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it is obvious that the whole atmosphere must be con-
sidered before a complete correlation is at all possible.
But it is not unreasonable to believe that the upper-
atmospheric temperature should exert an appreciably
large influence in this respect. Duperier has shown that
much better correlation and larger regression coeffi-
cients are obtained by considering the region between
50 and 200 mb instead of that between 100 and 200 mb.
His results are in agreement with the known lifetime
of charged pions and the value of the mean free path
for primary radiation in the atmosphere. Furthermore,
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if one believes the explanation of the cosine-squared
zenithal dependence of the hard intensity at low alti-
tude, he would expect to find that the temperature co-
efficient would increase as telescope solid angle is de-
creased. This result has been found by Duperier. The
use of relatively small solid angle in the experiment of
Cotton and Curtis should thus yield-a value of the
coefficient larger than those found by Duperier and the
author, although the small-angle telescope should not
yield as good statistics unless appreciably longer pe-
riods of observation are used.
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Moliére’s theory of multiple scattering of electrons and other charged particles is here derived in a mathe-
matically simpler way. The differential scattering law enters the theory only through a single parameter,
the screening angle x.’, Eq. (21). The angular distribution, except for the absolute scale of angles, depends
again only on a single parameter b, Eq. (22). It is shown that & depends essentially only on the thickness of
the scattering foil in g/cm?, and is nearly independent of Z.

The transition to single scattering is re-investigated. An asymptotic formula is obtained which agrees
essentially with that of Moliére, Snyder, and Scott, but which remains accurate down to smaller angles,

Eq. (38).

The theory of Goudsmit and Saunderson has a close quantitative relation to that of Moliére, and a good
approximation to their distribution function can be obtained by multiplying Moliére’s function by (8/sinf).
This relation holds until the scattering angles become so large that only very few terms in the series of Goud-

smit and Saunderson need to be taken into account.

I. INTRODUCTION

T least four different theories of the multiple
scattering of electrons by atoms have been pub-
lished which are mathematically closely related, and
which can give exact results if carefully evaluated.
They are the work of Moliére,! Snyder, and Scott,??
Goudsmit and Saunderson,* and Lewis.’ Of these, the
first two use immediately the approximation of small
scattering angles and therefore an expansion in Bessel
functions (see below) (or a Fourier integral for the dis-
tribution of projected angles). Goudsmit and Saunder-
son develop a theory valid for any angle by means of
an expansion in Legendre polynomials. Lewis starts
from the Legendre expansion and then goes over to the
limit of small angles, thus establishing the connection
between the first three methods.
The theories of Moli¢re and of Goudsmit and Saunder-
son share one important advantage, namely that they
do not assume any special form for the differential

1 G. Moliére, Z. Naturforsch. 3a, 78 (1948).

2 H. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).

3 W. T. Scott, Phys. Rev. 85, 245 (1952).

+S. A. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 and
58, 36 (1940). .

§ H. W. Lewis, Phys. Rev. 78, 526 (1950).

scattering cross section. In both theories it is shown
that the scattering depends only on a single parameter
describing the atomic screening, the critical angle x,
Eq. (16) of this paper. This angle can then be calcu-
lated, for instance, for the Fermi-Thomas distribution
of electrons in an atom, or for any more accurate elec-
tron distribution if available. Moliére has even included
the deviation of the differential scattering from the Born
approximation, Eq. (21), and Hanson, Lanzl, Lyman,
and Scott® have shown that this inclusion is important
for explaining their own experimental results as well as
those of Kulchitsky, Latyshev, and Andrievsky’ for
heavy elements. Snyder and Scott, as well as Lewis,
assume a special scattering law, viz., that derived from
the exponentially screened potential, Ze*—te="/*. Only
a posteriori did Scott® state that the treatment of
Snyder and Scott? is mathematically identical with
Molidre’s and can therefore also be generalized to his
differential scattering law.

The theory of Goudsmit and Saunderson has, of
course, the further advantage that it is valid for all

8 Hanson, Lanzl, Lyman, and Scott, Phys. Rev. 84, 634 (1951).

7L. A. Kulchitsky and G. D. Latyshev, Phys. Rev. 61,
254 (1942); Andrievsky, Kulchitsky, and Latyshev, J. Phys.
(U.S.S.R.) 6, 279 (1943).
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angles. On the other hand, the small-angle theories
have the advantage of considerably : greater trans-
parency. This is particularly true of the theory of
Moliere, which remains analytical to the end.

To an accuracy of 1 percent or better, the angular
distribution is given by the sum of 3 analytical terms,
Eqgs. (25) to (29), the first of which is the well-known
Gaussian, while the second goes over into the single-
scattering formula at large angles and the third is a
correction. Both second and third terms are easily
evaluated.

It is possible to combine the advantages of both types
of theories because, up to quite large foil thicknesses
and scattering angles, the Goudsmit-Saunderson result
can be expressed in terms of the simpler Moliére theory
(Sec. 8). However, this is only possible if the total
path length rather than the actual foil thickness, is
used as the independent variable.

Snyder and Scott have calculated the distribution of
projected angle, Goudsmit and Saunderson that of total
scattering angle, and Moliere both. We shall restrict
ourselves to total scattering angle.

The aim of this paper is to give a simpler derivation
-of Moliére’s equations, to show how one is led in a
straightforward way to Moliére’s “‘screening angle” x,
and to derive a simple asymptotic formula for the cor-
rection to single (Rutherford) scattering. In most
places, the same notation as Moliére’s is used. His
equations are quoted as M with the appropriate number.

