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The theory of multiple Coulomb scattering discussed in Part I
has been applied to some speci6c problems in the analysis of data-
obtained with a multiplate cloud chamber. In particular, the
problem of estimating the momentum (or, more exactly, the
quantity II=pcP) for a single particle is discussed, and a pro-
cedure for determining mass using scattering and residual range
is given for the case of a group of particles homogeneous in mass.
In the case of an inhomogeneous group of particles, it is shown
that the distribution function for values of the mean square angle
of scattering in e plates can sometimes be used as a basis of
separation into nearly homogeneous mass groups. In addition
the distribution of the mean square angles provides an estimate of
the error in II or in the value of the mass. These methods are
illustrated by a determination of the masses of the proton and
meson using a mixture of these particles observed in a multiplate
cloud chamber.

In the theory developed in Part I it was assumed that the prob-
ability for single Coulomb scattering goes abruptly to zero for

angles greater than pe=qr /ar„, where e is the screening angle
as given by Moliere, e is the Thomas-Fermi atomic radius, and r
is the nuclear radius. As a result of this assumption the mean value
of the scattering angles, for means of order tivo and higher, remains
Gnite as contrasted with the result of Moliere or Snyder and Scott
where the mean square angle of scattering is infinite. Conse-
quently either the mean of the absolute values of the scattering
angles or the rms angle of scattering can be used in the above
applications. Both cases are given.

The above assumption as to the cut-off angle for single, scat-
tering affects the value of the rms angle of scattering only slightly;
it is shown, however, that the behavior of the "tail" of the dis-
tribution function depends critically on the choice of po. Conse-
quently, the value of II or of the mass is not greatly deperident on
the particular theory of multiple scattering used, but the prob-
ability of scattering through angles large compared with the rms
angle is. The difBcu1ty of identifying a nuclear scattering by this
method is emphasized.

I. INTRODUCTION

'EASUREMENT of the multiple Coulomb scat-
' ~ tering of particle tracks observed in photographic

emulsions has proved a powerful tool in the deter-
mination of physical properties of the particles. '~ For
example, the mass of a particle reaching the end of its
range in the emulsion may be determined by a method
which can be described schematically as follows: One
divides the track into many small "cells" and measures
for each of these cells the residual range and the angle
of scattering. From the theoretical relations connecting
the rms angle of scattering and the residual range to the
momentum and mass of the particle one then computes
the mass.

Consider now the analogous problem of estimating
the mass of a particle which stops in one of the plates
of a multiplate cloud chamber. One is tempted to follow
a procedure very similar to that just outlined, i.e., to
measure for each plate the projected angle of scattering
and the residual range. However, there are some dif-
6culties. While in the case of emulsions 50 to 100 cells
may be available, most multiplate cloud chambers
contain fewer than 15 plates and consequently the
maximum number of cells is 15. Under these condi-
tions the mass determination for a single stopped par-
ticle is quite poor, indeed, so poor as to make the
-method of little value. If, however, one can group
together particles of the same kind from dHFerent
pictures, one has a statistically improved method of
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mission.

t Present address, Washington University, St. Louis, Missouri.
'Goldschmidt-Clermont, King, Muirhead, and Ritson, Proc.

Phys. Soc. (London) 61, 183 (1948).
e S. Lattimore, Nature 161, 518 (1948).

determining the mass. There are several ways in which
this might be done. For example: (1) In some cases the
particle can be identi6ed by a characteristic interaction
at the end of its range. (2) Simultaneous measurement
of the specjt6c ionization and residual range may be
suKcient to give a crude identi6cation of the particle.
(3) From a single picture, one can calculate a rough
mass value for the particle. This may be adequate for
identi6cation of the particle provided the possible mass
values are limited by other information. This last
method will be considered in greater detail in Sec. V.

Another more fundamental difhculty becomes ap-
parent when the procedure just outlined is applied to
cloud-chamber data. As Olbert has shown in a pre-
ceding paper' (quoted in what follows as "I"), the
theory of multiple Coulomb scattering developed by
Moliere4 or by Snyder and Scott' cannot be used with-
out modi6cation. The results obtained in I indicate
that the eGect of the finite size of the scattering nuclei
cannot be completely neglected for the layers of heavy
elements used in most multiplate cloud chambers (e.g. ,

10 g cm ' of lead).
For convenience the results from Part I which are

needed in the present discussion are summarized in
Sec. II below. References to particular equations in
Part I are prefixed by I-. In Secs. III and IV we shall
consider measurement of the momentum and niass of
heavy particles, and, as a partial verification of the
methods discussed, we give in Sec. V the results of a
rough measurement of the masses of the proton and the
xn.eson. Finally in Sec. VI we consider the eGect of the

' S. Olbert, Phys. Rev. 87, 319 (1952).' G. Moliere, Z. Naturforsch. 2a, 133 (1947); 3a, 78 (1948).' H. S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
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1-exp( —xo')
ao(xo) =$ +($)+ —Ei(—xo')

goIL SUMMARY OF MULTIPLE SCATTEMNG
FORMULAS FROM I

6nite nuclear size on the probabihty of large angle where
scattering.

In I the probability of a particle suGering a projected
single scattering through an angle q' in dq', in traversing
a thickness t g cm ' material, was approximated by,

fi(»", »p)d»'=
oQd»'/(» "+» ")',

0,
I

Here yo is the cut-oG arigle of single scattering resulting
from the finite nuclear size and, according to I-S, is
given by,

ai(xp) =Ei(-xp') —1—@($); @(-,') =0.0365; (8)

I(xp' v —2)
a„(xp)=—,v= 2, 3, 4,

2 v(v —1)I"(v+-,')
ae ~

—tl

Ei(—r) = — ' dt

is the exponential integral, e and

z

I(s; p)pl= ' e 't"dt—
Po= P ~~ (2)

where a=1.67&(10'r,Z & is the Thomas-Fermi radius
of the atom and r„ is of the order of the nuclear radius,
Jt'.„=0.49r,A & (r,= 2.82X10 "cm is the classical radius
-of the electron); Q is defined by Eq. (4) and to is the
screening angle defined by Moliere. ' According to (I-3)

is given by

oo = (1.14rp4cZ&/137p){1.13+3.76(Z/137P)'}t. (3)

Q is given in (I-2) by

Q= (4trNt/A) (Ze'/pcp)s.

