Bnz+—Bzz 2Bnrz&M—nr Mrr, (9—)

because e is positive and (Bg~+Bzz 28rrz) is n—egative. Thus
the odd-odd nucleus (N+1, Z—1) must be P -active. But
this same argument applied now to the even-even nucleus
(N+2, Z —2) leads to a different result. For B~(N+2, Z-2)
and Bz'(N+1, Z —1) we write

Bz(N+2, Z—2) =B~'(N+1, Z —1)+s+B~rr Bxz, —
Bz'(N+1, Z —1)=Bz(N, Z) —S Bzz+Bxz.—

Thus we get

Bv (N+2, Z—2) Bz'(N+1, Z——1)=BN'(N+1, Z—1)
Bz(N, Z)+2—b+B~N+Bzz 28zz (10)—

Since 5 is positive and (B~x+Bzz 2BNz) is negati—ve, we cannot
conclude from the above equation that the left-hand side will be
less than MN —M~. It may or may not be, depending on the
relative magnitudes of b and (Bnrz+Bzz 28prz) —This sh.ows
that the even-even nucleus (N+2, Z—2) may be stable in spite
of the fact that the odd-odd nucleus (N+1, Z —1) is P=active,
and thus the existence of stable isobars for even mass nuclei
becomes possible.
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GRYSTALLIZATION of silicon from a melt is of great interest
as an initial step in the preparation of transistor devices.

Since molten silicon is very active, there is no crucible material
known of which one could be sure that no impurities are being
introduced during the melting process. Fused silica, which is
considered the best refractory material for melting silicon, is
slightly reduced to silicon monoxide by the melt. The extent to
which these reduction products affect the electrical properties
of silicon is not known. This situation lends attractiveness to
the method described below, which permits crystallization of
silicon from the melt without having recourse to any crucible
material.

The suspected high value of the surface tension of liquid silicon
pointed to the possibility that a suitably large zone of molten
silicon could be held stable between two vertically aligned,

' solid

rods, and this surmise was verified indeed by experiment. A piece
of silicon which had the shape of a rod was held vertically and
clamped at both ends. A heater element consisting of a short
tantalum cylinder was mounted around the center portion of the
rod. Heating this cylinder to incandescence caused a short section
of the silicon to melt. The molten zone which developed and
assumed the shape of a pear was held stable between the solid
parts of the silicon rod by surface tension. The molten zone was
then caused to travel slowly along the silicon rod by moving
downwards or upwards the bracket to which the upper and lower
clamps holding the silicon piece were attached. This constitutes a
method of vertical zone melting with a Qoating liquid zone re-
quiring no container for its support. The silicon rod shown in
Fig. 1 was recrystallized by this method. Another possible appli-

FIG. 1. Silicon recrystallized from a fioating liquid zone. The comparison
scale is in inches.

cation of this method is the growth of a single crystal from a
polycrystalline mass. For 'this a seed crystal is placed against one
end of the polycrystalline rod, and an initial Qoating zone of
liquid silicon is formed at the joint. Then the seed crystal together
with the silicon rod is slowly moved while the crystal grows from
the melt and the Qoating liquid zone travels along the silicon
piece. Thus the polycrystalline mass can be converted into a
single crystal almost to its support.

The new method is not limited to silicon; it may find useful
applications for a number of materials.

We wish to express our appreciation for fruitful discussions of
this work with Mr. E. L. Manning and Dr. B. Bradshaw. More-
over, it is a pleasure to acknowledge the enthusiastic help of
Lt. W. Van Horn and Mr. J. Soled in experimentation.
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" 'N a recent letter' we reported on dielectric and x-ray obser-
-. vations on cubic cadmium niobate (Cd2Nb20~) and lead
niobate (PbrNbqOr) to which we ascribed the Quorite structure.
B.C. Frazer of Brookhaven National Laboratory has pointed out
to us that the structure of Cd2Nb20~ was studied by Bystrom~ in
1944 who found it to be of the pyrochlore (NaCaNb206F) type.
This structure type is face-centered cubic with dimensions double
that of the Quorite structure. We have confirmed the presence
of additional faint lines of a doubled cell for Cd2Nb207.

The pyrochlore structure differs from the Quorite structure in
the following ways:

There is a regular alternation of cations in the (Quorite) cation
positions and a regular omission of one of the eight oxygens in a
manner which leaves the larger cation surrounded by eight
oxygens but reduces the coordination around the smaller cation
to six. These six oxygens are equally displaced from the sym-
metrical Quorite positions towards the smaller cation.

We have now found a strictly cubic pattern of unit cell 10.561
~0.001A for a lead niobate which is deficient in lead, approxi-
mating the composition Pb~. ~Nb20~. ~. The diBraction line in-
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tensities are very similar to those of Cd2Nb20~. The dielectric
constant is 200 at room temperature and rises to about 500 at
—196'C.