II. DERIVATION

Moliére derives his fundamental equation (M 4.4)
by considering successive collisions. Like Moli¢re, we
assume that all scattering angles are small so that sinf
may be replaced by 6, and the scattering problem is
equivalent to diffusion in the plane of 8. Now let o(x)xdx
be the differential scattering cross section into the
angular interval dx, and f(6, £)6d8 the number of elec-
trons in the angular interval d after traversing a thick-
ness /. Then the standard transport equation is

8f(8, 1)/dt=— N 16, ) f o(0xdx

4N f 10, Detdx, (1)

where N is the number of scattering atoms per cm?,
0’=0—yx is the vector in the plane representing the
direction of the electron before the last scattering, and
dx=xdxd¢/2m, where ¢ denotes the azimuth of the
vector x in the plane. )

Now we make the same Fourier (Bessel) transforma-
tion as Moliére, expanding

10, = f ndnJ o(n)g(n, ©) @
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so that
g(n, )= f 0d01o(n8)1(6, ). @3)

Then the Fourier transformation of (1) yields, using the
folding theorem, '

ag(n,t)/0l=—g(n,é)Nf c()xdx[1—=Tomx)]. (4)

This can be integrated over /, giving
8o, ) =210 5)

in the notation of Moliére, where

)= Nt f o GOxdXT om0, ©)

and Q, is the value of (6) for =0, i.e., the total number
of collisions. In (5) we have used the fact that g(y, 0)=1
for all 5, which follows from the assumption that f(8, 0)
is a two-dimensional é-function §(8), i.e., the incident
beam is exactly in the direction §=0.

Equations (2) and (5) are Moliére’s fundamental
equations (M 4.4, 4.5). It is convenient to treat
Q(n) —Qo together, rather than splitting them up be-
cause, as Moliere himself has pointed out, the total
number of collisions Q is irrelevant, and Q,—Q(y) is
much smaller than Q, for the values of # which are
important; Qo— Q2(n) may be called the “effective num-
ber of collisions.” Inserting our results back into (2),
we have

10,0)= f ndnJ o(n6)

XeXP[—Ntf a(x)xdx{ I*Jo(nx)}]- (M)

0

This equation is exact for amy scattering law,® pro-
vided only the angles are small compared with a radian.

III. TRANSFORMATION

The scattering from atoms is characterized by the
fact that o decreases rapidly and in simple manner,
as x4, for large x, and is complicated only for angles
of the order of

Xo=A/a=1/(0.885a,27%), 8)

8 The derivation of Eq. (7) in essentially the same form as in
this section was shown to the author by Henry Hurwitz, Jr. in
1949, without knowledge of Molidre’s paper and before publica-
tion of the paper by Snyder and Scott. The derivation by Lewis
(see reference 5) which starts from finite angles and spherical har-
monics, could be simplified by using small angles and Bessel
functions from the beginning, and would then become essentially
identical with that given in this section. Lewis’ result is equivalent
with (7), but he uses a special scattering law before arriving at
the formula corresponding to (7). Of course, Lewis’ proof estab-
lishes at the same time the connection between the Goudsmit-
Saunderson theory and that of Moliére.
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where X is the de Broglie wavelength of the electron,
ao the Bohr radius, and ¢ the Fermi radius of the atom.
For any reasonable foil thickness, the width of the
multiple scattering distribution is very large compared
with xo, and this is the reason for the essential sim-
plicity of Moliére’s theory.

Following Moliére, we set

Nio(x)xdx= 2x>xdxq(x)/x", )

where ¢ is the ratio of actual to Rutherford scattering,

and
x2=4rNte Z(Z+1)22/ (pv)?; (10)

# is the momentum and v the velocity of the scattered
particle of charge z. The factor Z+41 instead of Z is to
take into account the scattering by the atomic elec-
trons, as first suggested by Kulchitsky and Latyshev.”
The physical meaning of x, is that the total probability
of single scattering through an angle greater than x. is
exactly one. This angle was already used by Williams®
in his theory of multiple scattering. The ratio ¢(x) is 1
for large x and decreases to zero at x=0, the main drop
occurring in the neighborhood of x.
Inserting (9) into (6) and (5), we get

—logg(n, £) = Qo—Q(n)
=2x02f xdx[1—=To(xn) Jg(). (A1)

The important values of 5 will be of order 1/x. or less.!?
Since ¢ becomes appreciably different from 1 only for
values of x of order xo, and since x, is much less than
x. (of the order of 1/100), it is possible to split the
integral at some angle % such that

X0 KLk /p~xe. (11a)

Then, for the part of the integral from %k to infinity,
¢(x) can be replaced by unity and the integral evalu-
ated analytically. For the part from O to %, on the
other hand, the argument of the Bessel function is
small and we may write

(12)

which will make it possible to reduce the integral to a
universal one, independently of 7.
The analytical integral may be written:

1—Jo(xn) =1x*r",

fdxx‘s[l—fo(xn)]=n2f dut [ 1—TJo(t)]
‘ . =121, ().

9 E. J. Williams, Phys. Rev. 58, 306 (1940).

10 This is most easily seen from Eq. (17) according to which
g(n, 1) =exp[Qo—Q(n)] becomes extremely small when x,7>1.
The use of (17) to justify (11a) may seem circular because (17)
itself is based on the assumption (11a); but the only part of (11a)
actually used in deriving (17) is that nxeX1. Our method will
therefore be in error if, and only if, #xo is of the order 1, in which
case (17) gives g~exp[ —%(xc/x0)?] which is exceedingly small
(see the end of this section).

(13)
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The integral I,, defined by (13), can be integrated by
parts and gives, since the lower limit x= &y is small:

Lx)=4 f 71()

* dt
+f —Jo(®)=1—Inx+1n2—C+0(x?), (14)
P

@0

dt 2
—[1—=Jo(®)J=—[1—To(x) ]+
# x? X

where C=0.577- - - is Euler’s constant.
The lower range of integration gives, using (12),

k

k
f dxx*qO0[1—Tolxm) J=1n? f () dx/x
=inly(k). (15)

Moliére now defines the characteristic screening angle
Xa by the equation®

k
~1m<a=g5n[ [ q(x)dx/x+%—1nk]~ (16)

Then, taking together (11) and (13) to (16), we get

Qo—Qm)=3xen)*[ —In(xan)+3+m2-CJ, (17)
Putting then xam=1y, we get
Q0 —0(n)=1y"[6—In(}»")], (18)
where
b=In(x/xeV+1-20=In(/xs 7. (19)
Then, setting
8/xc=\, (19a)

we get Moliére’s transformed equation

0

F(6)0d8=NdX f ydyTo(h) expl2(— b+ Indy?)], (20)

0

which is very much simpler in form than (7).