In Eqs. (3) and (4) p is the momentum of the scattered
particle and Pc its velocity. tr4 is the mass of the elec-

tron, E, Avogadro's number, and e, the electronic
charge. t is the thickness of scattering material in g cm ~,

and Z and A have the usual signi6cance.
The distribution function for multiple scattering re-

sulting from the assumptions of Eq. (1) has been
derived in Part I. It is convenient to express this
distribution in terms of a dimensionless variable
x= » (2GQ) &. Here» is the projected angle of multiple
scattering and 6 is Moliere's scattering parameter
given below. Calling f(x; xp)dx the probability that the
scattering variable x lies between x and x+dx, the
distribution function for x is. represented by the fol-
lowing equation (see Eq. (I-22)J:

is the incomplete gamma-function. ' G is dined by the
transcendental equation,

(P»Pm
(9)( e 2GQP

where ln(ys/e) =0.154 ~ ~ (in' is Euler's constant).
According to I the following useful approximation

may be used to compute 6:
G= 5.66+1 241 ogiLpZt oA—'t/(1. 13P'+3.76(Z/137)') j.

(10)

Equation (10) is valid for all values of G greater than 3.
Finally the expected value of the mean square angle

of scattering is given by [see (I-27) and (I-29)$:

(»')A„=GQ 1+—{in(exp') —1—+(-,') }
2G

=QLin(2» p/» -)—13.

The mein of the absolute values of the angles of scat-
tering obtained in a similar way is given by

t'2 q' 1 ~(I~I)"=I -GQ
I 1+—I

1--.(*.)
Etr ) 2G (

1—exp( —x,')
+ —' —C(xp) i,

xo x, )

f(x; xp) =exp( —x')/or&+ (1/4G) ft"(x; xp). (5)

The symbols in Eq. (5) have the following meaning:

(xp
4 (xp) =— exp( —t') dt

X& ~0
(11a)

xp ——»op(2GQ)
—&

is the error integral.
6

III. MEASUREMENT OF MOMENTUM

is the reduced cut-off angle and f&"(x; xp) is the cor-
rI{:ction function derived in I:

oe

f"'(x; xp) =—exp( —x')Q a„(xp)x'",
v~0

The quantity which can be computed from measure-
ments of the projected angles of scattering p is not the

o E. Jahnke and F. Emde, Tables of FNttctiols (Dover Publica-
tions, New York, T945).

K. Pearson, Tables of tboINcomPtote Guvtvto Fgttotioe (Ca-m-
bridge University Press, London, 1934).
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I

TABLR I. The relative statistical error in 0 for e between one
and ten. The error has the same meaning as that given by Eq.
(30) for n) teni i.e., it corresponds to the e & width of P,(sp, II).
The calculation was done graphically.

1
2
3

5
6
7

9
10

(AII)+/IIg

0.775
0.536
0.432
0.373
0.332
0.297
0.277
0.263
0.244
0.229

(~D)-/OI

0.597
0.364
0.350
0.319
0.297
0.277
0.259
0.241
0.230
0.214

momentum itself but the product of the momentum p
and the velocity cP of the particle, i.e., the quantity,

II=pcP. (12)

If a particle is scattered in several plates of a multi-
plate cloud chamber, one can form from the observed
scattering angles any convenient average of the experi-
mental data. If the ionization loss in the plates is
neglected, the corresponding theoretical averages can
be calculated from the distribution function f(x; xp)
given by Eq. (5). From any of these averages one then
finds the expected value of II. For the theoretical
averages we have

where

Es——[4xr,'EZ A '{1n(2q p/q )—1})&

=
I 4s.r, 'XZ'A-'G(1+ (1/2G) {ln(exp')

—1.0365}))&.

(18)

Here Es is rigorously independent of P, being a
function only of the constants A, Z, and t of the scat-
tering material. This result follows from our assumption
that ppp/y is independent of P, Lsee Eq. (2)). Hence II
varies inversely as (ps)A„&. If one drops the terms in 1/2G,
one obtains the value of E2 in the so-called normal
approximation. "Equation (18) becomes

E,=I4 r, XZA-G)&=( /2)&E, . (18a)

If the number of plates is su%ciently large, one may
equate the theoretical averages to those observed ex-
perimentally, i.e., one may set

(»)"=(I p I')A'

The'observed means (s&)s are by definition

(19)

constant, Eq. (14) shows that the mean of the absolute
value of the projected angle of multiple scattering
varies inversely with II.

For 4= 2, Eq. (13) yields Lsee Eq. (11))
(iv')s„&= Est&m+/II, (17)

(13)

1 m

(»)"=-ZIp'I', (2o)

where
1 ( 1—exp( —xp')

Ei—L8r sNZsA 'G—)& 1+—I
0.9817+

2G ( 2xo

For 0= 1, evaluation of the right-hand side of Eq. (13)
yields I see Eq. (11a))

(I q I)A„——Eit&m, c'/Il, (14)

where q; is the observed value of the scattering angle in
the ith plate. Use of Eqs. (14) or (17) then enables one
to calculate II. However, if e is not large, a more
rigorous treatment of the problem is necessary.

