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The Macroscopic Theory of Superfluid He' —He' Mixtures*
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The macroscopic hydrodynamic equations to the reversible linear approximation for mixtures are set up
and analyzed, without making any assumptions beyond that of the traditional form of the two-Quid model.
The equations of wave motion are derived and discussed. A novel feature of them is appreciable coupling
between pressure and entropy-density Quctuations. It is shown how the constants appearing in the equations
may be expressed partly in terms of the measured partial vapor pressures. Pomeranchuk's formula for the
velocity of second sound appears as a possible special case; and it is shown how his assumption that the He'
component is carried entirely with the normal velocity may be tested experimentally. The intervention of
isotopic diffusion is brieQy discussed.

In the present case of a mixture, the density is also
divided between the two chemical components; and we
have to assign each of these isotope densities separa|:ely
between the two velocity Gelds. Thus,

L INTRODUCTION
' "N recent years experiments with liquid helium eon-
' - taining appreciable fractions of the He isotope have
shown that this mixture retains the properties charac-
terizing a superQuid: a lambda transition, ' superleak
transfer of mass, ' the fountain efFect,2 and "second
sound" waves. ' The study of these macroscopic proper-
ties in isotope mixtures may well become of importance
to the progress of the microscopic (kinetic) theory of
"quantum liquids. " For pure4 He4 super Quid, an
empirical macroscopic theory —the "two-Quid model"'—is a virtually indispensable intermediary between the
dynamical experiments and microscopic theory. the
principal theme of this paper is the construction of such
a macroscopic dynamics for mixtures, analogous to and
generalizing that for pure He'. (The relation of this

paper -to other published work on the question is. indi-
cated below. )

On the basis of the experiments quoted, it is natural
to assume that the two-Quid dynamics gives as correct
a description for the superQuid mixtures as for pure
He'. ' This assumption will be made throughout the
present work. Accordingly, the density p is divided into
two parts associated respectively with two velocity
6elds v„, v, ; so that the mass flow J has two terms, of
which the 6rst alone is proportional to the entropy
flow N,

P P3+P4r PS P3n+P3sr P4= P4a+P4s

Pa= Psn+P4ar Ps= Pss+P4s
(2)

The ratios ps„/ps„p4„/p4„will in general depend, like
the total density and the other thermodynamic mag-
nitudes, on the concentration of He'.

We shall 6nd that the precise partition of the He3
component between the two velocity 6elds has far-
reaching efFects on wave propagation. The mass Qow
vector for the He' may be written

J3 P3ava+Pse s P3V1+l(P4sPBa P4„aP3e)/P jV3'
= PBBV1+(Pem„Patne) VS, —(3)

pV1= J= paVn+peVsr VS=Va V»
and

Psa=Pttrnr Pss=pttrer a+trrs=So=PS/P.

The vs term of (3) represents a flow of He' m
reference frame moving with the center-of-gravity
velocity v&, in analogy with the v& term in the entropy-
Qow equation

N =PSV1+Pgvs. (6)

This Qow of He' will give rise, in wave motion involving
v2, to Quctuations of Hee concentration and hence of
the thermodynamic functions in their dependence on
the concentration. The conseq'uences of these Quctua-
tions are: (a) an appreciable coupling between pressure
and temperature waves, whereas for pure He4 the
coupling is negligible; and (b) a large influence on the
dependence on He' concentration of the velocity of
second sound. '

The flow represented by the vs term of (3) has been
isolated in the "heat Qush" experiments of Lane e1 il.,s
in which "normal" and "super" currents p„v„and p,v,

P= Pn+ Psr J= Pavn+ Psver N= P~va
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with the U. S. 0%ce of Naval Research and concluded at the
Institute for Advanced Study, where it was supported by a
grant-in-aid from the Institute.
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exactly counterbalanced, and in which the He' com-
ponent was found to be carried in the v„direction—
showing that the coeKcient of vs is positive K.oide and
Usui assume, ' however, that the coeKcient of v2 is zero:
that the average velocity of the He' atoms is the
center-af-gravity velocity v&. Pomeranchuk's theory, "
on the other hand, assumes the extreme values p3, ——0,
p3„——p3. that the average velocity of the He' atoms
is v„.The object of the present work, on the other hand,
is to construct a general theory without making any
assumptions beyond those of the traditional form of
the two-fluid model (Appendix A). We shall see from
the results obtained in Secs, III and IV that the ratios
ps„/ps and p4„/p4 may (like p„/p for pure He') be
determined empirically by suitable experiments.