The derivation was based on the inequality (11a)
and will, therefore, fail if # is of order 1/xo, or y of order
Xo/xo~€¥. Indeed, the exponent in (20) has a mini-
mum when y=y;=2¢}®1; thereafter it increases and
becomes in fact positive infinite as y goes to infinity.
This increase is spurious and due to the approximation
(11a); therefore, the integral should only be extended
to y=1v,. How little difference this makes can be seen
from the fact that the exponential, for y=1y;, has the
value exp(—iy®)=exp(—e*1). Since et~ (xc/xq)? is
about the number of collisions Qy, the formula (20) is
correctsto the relative order e=%/¢, For foils of moderate
thickness, the number of collisions is 1000 to 100 000 so

11 The term $ would not need to be in the definition. It is in-
cluded by Molitre in order that x, be exactly X/a for an expo-
nentially screened potential, V(r) = (Ze?/r)e~"/a.
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that the error would be only ¢74% to ¢~ 90! Actually,
the error in (17) for values of y of order 1 is more im-
portant; it gives corrections to f(6) of order 1/, with
a small numerical factor.1#*

IV. THE SCREENING ANGLE

Perhaps the most important result of Moliere’s
theory is that the scattering is described by a single
parameter, the screening angle x.’. The angular dis-
tribution depends only on the ratio of the “unit proba-
bility angle” x., Eq. (9), which describes the foil thick-
ness, to the screening angle x,’ which describes the
scattering atom. The distribution function f(f) is en-
tirely independent of the shape of the differential cross
section do provided only do goes over into the Ruther-
ford law for large angles. In most other??* derivations
of exact theories of multiple scattering, an explicit
assumption was made about the differential cross sec-
tion, namely the Born-approximation cross section
for an exponentially screened potential. This potential
is not a good approximation to the actual atomic poten-
tial, and the only rigorous published proofs that the
shape of the potential is immaterial for the multiple
scattering, are those of Moliére and of Goudsmit and
Saunderson. -

For the actual determination of the screening angle
Xa, Moliére uses his own calculation®® of the single scat-
tering by a Thomas-Fermi potential which does not
make use of the Born approximation, the solution being
accomplished by means of the WKB method. An exact
formula for the differential cross section in terms of an
integral is given in Moliére’s paper,® Eq. (4, 6), but
his final evaluation of integrals over the Fermi func-
tion is numerical and only approximate; it yields

x2=x0*(1.13+3.7602), xa2=1.167x., (21)
with a the usual parameter,
a=zZé/hv. (21a)

The term in o? represents the deviation from the Born
approximation. We now insert (21) and the definitions
(8) and (10) of xo and x. into the definition of b, Eq.

2 Exactly the same formulas as in this section were already
obtained by Molie¢re. The only difference is that he used in the
proof a rather complicated series of Hankel functions, whereas
we used the simple Bessel function Jo so that every step in our
derivation can be easily followed. This simplification made it
possible to show in a more logical way why just the quantity xa,
Egq. (16), enters the theory. Finally, it also makes possible a more
precise estimate of the errors.

* Note added in proof:—We have not taken into account any spin
or relativity corrections, except for the use of the relativistically
correct denominator (pv)? in (10). These corrections are appre-
ciable only at numerically large single-scattering angles x, and
therefore will not materially affect the small-angle multiple
scattering treated in this section. In the region where single
scattering predominates, it should still be a good approximation
to consider the quantity R which will be calculated in Section VI,
as the ratio of actual to correct single scattering.

13 G. Moliere, Z. Naturforsch. 2a, 133 (1947).
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TaBiE I. Last factor in Eq. (22) as a function of atomic number.

VA 1s 6 10 20 30 40 50 70 92
¢
(Z+)2 1.00 105 115 132 1.20 1,00 0.90 0.70

A1 133420 127

& Deuterium; for hydrogen the factor is 2.00.

(19) ; this gives
X< X
b c _ c

xa? 1.167x.?

BNE (Z41)24220.885
=41I’Not(—)
me) BA1167(1.134-3.76a2)
6680t (Z+1)Ziz
8 A(143.34?)

where ¢ is measured in g/cm? B=v/¢, A is the atomic
weight, and No=06.02X10% is Avogadro’s number. The
relations pA=% and ao=%4%/me* have been used. It is
interesting that the Z dependent last factor in (22)
never deviates much from 1; its values for z=1 and
v=c are given in Table I. This means that the effective
“number of collisions” per g/cm? is nearly the same
for all elements.

Hanson, Lanzl, Lyman, and Scott® have pointed out
that the Thomas-Fermi potential is not suitable for
substances of low atomic number, such as Be, and that
in fact their experiments indicate a somewhat larger
Xa for this substance than that required by the Thomas-
Fermi atom. If the potential of the atom is known, it is
easy to insert it in (16) and thus to derive .

V. EVALUATION

Moliere has given a satisfactory evaluation of (20)
for all angles. He defines the new parameter B by the
transcendental equation

B—InB=b, (23)
and the variable ¢ by
' F=AB~t=0/(x.B?). (24)
It will also be useful to use
x=7292 (24a)

The value of B is usually between 5 and 20. The integra-
tion variable is now changed to

(24b)

and the distribution function is expanded in a power

series in 1/B, which gives

1(8)6d6=9d3[f ()4 B-1fD(F)
+BYO@)+ ],

u=Bly,

(25)
where

f‘"’(z?):n!—lfwudufo(ﬂu)
" Xexp(—1e)[1w n(G) ] (26)
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TasLE II. Comparison of the asymptotic formulas for
scattering with the exact theory.