It is evident that in this case there is no longer a
definite relation between (ss)s and (I ppIs)s, . To obtain
the best estimate of II and the standard deviation for
this estimate, we must know the distribution in (ss) .
For 0= 2, this problem has been solved in I. According
to I the variable x, de6ned by

+-,' Ei(—xp') — 4(xp) I (15)
x, (21)

Ei= L8r sEZsA —'G)& 2
X"-' exp( —Xs)

I'(ss/2)
F„(X;xp) =

1 j 1
X 1+—I

0.9817+ ——
I

. (16)
2G 0 2xp xp~- 00

X 1+—Z rr. i"'(xp) x'", (22)
2G r-0Although Ei is a function of P through the functions G

and xp, analysis of Eqs. (2), (3), (6), (7), and (9) shows
that Ei is practically independent of P over a wide
range of values for P. One must be cautioned, however,
that the dependence of Ei on P becomes more pro-
nounced for low Z elements. If Ei can be considered and the a„(xp) are given in Eq. (8).

2 I'(1++/2) I'(v+ss)
~, i"i(xp) =- n„(xp),

I'(v+sr/2)

1 & tl$2
x'=

2GQ '= 2GQ

as a istri ution unction represente y t e o owing
If xpP&)1, the asymptotic expansions of Ei(—xp') and
C xo may be used to express E& as

equation,



vrhich yields
(B/By) Ly" exp( —y')]=0,

yP= n/2.

(26)

(27)
Thus, from Eq. (21),

or
»=(GN»

IIi= (npQ/sp)Ept». (29)

One sees that this result is identical with that for large
n t see Eq. (17)j in the case of the "normal approxima-
tion. "

As a measure of the error we shall. use the quantities
(AII)+/Ili and (611) /IIi such that, if IIi represents the
position of the maximum of P„(sp, II), the function

P„(s&, II) is e times its maximum value at the points
1Ii—(&II) and 11&+(411)+, respectively. Table I gives
the values of (EII)+/Ili and (611) /1Ii for n between 1

and 10. For n &10 the following approximate formulas

may be used:

According to the deinition of x and the meaning of
F (y. ; xp), the probability that, for a given II, the rms
angle of scattering lies between sp and sp+dsp is

4'tl(zpi 11)dz2 Ftl(y i xp) (ByI/Bz2)~&2 (23)

This probability can also be written as yF„(y; xp)dsp/sp.
In the case of momentum measurements the estimate
of D can be based only on the data of one track, i.e., one
has only one value of s2. Under the assumption that all
values of II are a Priori equally probable, the logical
choice for II is the "maximum likelihood estimate'"
and is given by the solution of the equation

B|t./BII= (B/BII)I yF„(y; xp) j=0. (24)

Since, for a given value of s~, II is a function of y, the
above equation is equivalent to

(BIBy)t:yF-(y; xp)1= o. (25)

If one uses for P„ the "normal x' distribution, " i.e., if
one neglects in Eq. (22) the terms proportional to 1/2G,
Eq. (25) becomes,

number of plates traversed, it will be diKcult to achieve
an accuracy much better than this with a multiplate
cloud chamber.

In addition to the statistical error, there is an experi-
mental error arising from the uncertainty of the angular
measurements. Let As2 represent this experimental
uncertainty in the value of sp. From Eq. (17) the ab-
solute value of the relative experimental error is

AII/II = esp/sp. (32)

The limit of accuracy for momentum measurements in

a cloud chamber operated in a magnetic field is defined

by the "maximum detectable momentum. " In an
analogous manner we introduce, using Eq. (29), a
"maximum detectable II."

II .„=(np~'/Esp)Ep»». (33)

Using this definition, Eq. (32) may be written as
follows:

aiI/11= 11/11 (34)

As an example suppose that the plates are of lead, 2 cm
thick, and that Esp ——0.5'. Equation (18) gives K&t»

=3.42X10' (deg) and Eq. (33) yields II 3.2 Bev.
The procedure for the evaluation of II and of theas-

sociated errors given above is based on the knowledge
of the distribution in sp (Eq. 23). Since we do not have
at our disposal a simple analytical expression for the
distribution in s~, a similar treatment of the errors in

this case is not possible.

IV. MEASUREMENT OF MASS

As a second application of multiple scattering theory
we shall consider the case of particles which reach the
end of their range in one of the plates of the cloud
chamber. %e now have at our disposal an additional

quantity, the residual range of the particle at each
plate. From this quantity and from the scattering one
can estimate the mass of the particle.

To simplify the procedure, it is useful to introduce a
new variable g instead of the angle q,

(a11)+ r2)» 2 3(2)»
= &+I-i+—+-I- I+"

(n) 3n 4 (n)

(all)- r2q» 2 3)2~»= 1-I —I+—-I —I+".
En) 3n 4 &n&

(30)

g= yE,
where E is the residual range and
appearing in Eq. (36) below. This
useful one because the following
all elements over a wide range of
II/(npc') (2)

(35)

a is the constant
new variable is a
relation holds in
momenta (0.05 (

which in the limit of large e reduce to
&/pncP =A z(II/npc')", (36)

(AII)+/IIi= (EII) /Ili= 1/(2n)». (31)

From Table I the relative statistical error in the
measurement of II is, for n=10, approximately &20
percent. Since according to Eq. (31) the relative statis-
tical error in the measurement of II depends only on the

See, for example, N. Arley and K. R. Such, Introduction to
the Theory of Probability and Statistics (John Wiley and Sons, Inc.,
New York, 1950), p. 137 8. x= g/V2p, (37)

where m is the mass of the particle, +=0.55 for all

elements, and Ag is a constant for a given scattering
material (Apb ——0.32 g cm P Mev ', A~i=0.20 g cm P

Mev '). The scattering variable x= y/(2GQ)» which

obeys the distribution given by Eq. (5), may be ex-

pressed in terms of g rather than in terms of q, as
follows:
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The advantage in using the above distribution lies
in the fact that p is practically independent of the
momentum (or velocity) of the scattered particle, and
thus the distribution in g is the same for all plates of
the cloud chamber. One may verify this by noting that
(1) since the factor G is nearly constant for practically
all values of P Lsee Eq. (10)j the parameter p is only
a function of the characteristics of the scatterer and of
the (unknown) mass of the scattered particle; (2) the
dependence of the cut-oK parameters xs on P may be
disregarded, -since xo appears only, in the correction
term of g(g;.xs), and thus its accurate numerical value
is of little inQuence on the distribution in q, except for
y&)p.