Throughout this paper the equations of motion are
restricted to their linear approximation, which repre-
sents those simpler dynamical eGects whose study must
be the first objective of the experimental program. We
also exclude the linear irreversible effects, viscosity and
heat conduction, which are known to introduce only
inconsiderable refinements into the analysis of the
superQuid He4 phenomena and which may be con-
sidered second-level effects in the microscopic theory.
Diffusion of He' relative to He4, a linear irreversible
effect peculiar to the mixtures, is introduced in a ten-
tative way in the Anal Sec. V. It is shown there that the
eGect of diffusion on wave propagation is probably
quite negligible, but that diffusion has an essential role
in the gelerutioe of second sound in mixtures, and gives
rise to a third mode of wave motion which is highly
damped and confined to a thin "skin" round sources and
absorbers of second sound.

The two previously published papers on this topic' "
make various restrictive assumptions, in addition to
those mentioned above. Koide and Usui follow Gorter"
in supposing that the division of the density between
the two velocity fields may be treated as a Gibbsian
equilibrium between two phases, and de Boer and
Gorter" in setting the isotopic mixing term of the Gibbs
function equal to that of an ideal solution with isotope
densities p3 and p4„. Pomeranchuk, whose treatment is
con6ned to dilute solutions (w«1), seems to have
assumed in his numerical predictions that

p (w) = p (0)+(~*/~ )p p (w) = p.(o)

where res*/ms)1; which makes p(w)) p(0), contrary
to fact."

4 S. Koide and T. Usui, Prog. Theor. Phys. 6, 506 (1951).
'4 I. Pomeranchuk, J. Exptl. Theor. Phys. (U.S.S.R.) 19, 42

(1949)."C.G. Gorter, Physica 15, 523 (1949)."J.de Boer and C. G. Gorter, Physica 16, 225 (1950).
'4 In reality, p4(w)+p(0). One would hence expect p4, and p4

each to depend on w, even if Pomeranchuk'. s assumption (p44=0,
p3 = p3) is correct. Since the lambda-temperature —where p.=0—depends on m,' it follows that more generally p, is a function
Of 'K.

IL THE REVERSIBLE EQUATIONS OF MOTION

The following equations for the mixture are proposed:

Bp/Bt+div(p v„+p,v,) =0,

B(pw)/Bt+div(pw„v„+ pw, v,)=0,

B(pS)/Bt+div(pSv„) =0,

p„Bv„/Bt+p,Bv,/Bt+ gradP =0,

(7)

(s)

(9)

(10)

when the exact analogy between the entropy-transport
and He'-transport parts becomes clear.

For pure He', the second and third terms of (11) re-
duce to an irrotational vector, gradg. Hence curlv, is a
constant of motion, and hence it is consistent with the
equations of motion to set curlv, =0 identically. It is of
interest to see if this result applies, on our equations, for
mixtures. For Pomeranchuk's assumption (w, =0), the
third term of (11)vanishes and the result is still true. For
the Koide-Usui assumption (w,p= p,w), B(curiv, )/Bt is
proportional to grad(Bg/Bw) )&gradw. But Bw/Bt =
—v&. grade in this case, and hence if gradm is ever zero
everywhere (w constant) then it remains zero: and then
curlv, is constant. However, it is clear that in general,
unless m, =0, curlv, is not. constant and may not be
supposed zero over all time.

III. WAVE MOTION

In this section we derive and discuss the wave equa-
tions governing macroscopic disturbances of small
amplitude. For brevity we write:

and

e=(w p w p )/wp («1)

8=S—e w(BS/Bw) I, r

(13)

"Reference 5, Eq. (3.12).

Bv,/Bt+ grad [g w(B—g/Bw) p, r 5

+ (w, p/p, ) grad(Bg/Bw)~, r-0, (1.1)

where g=e+P/p TS is—the Gibbs function, e and S
the internal energy and entropy, per unit mass of
mixture. Equations (7), (8), and (9) are the con-
servation equations corresponding to the formulas (1)
and (3) for J, Js and N. Equations (10) and (11), the
acceleration equations in linear approximation, are
derived in Appendix A.

By (A3) and (A6) of the appendix, the energy flux
vector A „p„v„+A,p,v, is

Q= (P+pe)v,

+[p,ST+(w„p, w, p„)(Bg/Bw)—r, r5vs. (12)

The vs ("internal convection") term of (12), which
generalizes to mixtures the corresponding term for pure
He' found by Zilsel, "may be written:

[p,S(Be/BS), „,+ (p.w„—p„w,) (Be/Bw), e5vs,
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Equations (7)—(11) give, in linear approximation:"

SBw/8 t = e TUBS/8 f
4

Bsp/BP=V'P.