3 FO Fo f@ Jo4f) Jo4f@
0 2 0.8456 2.4929 0 0
0.2 1.9216 0.7038 2.0694 0.0006 0.0008
04 1.7214 0.3437 1.0488 0.0044 0.0034
0.6 1.4094 —0.0777 —0.0044 —0.0050 —0.0003
0.8 1.0546 —0.3981 —0.6068 —0.0815 —0.1246
1 0.7338 —0.5285 —0.6359 —0.2642 —0.318
1.2 04738 —0.4770 —0.3086 —0.4946 —0.320
14 0.2817 —0.3183 0.0525 —0.6113 0.101
1.6 0.1546 —0.1396 0.2423 —0.4573 0.669
1.8 0.0783 —0.0006 0.2386 —0.0032 1.251
2 0.0366 +0.0782 0.1316 0.6258 1.053
2.2 0.01581 0.1054 0.0196 1.2347 0.475
2.4 0.00630 0.1008  —0.0467 1.6718 —0.775
2.6 0.00232 0.08262 —0.0649 1.8877 —1.483
2.8 0.00079 0.06247 —0.0546 1.9200 —-1.676
3 0.000250 0.04550 —0.03568 1.8429 —1.448
32 7.3X10°® 0.03288 —0.01923 1.7240 —1.008
34 1.9X10°® 0.02402 —0.00847 1.6050  —0.566
3.6 4.7X10°¢ 0.01791  —0.00264 1.5038 —0.222
3.8 1.1X10°¢ 0.01366 0.00005 1.4237 0.005
1000 /@ 1000 F» 1000 f®
4 23X107  10.638 1.0741 13617 0.1375
4.5 3x1078 6.140 1.2294 1.2588 0.2521
5 2X10-8 3.831 0.8326 1.1972 0.2602
5.5 2X10710 2.527 0.5368 1.1563 0.2456
6 5X1078 1.739 0.3495 1.1275 0.2264
7 1X1078 0.9080 0.1584 1.0901 0.1901
8 3X107% 0.5211 0.0783 1.0679 0.1604
9 1X107% 0.3208 0.0417 1.0523 0.1369
10 1107 0.2084 0.0237 1.0419 0.1186

For the first two functions (), he gives simple analy-
tical formulas,

JO=2¢, (27)
fO=2e=(x—1)[Ei(x) —Inx]—2(1 -2¢7=), = (28)

where Ei is defined in Jahnke-Emde.!
The next partial function /@ is given by Moliére in
terms of a definite integral, viz.

L [0 = [W(D)+ ¥ ()] — 44 2)

+flt—“dt[lnt/(1——t)—\I/(Z)][(i—t)2em_1

—(x—2)t— (32— 2x+1)£], (29)
where ¥(n)=d lnI‘(n+ 1)/dn, as defined by Jahnke
and Emde. We have not found any way to evaluate the

integral analytically, but a power series was obtained
by Dr. Max Goldstein of the Los Alamos Scientific

“ E. Jahnke and F. Emde, Table of Functions (Dover Publi-
cations, New York, 1945), pp. 1 and 2.
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Laboratory, viz.

o 1
Integral=3"
. n=0 n+ 1

[(¥(m)+C—¥(2)]

xn+3 2 xn+2

X[ - + ] (2§a)
(n+3)! (n+2)! (n+1)!

gntl

Dr. Goldstein was able to use this series to evaluate
f® for ¢ up to 10, or x up to 100. Various transforma-
tions of (29a) were found but none proved more prac-
tical than the series itself.

In Table II, we give the functions f©@, f® and f®
more accurately and over a wider interval of ¢ than
Moliere.’® We also give 394/ ¢=1 and 2, because
these functions determine the ratio to Rutherford scat-
tering at large angles, Eq. (32), and are easier to in-
terpolate than the f’s themselves. As will be shown, the
functions f©@ to f@ are sufficient to determine the dis-
tribution function to about 1 percent or better for any
angle.

For small angles, ie., ¢ less than about 2, the
Gaussian [ is the dominant term. In this region, [V
is in general less than (¥, so that the correction to the
Gaussian is of order 1/B, i.e., of the order of 10 percent.
Hanson ef al.,® have pointed out that a better approxi-
mation than f( in this region is given by a Gaussian
of slightly smaller width: The angle at which the in-
tensity has dropped to 1/e of the maximum, is

bo=x.(B—1.2)} (30)

rather than 6,=x.B?% and a Gaussian of width (30) is
the better approximation mentioned.

The formula for the width of the multiple scattering
peak can be understood simply as follows: The width
can in principle be found by calculating the average of
x? from the single-scattering law, but since o(x) is pro-
portional to x4 the integral S x%(x)xdx diverges
logarithmically at large x. Now a reasonable way to

_ cut off this divergence is to extend the integral to

x =0, the width of the multiple scattering peak itself.
This leads to the transcendental equation (23) for the
width parameter, B. '

For larger angles, > 2, the function f® in (28) be-
comes larger than f©. Indeed, for very large ¢, (28)
goes over into the single scattering law f®W =294
while @ decreases exponentially. Now the fortunate
point is that f/® and the higher f behave for large ¢
as 9722 and the series (25) therefore converges even
faster at large & than at moderate ones. Therefore,
fO@O+4B-1f® will be a good approximate répresentation
of the distribution at any angle. If an accuracy of 1

16 In general, agreement with Molitre is good, the maximum
error being about 3 units of the last significant figure carried by
him. The only major error in Molitre’s table is /@ (&) for #=3.5
for which he gives 4-0.0052, while the correct value is —0.0051.
This mistake had caused us considerable trouble in trying to
obtain smooth distributions.
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percent is desired, and if B is of order 10, the function
f® must be included. This is sufficient, even at large
angles where f® is the dominant term, because f® is
smaller than f® in this region, as can be seen both
from Table IT and from the asymptotic formula (34),
and f® is presumably still smaller.