The explicit expressions 'for (rfs)A„and (I tf I)A, follow
directly from Eqs. (17) and (14), respectively. If one
multiplies these equations by E, as de6ned by Kq.
(36), one finds that

(q')Av&= &st&(Azm~') (m,/m) '-

(I pl)A„——Ert&(Azm, c')~(m, /m)' (41)

Table II shows calculated values of p, (tl')Ap and

(I rf I)A, for four different kinds of particles scattered in a
0.64-cm lead plate or in a 0.79-cm aluminum plate.

If the number n of observed scattering variables g;
is suKciently large, one can simply equate the experi-
mentally observed averages to the right-hand side of
Eq. (40) or Eq. (41). Then one solves the resulting
equation for m. In analogy with the measurement of
momentum and Eqs. (20) and (19) we have

and for large e,
(s.)"=(I.I')"

(42)

(43)

OP. &68
l s t. l. t. I

INCHES

Fn. l. Kxperimental arrangement for selecting stopped par-
ticles. A coincidence between the top tray, two or more G-M tubes
in the bottom tray, and either or both side trays was required.

vrhere

p= (GQ)&R~= (4wr, slVZ'A rfG)&

)& (no~'A z) (m, ,/m)' — (38)

Hence the variable p obeys the following distribution:

g(rf; xs) = f(x; x&)dx/dri

If n is not large it is again useful to have the dis-
tribution of the means, i.e., the distribution in (Ss) .
Setting 4'„(Ss, p)dSs equal to the probability that a
particle with the parameter p(m) has a rms scattering
variable between Ss and Ss+dSs in traversing e plates
of scattering material, we obtain from Eq. (22)

t' I )' frl )''
+-(Ss p)=l

&2p') (2ps)

TABLE II. The values of the mass parameter p, the expected
value of the rms of the variable v, (v')A„&; and the expected value
of the mean of the absolute values of the variable v, (~ v ~ )A„ for
diferent particles scattered in 7.3 g cm ~ of lead or 2.2 g cm~ of Al.

(2')'*p

(
exp

l

2p')

1
+ f&&I —;x,I. (39)

4pG(2s. )& I V2'p )

p-meson
m-meson
1000 m,
proton

7.3 g em ~of Pb
n &n')Ay~ &lnl)A„

58.5 59.3 46.7
52.5 53.2 41.9
29.5 29.9 23.5
22.5 22.8 18.0

2.2 g cm ~ of A1

&m'&Ay~ (lnl&A„

10.6 12.20 9.01
9.40 10.8 7.99
5.30 6.08 4,51
4.19 4.81 3.56
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f I )* & 1
(
Sr= Q(to»~) '

I n 1] rt-1'-r-
9 J. H. Tinlot, Phys. Rev. 73, j.476 (1948).

(46)

Differentiation of this equation with respect to S&
shows that the maximum is given approximately by

(ss) t „.b= L(rt —1)/n$&p. (45)

LThe exact expression is given in Eq. (I-41).]
Since the position of (Ss)~,.t „,b depends on p, it is

evident that, for a mixture of particles with two dif-
ferent values of p, the resulting distribution in S2 may
consist of two mell-separated parts. As we shall see in
the following section, it is possible under some condi-
tions to separate protons from m- or p,-mesons in a fairly
unambiguous way using this method.

Thus the numerical values of p in Table II give an
idea of the potentialities of the scattering method for
the separation of particles of different masses.

V. EXPERIMENTAL RESULTS

We now turn to the discussion of a particular experi-
ment which was not performed as a speci6c check of the
present theory, but whose results give some con6dence
in the methods outlined above.

The experimental arrangement is shown in Fig. 1. 1t
consisted of a cloud chamber 50 cm square and 10-cm
illuminated depth. The chamber contained 14 lead
plates 0.64 cm thick, and it was expanded by a pene-
trating shower detector of the type used by Tinlot~
placed 0.7 meters above the chamber. Under these con-
ditions most of the ionizing particles photographed in
the chamber were protons and x-mesons. However, one
would expect a few tracks of p,-mesons. Some of these
arise from the decay of x-mesons which are produced in
the nuclear event while others originate simply from
unassociated p,-mesons. These latter traverse the
chamber during its sensitive time and are recognized as
not being of counter age. For our analysis, we have
selected 72 pictures in which a particle appeared to stop
after having traversed at least five lead plates.

In the case of any particular particle track, n then
varies from a minimum of 5 to a maximum of 12, and
individual mass measurements will have little sig-
ni6cance. If, however, one can identify particle tracks
from diferent pictures as having been caused by the
same kind of particles, one can group all such data
together to obtain a statistically signi6cant value of
(Ss)». For this purpose we have in what follows applied
the third method mentioned in the introduction; i.e.,
we have used the experimental distribution in S2 as a
basis of separating meson tracks from proton tracks.
After this procedure the separate data were grouped
together and the mass values for the proton g,nd meson
calculated from Eq. (43).

To separate the protons from the mesons, we have
chosen the following procedure: From the experimental
data, we have computed for each accepted picture the
quantity,

l4

«2—

,Mi 60, 80 lOO

g ~ (—„",e R, )*'

fdeg (g-cm &y

FIG. 2. The distribution in P for 72 stopped particles

Le=(ll( -l)Ptt ~;"3.
The histogram represents the observed distribution. The solid
curve is the theoretical curve predicted by Eq. (49). The in-
dividual contributions' by 55 protons and 17 mesons are indicated
by the dashed curves.

G (8 p)=L( —1)/2p'j'~ {L(N—1)/2p'1'5;*s) (4&)

separately for protons and mesons, taking as the average
number of traversals observed per picture n= 7.
G„dP represents the probability of observing the variable
f in the interval between $ and P+d$, and it is nor-
malized so that

G.($)dt=1.