The interesting ferroelectric properties found in Cd2Nb20~ are
variable. The dielectric constant and Curie point vary markedly
in disks from the same mix, with the highest Curie point at
—103'C on a disk with a dielectric constant of 450 at room tem-
perature. The remanent charge density of the latter sample as
shown by a hysteresis loop is 3.2 microcoulomb per centimeter~
near —296'C.

Further work to determine accurate locations of the oxygens
in Cd2NbgOy and Pb2Nb~Oq is underway.

'W. R. Cook, Jr. and H. Joe, Phys. Rev. 88, 1426 (1952).
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I N a recent paper, Kohn' has given a valuable variational
~ - principle for the determination of the propagating solutions of
the Schrodinger equation within a unit cell of a periodic lattice.
Of late, the cellular method has also been found useful in the
analysis of artificial dielectrics which consist of arrays of conduct-
ing obstacles embedded in a dielectric medium. 2' Such artificial
dielectrics are useful in the form of lenses at microwave fre-
quencies. It is of interest, therefore, to obtain the electromagnetic
analog of Kohn's variational principle.

The electromagnetic problem is the following:

(VXVX —ks)H ——0, r within V), E(r)
(2)

nXE(r)=0, r on (r, {2)
E(r') . E(r)

nXH(, )
———exp(hc e„)nXH( ), r on Z. (3)

Here 0. denotes the surface of the object within a unit cell, while V
and% denote the volume and surface of the unit cell; n is the
outward normal at the designated point; x is the wave-number
vector; and v„ is the vector which translates a given face of the
unit cell into coincidence with its conjugate, i.e., c„=r —r. Only
the transverse components need be subjected to the boundary
conditions on Z, because the normal components then auto-
matically satisfy them in consequence of the Maxwell equations
VXE skg(y /e=)H, VX'H= skag(e/p)—E

With the aid of the vector analog of Green's theorem, the first
variation of the functional,

I=/~hi(u/e)g 'f E* (VX-VX k')Edy, —

is easily shown to be

(nXE* ~H —nX~E H*)dS, (5)
o+Z

if V'X bE=ckg(II/c)bH. Transforming the part of Eq. (S) over Z in
the manner of Kohn, we find that the desired variational principle
is '

Re ik (y e) ' E* (7'X7X —k2)Edt/"+ nXE H*dg

+f xE(.) H*(').*p( )as)= ~ ~ y. (()
/

D the trial functions E, H satisfy the vector wave Eq. (1) and the
boundary condition of Eq. (2), the variational principle becomes

Re nX E(r) H*(r') exp(ix-e, )dS= stationary. (7)
E

Equation P) may be cast into the form

Re bE(r) LnXH*(r)+nXH*(r') exp(ix e,)]dS

+Re bH(r) LnXE*(r)+nXE*(r') exp(hc s,)gdS=O, (g)
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O RDINARY Newtonian gravitational forces are far too small
to account for nuclear interactions. However, it is possible

to modify the law of gravitation in such a way as to get unusually
strong gravitational attractions in the very small forces. To do
so we propose the following generalized law of gravitation

= (xg )„„, (2)

where go,p is the metric tensor, R„„ the Riemann-ChristoGel
tensor, and h. . . '''

some multiplicative tensor such that the
right side of (1) is covariant of second rank. The first simplest
cases are

R„v=sg„v {1a)

~pv ——A p'gnv. (jb)
Professor Sargmann and Professor Einstein in a private com-
munication gave us the simple proof that in (1a) A is necessarily

by adding two terms which vanish by virtue of the vector Green's
theorem.

In the same way that the method of Slater4 follows from the
equation analogous to Eq. (8) in the atomic case, as shown by
Kohn, so the electromagnetic extension of Slater's method follows
from Eq. (8). In this method, the boundary conditions of Eq. (3)
are satisfied at only a finite number of points. When series ex-
pansions of vector functions, containing as many arbitrary coe%-
cients as there are equations, are substituted for E and H, a
compatibility equation is obtained which yields the desired
relation between x and k. The surface k=constant in x-space is
the analog of the index surface in crystal optics and is, in general,
two-sheeted. When the wave propagating in the artificial dielectric
is approximately plane, the relevant refractive index is

~
n~/k to a

first approximation and is a function of the direction of the wave
normal and of the polarization of the wave.

As a case in point, we have applied Slater's method to the case
when the objects are infinitesimally thin, circular disks and the
unit cell is a rectangular parallepiped. There are two independent
field distributions to be considered. Using series of oblate spheroidal
vector wave functions which satisfy the boundary conditions on
the disk, as in the recently obtained vector wave function solution
of the diBraction of electromagnetic waves by circular disks and
apertures, ' we have satisfied the boundary conditions at the mid-
points of the faces of the unit cell. The resulting surfaces k= con-
stant in x-space are prolate spheroids at low frequencies. The
employment of the variational principle of Eq. (7) should lead to
more accurate forms of the surfaces at higher frequencies.

The general form of the variational principle, Eq. (6), may be
expected to be useful in the case of objects for which there are
available no vector wave functions that can be used to satisfy
completely the. boundary conditions on the object within a unit
cell.
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