VI. ASYMPTOTIC FORMULA

In the limit of large angles, the distribution function
tends toward the Rutherford single-scattering law.
According to (9), (19a), and (24), this is

12(0)6d6=2d\/Ns= (2/B)d9/. (31)

Therefore the ratio of actual to Rutherford scattering
is, using (25),

R=[/fa=30(/O+B®+-),  (32)

neglecting the Gaussian term Bf®. The relative mag-
nitude of this term can be seen from Table 1.
For f @, Moliere (M 9.3a) gives the asymptotic
expressmn
Ri=33 D= (1-59-2)~45, (33)

whose expansion in inverse powers of ¢ agrees with that
of the exact expression (28) up to and including the
term of order 9 and agrees reasonably well with it
even in hlgher orders. Similarly, the asymptotlc be-
havior of f® is

Ry=184f® =89~2(Ind+C —2)/1 —99-2—249~4. (34)

In (34), C—% may be replaced by In0.4 which differs
from it by only 0.0065. Equation (34) is about 6 per-
cent too high at #=6, 1.2 percent high at =8, and
0.2 percent high at ¢=10. The error of Eq. (33) is much
smaller; in parts per thousand, it is

Fors= 3 3.2 3.6 4 5 6 8 10
Error= 440 -8 —17 -9 —-14 —-08 —-05 —-01

The most obvious way to obtain an asymptotic
formula for R is to expand (33) and (34) in inverse
powers of ¢ and neglect all terms of order #—* and higher.
This procedure, however, is obviously very inaccurate
since the higher terms in the series expansion of (33)
have very large coefficients. A much better convergent
series is obtained by taking the reciprocal,

Rii=(1—58-2)5=1 —49~2 29~ — (35)

Because of the denominator occurring in its first term,
(34) gives a simple result when combined with (33),
namely (including order 3-¢),

R1=1-49"[142B"1n(0.49)]
+204(12B1—1). (36)

Here R=R+ (Ry/B) is the ratio of actual to Ruther-
ford scattering, so that R is the ratio of Rutherford
to actual. A term of order B2, arising from f® has
been neglected.

A further simplification of (36) can be effected by
noting that in most practical cases B is of the order of
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10, so that the last term in (36) is very small. We may
then write
R1=1—49-1+2B" n(28/5)]. 37)

Here we may re-insert the value of ¢ and B from (23),
(24), (19) and get for the ratio of Rutherford to actual
scattering without further approximation,

1/R=1-8(xc/6%) In(20/5x."). (38)

In Table III, we have compared the asymptotic
formulas (36) and (37) with the exact value of R for
two values of B and various values of &. The ratio of
the first to the second term in Moliére’s series (25),
Bf®/f® is also listed : this ratio is small in the asymp-
totic region. It is seen from the table that for B=14,
the simpler asymptotic expression (37) is excellent,
down to #=24, i.e., right down to the point where the
Gaussian begins to dominate. For B=7.3, the agree-
ment is not quite so good, and the more complicated
expression (36) is somewhat better than the simple
(37), although a larger correction than the last term of
(36) would improve the agreement. Anyway, also for
B=17.3 the agreement is good down to #=3. The fact
that f® and f® combine in such a simple way to give
the asymptotic formula (38) may seem somewhat
mysterious from the derivation given here. A more
natural derivation is given in Appendix A.

The main difference between (38) and previous
asymptotic formulas is that (38) gives 1/R rather than
R, and that the asymptotic series for 1/R obviously
converges much better than that for R. Otherwise, in
agreement with the theories of Moliére and of Snyder
and Scott, (38) has a logarithmic dependence of the
correction term on ¢, in addition to the 1/4% de-
pendence. Other theories, e.g., that of Butler,'® failed
to get the logarithmic dependence but had In(xc/xa)
instead.

As was pointed out before, x.2/6? is the probability
of having a single scattering through an angle greater
than 6 in the foil. The correction term in (38) is roughly
50 times greater than this probability. This shows that
the approach to single scattering is extremely slow as
has been pointed out in the earlier papers.

VII. COMPARISON WITH EXPERIMENT

Hanson, Lanzl, Lyman, and Scott® have shown that
Moliere’s theory is in almost perfect agreement with
their experiments, up to angles ¢ (Sec. 5) of about 2 or

TasLE III. Comparison of asymptotic formulas with exact value.

¢ 4 3.6 3.2 3 2.8 2.6 2.4 2.2

B=14
Exact

1.373 1.70s 1875 2.14 2.52 3.08 3.84

Eq. (37) 1.362 1.48, 1.68 1.84 2.07s 2.47s 3.22 5.30

BfO)/f®  0.0003 0.004 0.031 0.077 0.18 0.39 0.88 2.10
B=173

Exact 1.378 1.477 1.610 1.715 1.87 2.07

Eq. (36) 1.384 1495 1.68 1.82 2.01s 2.29

Eq. (37) 1.393 1.513 1715 1.87 2.10s 2.45

Bf®/f1)  0.0001 0.005 0.015 0.04 0.09 0.20

16 S. T. Butler, Proc. Phys. Soc. (London) A63, 599 (1950).
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F1g. 1. Comparison of the experiments of Hanson ef al. with
the theory. Abscissa is scattering angle; ordinate is the ratio of
the scattering by two gold foils differing by a factor 2 in thickness.

3 (their Fig. 3). They showed that similarly good agree-
ment exists with the earlier experiments of Andrievsky,
Kulchitsky, and Latyshev.”

At larger angles, the analysis was made somewhat
difficult by the absence of accurate tables of Moliére’s
functions for these angles. Hanson ef al., interpolated
between Moliére’s tables and his asymptotic formula,
which do not fit accurately together. This is especially
apparent in their Fig. 4 which gives the ratio of the
soattering by two gold foils having a ratio 2 in thickness:
Moliére’s asymptotic formula gives smaller scattering
ratios than observed.

In Fig. 1, we have compared the experiments with
our more accurate Table II, which we have already
shown to agree with our asymptotic formula (38) in
Table III. The agreement is seen to be excellent. At
large angles, our theoretical curve now lies slightly
above the measurements, whereas Hanson’s lay below.
The position of the maximum now agrees exactly with
experiment while Hanson’s was shifted somewhat
toward larger angles.

VIII. COMPARISON WITH THE THEORY OF
GOUDSMIT AND SAUNDERSON

Goudsmit and Saunderson* have shown that for any
angle, small or large, the angular distribution is given
exactly by

12, 8) = (+1)PoO)
><exp{ ] K sinxdxfl—Pz(x)]], (39)

H. A. BETHE

where f(Z, 6) sinfdf is the number of electrons between
6 and 64-4d6.

It should be noted that the quantity ¢ means
actually the distance travelled along the path of the
electron. No attempt is being made in this paper to
take into account the ‘‘detour factor,” i.e., the differ-
ence between the distance travelled and the foil thick-
ness, produced by the crooked path. This problem has
been considered by Wang and Guth."