Evidently the observed distribution function should
be represented by the following expression:

&N= (Np(Gr) proton+ (&2 Nr ) (Gr)meson& ~&q (49)

where ~ is the number of cases where $ lies between

g and P+h$, and N~ is the (unknown) number of
protons. The best 6t of Eq. (49) to the experimental
data corresponds to X~=55, and therefore, E =17.

f Note added iN proof: The relation betw—een the variable a
used in Figs. 2, 3, and 4, and the variable p is given by Eq, (A4).

where n is the number of Pb plates traversed by the
particle in question. Since n varied from case to case,
the position of the maximum of the distribution in S~
would not be constant; however, according to Eqs. (45)
and (46), the position of the maximum of the dis-
tribution in $ is independent of ts. Thus by the choice
of the variable $ one avoids an undue broadening of the
distribution cprve obtained by grouping together data
corresponding to diBerent values of n.

The 72 values of $ obtained in this way have been
plotted in the histogram shown in Fig. 2.f. In order to
compare this histogram with the theoretically predicted
distribution in $, we have calculated values of the
function:
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as calculating from Eq. (40); and

tep = 1610'„
calculated from Eq. (41). Similarly, the data contained
in the group of tracks with P)42, 138 angles, yield for
the meson mass

( +32)
m.+„-] 213

-26)
using Eq. (40), or

nz +„=21(be,

using Eq. (41). The errors quoted are statistical and
were obtained from a formula analogous to Eq. (31).
The asymmetry in the error arises from the fact that
1/p is not a linear function of the mass.

I20-
g eRoc

588 PROTON ANGl. ES

80—

0

40

20—

. 20
1

40 60 80 deg (gem )'55~

FIG. 3. The distribution in y for stopped particles with &&42.
The histogram represents the observed distribution of 388 values of
q. 'The curve represents the theoretical distribution computed for
protons LEq. (39)].

The curve defined by Eq. (50) with X+=55 is repre-
sented by the solid line in Fig. 2.

After the uumber of protons and mesons has been
established, it is not difFicult to select the individual
events corresponding to stopped protons and those cor-
responding to stopped mesons. Evidently it is most
likely that the 55 values of $ forming the left part of the
histogram in Fig. 2 will correspond to protons and thus
the remaining 17 values of $ forming the "tail" of the
histogram are due to the contribution of mesons. It
turns out that the "separation value" of $ given by the
above procedure is 42.

By grouping together the 388 values of g corre-
sponding to ) &42, we obtain the following value for
the proton mass

( +143i
1690—128)

q =eR
l2I ~ - MESON ANGLES

ond I7 p - MESON ANGLES

O IO—

I I

0 20 40 60 80 60 I20 l40 deg- (g cm~)

FzG. 4. The distribution in y for stopped particles with &&42.
The histogram represents the observed distribution of 121 values
of y obtained from "counter-age" tracks, and of 17 values of y
obtained from post-expansion tracks. The curve represents the
theoretical distribution computed for 121 scatterings of ~-mesons
and 17 scatterings of p-mesons. (Eq. (39).j

Remembering that the mesons are mostly ~-mesons,
one sees that in all the above cases the experimental
mass values are probably too small. Such a systematic
discrepancy might be caused by the following efFects:
(a) the broadening of the distribution function intro-
duced by the noise level scattering, (b) the bias intro-
duced by our separation procedure for mesons and
protons, (c) the decay of s.-mesons in Right, and (d)
scattering by other than electrostatic forces.

The first efFect has been considered in I-Sec. IV, and
its application to the present case is discussed in more
detail in Appendix I. %e note here that this efFect is
small for mesons but lowers the experimentally ob-
served mass value of the proton by a few percent.

The second efFect is more difFicult to evaluate quan-
titatively. In our analysis we have assumed that all
particles for which $ &42 are protons and all particles
for which $)42 are mesons. We estimate that this
criterion mislabels two mesons and two protons. Thus
our separation procedure makes 14 out of 388 proton
angles too small and 14 out of 138 meson angles too
large. Correspondingly, the experimental mass value of
the proton should be slightly too high, and that of the
meson appreciably too low.

Two of the m-mesons represented by the 14 counter-
age meson tracks observed should have decayed before
reaching the chamber. The expected value of the meson
mass assuming that three of the tracks included in the
analysis were post-expansion tracks of p-mesons and
that two m-mesons decayed before reaching the chamber
is '255m, .

Finally, for the x-mesons and protons there is some
nuclear scattering which modifies the observed mass
values. The mean kinetic energies of the protons and
mesons observed in the chamber are about 200 Mev and
100 Mev, respectively. Assuming that the total cross
section for nuclear scattering is about geometric, one
expects about one scattering angle in 25 to be modified

by nuclear efFects. In view of these uncertainties we
have not attempted a rigorous correction of the data.

Figures 3 and 4 show the histograms of the observed
distributions in p for protons and mesons, respectively.
The solid lines represent the theoretical distributions as
calculated from Eq. (39).While the agreement between
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experiment and theory is satisfactory, we wish to em-
phasize that the determination of masses by the
methods outlined above is as yet a rough procedure,
and that a large amount of experimental work remains
to be done before its accuracy can be considered as
established.

(GQ)'
fw(o) =

7ripw V2cPP EXp)
(50)

where E,=constant=21 Mev and Xp is the radiation
length' according to Moliere,

1 ] 0.0365'
fM(0)= —

I 1+
4G i '

VI. THE PROBLEM OF THE NUCLEAR SIZE, AND THE
PROBABILITY OF LARGE ANGLE SCATTERING

Although the results discussed above show that there
is no statistically significant discrepancy between
experiment and theory, it is diS.cult to draw a definite
conclusion as to whether the distribution function
f(x; xp) is in better agreement with experiment than.
those given by Moliere or by Williams. This results
from the fact that, for the particular scattering layers
used in our experiment (0.64-cm Pb plates) and for
angles smaller than twice the rms value the values of
the three distribution functions do not diRer from one
another by more than 3 percent. As far as the small
angle scattering is concerned, the distribution f(x; xp)
is noticably diRerent from those given by Moliere or
Williams only for thicknesses of heavy materials greater
than 50 g cm '. One may verify this statement by
comparing the three distributions in the limit as the
angle of multiple scattering becomes zero. In the
Gaussian approximation (Williams), "

r„=I'R„=0.491'r+1, (51)

l4p

the behavior' of the "tail" of the distributions, i.e., the
relative frequencies of scattering angles several times
the rms value. Here the results of Williams and Moliere
differ as to order of magnitude. According to our
modification of the Moliere theory, the behavior of
f(x;xp) for x»1 depends strongly on the cut-oB
parameter xp. Indeed, f(x; xp) approaches the Moliere
distribution (i.e., the distribution of single scattering,
see Eq. (I-19)$ for xp»x, and that of Williams (Gaus-
sian distribution) for xp«x.

The controlling role of xp on the distribution function
suggests some caution in the estimate of numerical
values based on the behavior of the "tail." Evidently,
in our highly schematic treatment of the eRects of the
finite nuclear size, Eq. (I-20) should be interpreted as
giving the order of magnitude of xp rather than its
accurate numerical value. In particular, there is no
justification for identifying the eRective radius for
nuclear interaction R„with that for electromagnetic
interaction r„. No quantitative results exist for lead,
but the situation is indicated by the results of Amaldi
et al. who have considered this problem for the Coulomb
scattering of p,-mesons from light nuclei. " Their
parameter b describing the nuclear dimensions, turns
out to be about 30 percent smaller than R„. At least
this is the case for the coherent scattering of p,-mesons
from protons, , the latter being assumed point charges.
The presence of incoherent scattering and the possi-
bility of a 6nite value for the (electromagnetic) radius
of the proton complicate further an accurate theoretical
determination of r„, In view of these diTiculties we

propose to express r„as follows:

and according to Eq. (5),

1
f(0; xp) =—1+—0.0365

4G

1—exp( —xp') —Ei(—xp')

rrp 80
)

LLJ

Xp

For thick layers of heavy scatterers xp becomes smaller
than 1, and the value of f(0; xp) may exceed the v'alue

of fw(0) or of fM(0) by more than 5 percent. In Fig. 5
we illustrate this point by comparing the experimental
results of Code" with the theoretical distributions. The
solid curve is calculated by means of Eq. (5) and the
dashed curve represents the Moliere distribution which,
for the small angles considered here, cannot be dis-
tinguished from the distribution of Williams.

Another basis for the comparison of the theories is
' See B. Rossi and K. Greisen, Revs. Modern Phys. 13, 265

(1941).
u F. L. Code, Phys. Rev. 59, 229 (j.941).

~ ep-

E

40

20—

0
0

N/r&EXF~
I I

4 6 8 l0'ev-degrees
pce

Fro. 5. The distribution in (pc8) for cosmic-ray particles at
sea level which traverse 3.8 cm of tungsten. The histogram repre-
sents the experimental results of Code with corresponding statis-
tical errors. The solid curve was computed by means of Eq. (5);
the dashed curve represents the Moliere distribution.

Amaldi, Fidecaro, and Mariani, Nuovo cimento 7, 1 (1950).



ANN IS, BRI D GE, AND OLBERT

Tasx,E III. The integral scattering probability P(q; I') tabulated as a function of thickness for aluminum, iron, and lead for values
of I' between zero and one. q is the projected angle of scattering y expressed in units of (GQ) & and p is an arbitrary parameter which
6xes the cut-oB angle for single Coulomb scattering.