Lewis® has pointed out that expression (39) goes
over into the small-angle expression of Moliére, Snyder,
and Scott if we replace sinf by 6 and P; by the well-
known formula'®

Pl(ﬂ) = Jo((H“%)e), (40)

which is valid for small 8 regardless of whether 7 is
small or large. To obtain (7), /4% is replaced by 9
and the sum over / by an integral over 7.

The approximation made by Moliére therefore con-
sists of 3 parts, viz. (a) the replacement of the sum over
! by an integral, (b) approximations made in the ex-
ponential in (39), and (c) the use of the approximate
formula (40) in the factor P;(6). Concerning (a), we
may use the Euler summation formula,

® ® 1
> g0+D)= [ gtint—g @+ @D
1=0 0 24
Now in our case, according to (20),
gm)=nTo(n0) exp[in*(—b+Inin*xD)],  (42)
and therefore
g0)=1, (42a)
from which
fas(t, 0)= fu(t, 0)+1/24+-- . 43)

(GS=Goudsmit and Saunderson, M=Moliére). In
the Gaussian region, fu=1/x so that the correction
term 1/24 is very small as long as the critical angle x.
is small compared with a radian. In the single-scatter-
ing region where 6 is large, higher-order corrections in
the Euler formula become important; the correction
1/24 should certainly not be used when fu is of the
order of 1/24 or less, and it should generally be re-
garded as an estimate of error rather than as a useful
correction.

Now we investigate the errors introduced in the
exponent of (39). First of all, it is now necessary to use
the exact Rutherford formula,

sinxdyx

— 4
4(1—cosy)? 4

Nio(x) sinxdx=2xq(x)

where x. is still given by (10). For angles x small
compared with a radian, (44) goes over into our old

17 M. C. Wang and E. Guth, Phys. Rev. 84, 1092 (1951).
18 This formula is slightly more accurate than that given by
Lewis, Eq. (19), in which /% is replaced by .
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formula (9). As in Sec. 3, we break the integral up into
two parts, from O to k2 and from % to m, and, similarly
to (11a) we choose & such that

xeKkK1/1. (44a)
Then, in the region from 0 to &, we may use the formula
1=Pi(x) =10+ 1) (45)

and replace (44) by (9); then we get
k
| 100 simxix{ 1 P10
i+ D) [ @x/0000, @46)

in complete analogy with (15). The screening angle xq
may then be introduced by (16), in analogy with
Goudsmit and Saunderson.

In the interval x>k, we replace ¢(x) by 1, as in (13).
Then, for /=1, this part of the integral is elementary:

T sinxdx
%Xczf = %Xc% 111(1— COSX)
» 1—cosx

™

=xc’ In(2/k). (47)

k

For other values of /, Goudsmit and Saunderson have
shown that

Ntfwa(x) sinxdx[1—Pi(x)]

1
=%xﬁl(l+1)[ln(2/k)~ (%+%+ N '+Z)]‘ (48)

GS have omitted the proof of this formula as too
lengthy; Lewis has given a proof which is somewhat
complicated. An elementary proof is given in Ap-
pendix B. /

Adding (46) and (48), and using (16) and (19), we
get for the GS exponent, '

0i= [ Nio(x) simxix[ 1~ P
0 1
= et D /e i= (344 |
0+ 1) |
X[—lnxa’+ln2+C— (1-{-%4— X '+;)]; 49)
or, using the well-known formula®
ERERE -+;; ¥+, (50)

19 See reference 14, p. 19.
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with ¥(x)=d InT'(x+1)/dx, we get
0r=3xA0+ 1) —In(x) —¥ D] (51)

This very simple formula is correct for all ! which
satisfy (44a). This limitation is the same as that of
(11a) and, like the latter, introduces errors of the order
of 1/Q at most, with Qg the number of collisions (see
end of Sec. 3).

We now use for ¥ the asymptotic formula,!8

1
YO=IGHDFGHD - (5D)
Neglecting the second term, setting I+%=79=1y/x., and
introducing b from (19), (51) becomes

Qr=1xA(H1)[6 —In(3y) 1. (53)
This differs from Moliere’s formula, (18), only by hav-
ing the factor J()4+1) instead of (I431)? outside the
bracket.

The neglect of the second term in (52) is obviously
justified for large /. Indeed, for large / it must be ex-
pected that the Goudsmit-Saunderson theory should
give the same as Moliére’s because in this case the rapid
oscillation of Py(x) destroys the contributions to the
integral Q; from large angles x, while for small angles
the approximations (9) and (40) are justified. However,
this argument does not hold for small /, especially for
I=1, and in this case 3 approximations are made in
Moliere’s theory: the replacement of the Rutherford
law (44) by (9), the replacement of the Legendre poly-
nomial by the Bessel function (40), and that of the
upper limit 7 of the angular integration by infinity.
Equation (52) shows then that these approximations
compensate almost exactly, the error being only 0.019

“for I=1.

According to (53), the factor % in Moliére’s exponent,
e.g., in Eq. (17), should be replaced by /(I+1). In other
words, the integrand in (20) should be multiplied by

exp[7sx. (b —Ingy?) 1. (54)
Now, according to the beginning of Sec. 5, the most
important values of y are of order B~ making the
parenthesis in (54) equal to B, according to (23).
Therefore,

Jas= fu exp(FexB). (55)

Finally, we consider the factor P;(6) in (39). Moli¢re
[reference 13, Eq. (A.1)] has derived a formula con-
siderably more accurate than (40), viz.

Py(6)= (8/sin0)*J o((I+3)0). (56)
At an angle as large as 90°, this formula gives 1.067,
0.032, and —0.502, respectively, for /=0, 1, and 2, as
compared with the correct values 1, 0 and —0.5. For
all except very low I, the expression remains good even
up to values of 6 close to 180° and breaks down only
in the immediate neighborhood of 180°. For small
angles, theapproximation is, of course, particularly good.
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Combining the three corrections, we get the approxi-
mate formula ‘

Jfas=(0/sind)* exp(Fx2B) fu-t1/24. )

From its derivation, this formula should be good
approximately for x.2B<1, i.e., until the Gaussian has
a width of about one radian. At this point, the ex-
ponential in (57) gives a correction of only 6 percent
so that it can in general be neglected. For larger values

of x.B, i.e., larger thickness of foil, only 2 or 3 terms-

in the Goudsmit-Saunderson formula (39) need to be
taken into account so that this formula becomes very
easy to handle directly. For smaller thickness, (57)
may.be used, and since both the exponential and the
1/24 are in general unimportant, the angular distribu-
tion may simply be written

fm(0) (6 sinb)ida, (58)

where fu is the Moliére distribution function as calcu-
lated in this paper.