@at g cm~

1.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0

2.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0

0.3244
0.1494
0.0657
0.0310
0.0268
0.0104
0.0071
0.0051
0.0038

0.3245
0.1495
0.0658
0.0311
0.0169
0.0105
0.0072
0.0052
0.0039

0.3245
0.1495
0.0659
0.0312
0.0170
0.0106
0.0073
0.0053
0.0041

Al
10

0.3220
0.1451
0.0605
0.0260
0.0126
0.00691
0.00412
0.00256
0.00158

0.3226
0.1459
0.0613
0.0269
0.0135
0.0078
0.0050
0.0034
0.0017

0.3229
0.1464
0.0618
0.0274
0.0140
0.0083
0.0055
0.0039
0.0024

100

0.3113
0.1318
0.0472
0.0148
0.00419
0.00108
0.00025
0.00005
0.00001

0.3163
0.1369
0.0529
0.0180
0.0061
0.0019
0.00063
0.00018
0.00005

0.3192
0.1408
0.0554
0.0211
0.0084
0.0035
0.0014
0.00055
0.00018

0.3241
0.1490
0.0651
0.0304
0.0163
0.0099
0.0067
0.0046
0.0029

0.3243
0.1492
0.0654
0.0307
0.0165
0.0102
0.0069
0.0050
0.0035

0,3243
0.1495
0.0655
0.0308
0.0166
0.0103
0.0070
0.0051

- 0.0039

0.3196
0.1421
0.0572
0.0226
0.00939
0.00400
0.00167
0.00065
0.00022

(b) r=o.lo
0.3216
0.1445
0.0596
0.0251
0.0121
0.0061
0.0031
0.00167
0.00079

(c) r=o.so

0.3222
0.1455
0.0607
0.0263
0.0130
0.0073
0.0045
0.0029
0.0023

10Q

0.3000
0.1210
0.0395
0.0106
0.00238
0.00046
0.00008
0.00002
0.00000

0.3081
0.1284
0.0446
0.0133
0.0034
0.00083
0.00026
0.00004
0.00001

0.3140
0.1344
0.0494
0.0161
0.0050
0.0014
0.00034
.0.00008
0.00002

0.3236
0.1487
0.0649
0.0300
0.0157
0.00906
0.00554
0.00367
0.00160

0.3242
0.1494
0.0657
0.0310
0.0166
0.0100
0.00655
0.00449
0.0026

0.3244
0.1498
0.0662
0.0314
0.0270
0.0105
0.0071
0.0050
0.0033

V.3

0.3152
0.1367
0.0525
0.0187
0.00645
0.00210
0.00062
0.00016
0.00003

0.3193
0.1420
0.0574
0.0228
0.0094
0.0040
0.0016
0.00055
0.00020

0.3214
0.1447
0.0602
0;0256
0.0220
0.0063
0.0034
0.0019
0.0005

Pb
10

0.3125
0.1340
0.0496
0.0166
0.00521
0.00152
0.00039
0.00009
0.00002

0.3176
0.1395
0.0550
0.0207
0.0078
0.0029
0.0010
0.00029
0.0001 i

0.3204
0.1434
0.0586
0.0240
0.0106
0.0053
0.0025
0.0013
0.0003

1QO

0.2838
0.1071
0.0311
0.00678
0.00106
0.00010
0.00000

0.2935
0.1252
0.0360
0.0090
0.0018
0.00030
0.00004
0.00001
0.00000

0.3023
0.1232
0.0410
0.0114
0.0026
0.00057
0.00011
0.00002
0.00000

1.0
I.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

0.3246
0.1496
0.0660
0.0313
0.0171
0.0107
0.0074
0.0054
0.0042

0.3232
0.1468
0.0622
0.0278
0.0144
0.0088
0.0060
0.0044
0.0035

0.3223
0.1448
0.0597
0.0255
0.0126
0.00750'
0.00508
0.00374
0.00292

0.3245
0.1497
0.0657
0.0310
0.0168
0.0105
0.0072
0.0053
0.0042

(d) r 0 (Moliere)

0.3232 0.3223
0.1466 0.1447
0.0622 0.0596
0.0277 0.0254
0.0143 0.0126
0.00870 0.00745
0.00594 0.00505
0.00438 0.00372
0.00342 0.00290

0.3248
0.1502
0.0665
0.0318
0.0174
0.0110
0.00753
0.00556
0.00434

0.3236
0.1475
0.0631
0.0287
0.0151
0.00923
0.00632
0.00466
0.00364

0.3234
0.1472
0.0627
0.0282
0.0147
0.00899
0.00615
0.00453
0.00354

0.3225
0.1450
0.0600
0.0258
0.0129
0.00767
0.00520
0.00383
0.00299

where the dimensionless parameter F is to be deter-
mined experimentally. An underground experiment on
the large-angle scattering of p,-mesons would seem to be
the most reliable method for the determination of F,
since the measurements would not be affected by the
presence of particles (protons or s-mesons) with large
cross sections for nuclear interactions.

To facilitate a comparison of the experimental results
with the theoretically predicted distributions we tabu-
late helot the integral distribution of multiple scat-
tering, i.e., the quantity

projected angle ip expressed in units of o = (GQ) f (or the
variable rl in units of p), so that P(q; I') represents the
probability to observe an absolute value of the angle
equal to or larger than q times the rms value. The data
for lead have been given as a function of absorber
thickness in Fig. 6. In particular note that Table IIId
for I'=0 (i.e., xs ——ao), represents the integral Moliere
distribltioe. A comparison of the four tables shows that
P(q; I') depends strongly on the assumed value of I',
the dependence is particularly pronounced in the case
of lead (see Fig. 6).
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TABLE IV. Numerical values oi the correction function «„(e).
The body of the table gives the fractional increase in the mean

- square angle of scattering in the nth plate which results from the
momentum loss which the particle suGers in traversing this plate.
et is the distance the particle penetrates into the plate in which it
comes to rest.

where (0')A„ is the expected value of the experimentally
observed mean square scattering angle; (to')A, is the
theoretically expected mean square scattering angle in
the absence of "noise" Lgiven by Eq. (17)j and p is
defined as:

eQe 0.00 0.10 0.25 0.50 0.75 1.00 p= o P/GQ. (AS)

1.05
1.02
1.01
1.01
1.00

1.54
1.04
1.02
1;01
1.01
1.00

1.25
1.03
1.01
1.01
1.01
1.00

1.12
1.03
1.01 .

1.01
1.00
1.00

1.07
1.02
1.01
1.01
1.00
1.00

1.05
1.02
1.01
1.01
1.00
1.00

numerical values of I(„ for a few values of e and for e
between one and six. The cases &=1 and &=0 give
upper and lower limits for possible values of «„(e).
Note that, for e &1, ~„differs from unity by 5 percent
or less. Hence our procedure for computing the mass. is
justifmd.

To improve the statistical accuracy when only a
limited amount of data is available, one would like to
include measurements in the first plate. However, in
this case the correction is appreciable and the first plate
must be omitted unless the actual point of stopping is
known. In some cases it is possible to determine the
point of stopping quite accurately; e.g. , the particle may
stop in a plate and give rise to a visible decay product.
Then one may use the exact value of the residual range
measured from the center of the scattering plate to the
point of stopping. The proper value of ~„can be inferred
from Table IV.

APPENDIX II

The Effect of "Noise Level" Scattering

The angular measurements which have been con-
sidered above are subject to two main sources of error;
the track of a particle which sufFers negligible real scat-
tering in the gas between two plates is not straight
because: (1) The track is made up of several "blobs"
which sometimes correspond to 8-rays with an energy
of several kilovolts. The center of the "blobs" will not
in general dedne the trajectory of the particle and the
extent to which the actual path can be determined is a
function of the experimental conditions. (2) Even in the
absence of the above efFect there is an instrumental
error in the determination of the scattering angles.
This is due to the uncertainty in placing templates on
the image of the track or in making measurements of
the angles by any other means. We will call the com-
bined efFect of the above errors "noise level" scattering.
Its eGect on the observed angles of scattering was con-
sidered in I, Sec. IV.