As pointed out in the beginning of this section, ¢ is
the total length of path of the electron, rather than
the foil thickness #. The difference (—¢ gives effects
of the same order as the difference between the
Goudsmit-Saunderson and the Moliére distribution.

Lewis® has shown how the energy loss can be taken
into account and has calculated the lateral distribution
in space.

I am greatly indebted to Dr. Max Goldstein of the
Los Alamos Scientific Laboratory for the calculation of
Table IT and the development of methods which made
this calculation possible. I also wish to thank Dr.
Hanson of the University of Illinois for drawing my
attention to Moliere’s theory and for discussion of the
experiments, to Stanley Cohen of Cornell University
for help with Table I and the figure, and to Dr. Henry
Hurwitz of the Knolls Atomic Power Laboratory for
showing me the essentials of the proof of Sec. 2 in 1949.

APPENDIX A. ALTERNATIVE DERIVATION OF
ASYMPTOTIC FORMULA

We consider the region of large angles in which
[, Eq. (28) dominates over all other contributions.
According to Table II, f becomes unimportant for
§>3. We shall neglect all terms which decrease ex-
ponentially with ¢, such as f©, but keep terms which
decrease as inverse powers, 9. We have shown at the
end of Sec. S that f® can be neglected to an accuracy
of 1 percent or better, so that we need consider only
F® and f®,

We shall now show that it is possible to combine
these two terms, by re-arrangement of terms in the
expansion (25). For this purpose, we start again from
the exact formula (20) but introduce Ay=z, rather
than #, as the integration variable. We then write the
exponent of the exponential as follows:

1 (—b+1niy?)

= (g/4N)[—b—21In(2N/R)+2 In(z/k)], (61)

H. A. BETHE

where % is a numerical constant which will be deter-
mined later to our convenience. We further introduce
the abbreviations

B=02=[b+2 In(2\/E) /N2 (62)

Since b is in general large compared to the logarithm,
the &4, defined in (62) is close to # of (24) but is not
identical with it. In our asymptotic region, ¢, is large
and B small.

The distribution function (20) becomes now

[(6)6d6= (A\/N) f lwzdz] o(2)

Xexp(—162%) exp[ (2%/222) In(z/k)].

Expanding the last exponential, the first term will,
upon integration, give a function like [ which de-
creases exponentially with angle A, and can therefore
be neglected. The second term will give a funcion like
f® which will be our main contribution. The third
term gives, except for a constant factor (8\4)~1:

(63)

0

F(2)=f 2d2To(z) exp(—1B2%)z*(Inz/k)2.  (64)

Our simplification will now be achieved by making F®
equal to zero by appropriate choice of the free nu-
merical constant .. Then the distribution function is
reduced to F'® alone.

In the limit of small 3, the integral (64) can be evalu-
ated analytically and gives

lﬂii‘%F(”: —128(341n2—C—1nk). (65)
To make this zero, we have to choose
k=5.0325 (65a)

or nearly 5. The result (65) is closely related to
Moliére’s asymptotic formula for /@, Eq. (34).

For somewhat larger B, it is possible to estimate %
by considering the integral (63) in the complex plane.
We first substitute for Jo(z) the real part of the Hankel
function Ho®(z). Then we replace the integral along
the positive real axis of z by one along the following
contour: We follow the imaginary axis up to z=2¢/8
and then go parallel to the positive real axis. To evalu-
ate the integral along the imaginary axis, we write
z=1x, with x real, and get for the integral in (63):

2/8
—Ref xdxH @ (ix) e’
0

Xexp[ — (x2/2\){In(x/k)+mi/2} ].

Since most of the contribution comes from large x, see
Eq. (70), we may replace the Hankel function by its
asymptotic expression,

HyW(ix)= —i(2/7x)te =

(66)

(67)
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As in Eq. (25), it is now simplest to expand the last
exponential in (66). The first term in this expansion, 1
is purely real. The integral in (66) is then purely
imaginary, which means that the integral along the
imaginary axis gives no contribution at all. This leaves
only the second part of the contour parallel to the real
axis which obviously gives a contribution proportional
to the value of the integrand at x=2/8 which is about
exp(—x+1B+%) = exp(—1/B8) = exp(—34?). This explains
the exponential decrease of £, Eq. (27). (For 8 moder-
ate or large, this term is of course large.)

The second term in the expansion of the exponential
is

—(a2/2\)[In(x/k)+=i/2]. (68)
Only the imaginary part matters, so that the integral
becomes

2/8
(/2 (2) f 8 exp(— 1+ 18a)x—idx.  (69)
0

We now consider the integrand of (69), which we de-
fine as
2 exp(—x+1Bx2). (69a)

The factor x~% is better included with dx as will be
shown below, Eq. (72). This integrand has a maximum

at
x1=F"[1-(1-68)¥]. (70)

In the limit of small 8 which interests us particularly,
x; has the value 3. This is large enough to use the
asymptotic formula (67) but is very small compared
with 2/8. The main contribution to the integral (69)
comes then from the neighborhood of %, and the integral
can be evaluated by a saddle point method. The result-
ing asymptotic formula is similar to (35). For larger 8,
#; increases; for =1, it reaches the value 1/8=6. For
still larger B, there is no longer any solution w;: The
integrand (69a) then has no maximum for real # but
increases monotonically to x=2/8. Then the main con-
tribution comes from the neighborhood of that point:
We get into the region where the Gaussian dominates.
Thus we should expect that our asymptotic theory will
hold reasonably well for B<K§ or $2>6, ¥91>2.45.
This is in agreement with Table ITI which shows that
at about ¢=2.45, formula (37) breaks down and simul-
taneously the Gaussian f® becomes more important
than f®.

We now turn to the third term in the expansion of
the exponential in (66) which is

— @2/ 2\ In(x/k)+7i/2 1. 71)
The imaginary part of this which is the only part giving

a contribution, yields the integral

F<2)~fx5 exp(—x+18+%) In(x/k)x"ddx.  (72)

If B is neglected, the integrand is x%* and has a maxi-
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mum at x=35. Therefore the integral, evaluated by the
method of steepest descent, will be zero if % is set equal
to 5. It was shown in (65a) that this is very nearly cor-
rect, the exact value of % being 5.0325. This is the
reason why we included x~* with dx; had we included
it with the integrand, the maximum would occur at
x9=4.5 which would give less accurate results.

For finite values of 8, the exponential has a maxi-

mum at
xy=F""[1—(1-108)*]. (73)

The method of steepest descent will therefore fail for
B>{ or #:<10¢=3.16; at this point, x,=10. For
smaller 8, the method can be applied and shows that
F®=0, if we set

k= Xa. (733.)

Therefore, if we define ¢#; by (62) and insert for % the
value (73), the distribution function is given by f®(¢4)
alone, without any contribution f®.

According to (73), k depends on #; so that ¢ is de-
fined by an implicit equation which is not convenient.
However, in the region in which the method is useful
at all, (73) may be expanded, giving?

k=x=5/(1-58/2+"-"). (74)
The useful range is somewhat better covered by putting
k=5/(1-3B). (74a)

This is accurate within better than 1 percent for ¢#;>4,
B<%. Imserting into (62), we get then

N92=b+2 In(2\/5)+2 In(1 382,  (75)

which is still implicit but now very simple.

The last term in (75) is small and can therefore be
treated approximately. In particular, it will be shown
presently that ¢ is very nearly equal to ¢ in the region
#1~3.5, i.e., where the asymptotic treatment just be-
gins to be valid and where therefore In(1 —3¢,7%) is as
large as it can get. Therefore we replace ¥, by ¢ in the
last term of (75), and we can then get a relation between
¢ and ¥, using (24) and (23):

9= B[ B+2 In(29/5)+2 In(1 —35-2) T
= BYW[B+2 In(0.49 —1.297) T,

From this it follows that ¥~ ¢, in the important region.
Furthermore, this result provides a check on the theory
of this Appendix: Molitre’s @ vanishes for ¢=3.80
(Table II) so that his distribution function is given by
B-1f®W () alone for this particular value of ¢. On the
other hand, our ¢, is so defined that the distribution
function is B-f® (&) for all (sufficiently large) .
Therefore we should have #,=4¢ at the ¢ for which
Moliére’s f® vanishes. The agreement is reasonably
satisfactory.

(76)

20 This expansion in the denominator is somewhat more accurate
than a direct expansion, and will actually be more convenient,
Eq. (76).



1266

The ratio to Rutherford scattering, (32), becomes
now, using (63), (31), (62), (26):

R= f 2dzJ o(2) exp(—%22/92) 122 In(z/k)

=304 D (9). (an
Since the value of £ matters only for the part propor-
tional to exp(—d4?), it is often convenient to use (77)
directly with (76) and Table II. Alternatively, we may
use the asymptotic formula (33), getting

R=(1-59;2)~45, (78)

Inserting (76), expanding the reciprocal of R and drop-
ping terms of relative order B2 or ¢#¢ leads directly
to our old formula (36).

Finally, we may write down our complex integral
(66) without expanding the exponential; it is

@2/} f i exp(—x+162)

-expl — 322 In(x/k) ] sin(wa2/402).  (79)

The approximation used earlier in this Appendix, of
considering only f@, is equivalent to replacing the sine
by its argument. Since the important x are around 3,
and M is very large (greater than 10) in the single-
scattering region, this is a good approximation.

APPENDIX B. DERIVATION OF THE
GOUDSMIT-SAUNDERSON FORMULA

We shall here prove Eq. (48). Since % is chosen to
satisfy (44a), we may neglect screening. Setting cosy =,
we thus have to calculate [see (44)]

K2 f Ca(l—n[-P],  (8D)

where e~ 3£% and the factor 2 is inserted for convenience
in the following. Because of (44a), P; at x==F satisfies
(45), or, since we now use x as the argument:

1-Pi(1—¢)=3I(+1)e. (82)
We first integrate (81) by parts:
1—Piy(x) | I—e 2dx
1=2— +f P/ (x). (83)
1—x —1 —1 1—x
The integrated part gives, according to (82)
I0+1) —14+P(-1). (83a)
In the integral, we write
2 1+x 1—x2
= 1= F1 (83b)
1—x 1—x (1—x)?

H. A. BETHE

Then the term with 1 can be integrated, giving
1-Py(-1), (83c)

which cancels the last two terms of (83a) (a term of
order e has been neglected). In the other term, we
perform another integration by parts, giving

1—e

1
K1=Z(l+ 1)+——(1—x2)P1’
1—x

—1
—e dx d

— B 1—_;(};[(1—902)}’1]- (84)

Using (82) one finds that the second term cancels the
first. In the last term, we use the differential equation
for the Legendre polynomials and get

Ki=1(1+1)4,, (85)

A1=f —tdel/(l—x), (85&)

which is a considerable simplification.
In order to be able to extend the integral to 1 rather
than 1—e¢, we take the difference

Al—l—Alzf dx(P;_1~Pl)/(1—-x) (86)

Here we use the relation between spherical harmonics,?*
l(Pl_l—xPl)=(1—-x2)Pl’. (87)
Then (86) becomes

1 1
Al_l—A1=l*1f dx(l—}—x)Pl’—f Pldx (88)
. -1 —1

Integrating the first integral once more by parts, and
using the fact that

f Pdx=0 (89)
for any /%0 (orthogonality), we get
Azal—A1=l—1(1+x)Pll_11=2/l. (90)

Inserting back into (85), we find then
1

and inserting 4,;=3K; from (47), we have proved Eq.
(48).

% See reference 14, p. 115.