It was shown there that in the "normal approxima-
tion" the expected value of the observed mean square
angle of scattering is given by

and since the mean value of y —y' is zero, Eq. (A8)
becomes

, ,'= (1/~) Z(t '—t '')' (A9)

If we assume that the distributions of y; and y are
normal, the distribution of the difference (y;—y, ) is
also normal. If, moreover, we assume that the two sets

. of observations have the same weight, we have for the
mean square value of p; or p,

2=1 2aq =~a~ ~1 . (A10)

Using this result we can determine the efFect of the
noise level scattering on the variable g and, therefore,
upon the mass measurements. Let us call the value of q
modified by the noise level scattering co. In the mass
measurement discussed in Sec. V we obtained from
diGerent particle tracks many values of co for any given
plate number i above the point of stopping. Hence we
may express the expected value of co in the ith plate as

((i0j )Ay (HP)AyRj' = (1+2p;)(pP)A~R, '~) (A1 1)

Here 0~ is the standard deviation of the noise level
scattering.

If we assume that there is no systematic error re-
sulting from effect (1) above, ot can be determined
from a large number of measurements of the same
scattering angle.

We have, however, used a somewhat difFerent method
and will now outline the procedure used to determine
cr~ experimentally. Let us call the observed angle
between the particle track and an arbitrary line of
reference l;. (The observed angle of scattering 0, is
then given by the consecutive differences of f, i.e.,
8;=i;+t f, )—Con.sider now a large series of measure-
ments of f on the same tracks by two independent ob-
servers. The observed angle l; can be written as the
sum of the true angle 8; and the angle of noise level
scattering y;. Thus for the two series of measurements,

t';=8;+y;, and f', '= 8,+y, (A6)

since the true angle 8, is the same for the two observers.
The difFerence between two observations of the same
angle is then just the difference in the noise level scat-
tering, vis. ,

(A7)

We will assume that the mean square value of p is
independent of the value of 8, hence the mean square
value of 0~ ~ is given by

(8')A~= (1+2')(y')A. , (A4) using Eqs. (35) and (A4). The averages are now func-
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tions of i since p depends on the momentum of the
particle. Equation (A11) may also be written as

2or2R'~)
(&s~)A& I 1+ 1(n')Av (n')Av+ 201 ~i & (A12)

2 )
since according to Eqs. (A7) and (38), 0& and p are
independent of i.

Summing over i we have for a group of particles all
of which penetrate e plates,

(A13)

nag = 1730m, . (A14)

Since the calculated correction for the noise level scat-
tering depends on 0-&, it is quite sensitive to the evalua-
tion of 0-~. In this evaluation our method of measuring
angles was not the same as that used in the mass meas-
urements; therefore, the correction is rather uncertain.
We have performed the calculation chieQy as an. illus-
tration of the methods used.

The limits on the summation arise from the fact that
we computed values of g for mp 2.

Using 55 values of f, —t,' we evaluated or as 0.4
degrees. Using Eq. (A13) the mass of the proton is
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Pseudoscalar Matrix Element in Beta-Decay

M. RUDERMAN*
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The interpretation of the P-spectrum of RaE seems to need a mixture of pseudoscalar and tensor inter-
actions. Estimates of the necessary G~ give Gp))Gz to compensate for the small pseudoscalar matrix
element. This matrix element is greatly increased if the nucleon is in a potential which strongly mixes free
particle states of positive and negative energies even though the diagonal terms are not large. Such an
interaction arises from pseudoscalar meson theory. The pseudoscalar matrix element is calculated for the
RaE decay assuming that the nucleons interact through pseudoscalar coupled pseudoscalar mesons. Ex-
change transitions, in which two nucleons exchange the charge and spin given to the electron and neutrino,
predominate. The RaE spectrum can be fitted with Gp —GT. Exchange terms alter other momentum type
matrix elements appreciably. Such effects are unimportant for gradient coupled pseudoscalar mesons.

I. INTRODUCTION
' "N the p-decay of heavy nuclei the perturbation of the
~ ~ electron wave function by the Coulomb field of the
nucleus plays a dominant role in determining the
spectrum shape. This accounts for the allowed shape
associated with most first forbidden transitions. Devi-
ations from the allowed shape are small' except for the
"unique forbidden" spectra (AI=2, yes). The P-spec-
trum of RaE, assuming it is simple, is very diferent
from the allowed or "unique forbidden" spectra. For
many years this was explained as a second forbidden
transition' (M= 2, no).

Recently Petschek and Marshak' have pointed out
that the shell model predicts unambiguously that the
parity of RaE is odd. The final even-even nucleus
should have even parity and the RaE P-decay cannot
be second forbidden (no). Since a spin change greater

* National Science Foundation Postdoctoral Fellow on leave
from University of California, Berkeley, California.

'All known first forbidden spectra with BI=1,0 have an
allowed shape except RaE. This is to be expected only if there
is no Fierz type interference between V and T, A and P, S and A.
Only STP or VA are compatable with observed allowed and
once forbidden spectra. See reference 6.

'E. J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 85, 308
(1952).' R. E. Marshak and A. G. Petschek, Phys. Rev. 85, 698 (1952).

than two gives much too large an ft value they at-
tempted to interpret it as a first forbidden transition
with BI=2, 1, 0. All linear coinbinations of the p-in-
teractions (5, V, A, T, I') not excluded by the Fierz
condition were investigated. They found that the ob-
served spectrum can be understood only if the decay is
a 0—+0 transition. It is then possible to cancel those
parts of the spectrum which usually dominate and give
the allowed shape. The remaining terrg. s give agreement
with the measured RaE spectrum. The necessary can-
cellation is accomplished with a combination of tensor
and pseudoscalar interactions such that

(t(G,/G, ) p»
~

i"p~'/z I
-—3. (1)

&J

R is the nuclear radius (e'/2mc')2'*. Gp and Gr are the
Fermi constants for pseudoscalar and tensor p-inter-
actions. 4 The increase in lifetime which results from the
cancellation of the usually dominant terms in Grst
forbidden transitions is enough to explain the large
log ft of RaE.'

7 zI 0
5 E. J. Konopinski and L. M. Langer, The Experimental Clari-

1I,cation of the Theory of Beta-Decay, May, 1952 (to be published).