(15)

(16)

8 SlBt =5(p,lp„)((1lp)V' P V—[C tt(—Bg/Bu')p, T5

—(1 e)tp—V'(Bg/Bw) p, r) (1.7)

and where

CQ, T(85/BT)p, a+, = (1/e)(Bs/BT)p

as usual.
The equations (20) represent two wave motions,

each of coupled pressure and entropy Quctuations, with
velocities I& and N2 given by the roots of

(I' —cr')(e' —cs') = (p./p. )t4'ci'34'

Equation (15) integrates to
The 6rst term of Eq. (20') for the coupling factor ts

will be small, as it is for pure He4, because o.~ is small;
but we would expect the second term to be appreciable
when the concentration m is appreciable. The derivative
Bs/Bw has not yet been measured 3 but we have the
values for the pure liquids, v4 ——s('0)=6.9 cm'/g and
vs= e(1)= 12.7 cms/g, from which we may take
(1/e)(Bv/Bw) to be of order unity, and hence

SBw/'N = e tot'45/t'4t; (15')

where the primes denote small deviations from the state
at some arbitrary instant. Thus the fluctuations m' and
5' are not independent; and hence (16) and (17) repre-

sent, as for pure He4, a wave system with two degrees
of freedom. To reduce (16) and (17) to separable form,
it is most convenient to transform to the variables P', 5'.
By straightforward thermodynamics and substituting
for w' by (15'), we find (Appendix 8):

(22)I)f,~ O'N ~'N.

The factor (p,/p„)t4' in (21) will always be finite, since
(etc)'(p, /p„) & ew(1 —w) ~& rs, but may be large enough at

p + 8~ ( + to~ ) (1g) high concentrations for the actual velocities, Ni and Is,
(BP) s 44 (85:)~ 44 ( Bw) p, z S to deviate appreciably from ct and cs. For small con-

centrations m, where we are looking for deviations of
order m from the pure He4 values, we may ignore the
right-hand side of (21), which is of order w'.

Appreciable coupling of thermal and acoustic dis-
turbances will considerably complicate the wave phe-

= 8~~
nomena. Ke set up here the equations needed for

(85) Q 44 (BN) making calculations on the coupled waves: Equation
(20) gives, for a, wave motion of either mode, the
equivalent formulas:

(1 s) tt'D—Bg/Btt') & &5'.

pf

(BT) t'8 g i 5
+ 83( [ +.~s(s, (

—, (19)
(85 ) p, „(Bw')~, z 5 (I' cis)P = t4pcts—g'(5'/5),

p(N' cs')(5'/5) = t3—(p,/p„)P',
(23)

where
'8= i p. where N=N~ or Ng, which are supplemented by the

The wave equations derived from (15), (16), and (17)
relation .Appendix B, Kq. (B3) I,

are hence T'=(T/Cp, )[S(5'/5)+(ar, /p)P'5. (24)

8'P/Bts c'V'P = (pc t4/—5)8'5/Bt'

8'5/Bts cssV35 = (S—p,/p p~) t4V'P,

The mass and entropy flux vectors are given, for a
general motion, by

where

ct' ——(BP/Bp) s, ,

—8J/Bt =gradP,

BN/Bt = pcss grad—S+t4(p, /p„) 5 gradP.
(25)

„=(,,/, „)~(8)T/C. .+ "+(8'g/8 ') .5
tr= (S/Cr, „)Tar, +e(tr4/e)(Be/8~)r, r

(204) From (24) and (25) we may write down an acceptance
(inverted impedance) matrix, 'r for a plane traveling
wave of either mode, according to:

(u Jq t
1

&u N) LLt4 —a~, (cssp /Sp, )5S(p,/p„) pcssCr, „S/TS) ET')
(26)

In the equations which follow, the equals sign is to be understood as within this qualification, which will not be repeated."The curves of s(w}, when they are determined, will be of interest apart from the bearing indicated here on wave motion. For ex-

ample, the limiting slopes of the curves will give the partial specihc volumes, 334 (SV/SM3)~4, ~o=s4+(aS/83s} 3 and
s43= (8V/BM4)M3, ~t =s3 (Bs/83s) 3, wh—ich together with 33 and s4 provide four experimental measures which a realistic theory
of the equilibrium state of quantum liquids should fit.

'7 J. R. Pellam, Phys. Rev. 76, 872 (j.949).
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pCy N2

(Ss'/S)2~I 2
(27)

where I=It or rss. Equations (23) show that the second
sound mode carries a pressure Quctuation

The excitation'of standing waves of second sound in
a cavity requires a more complicated analysis, which
is not attempted here. The Pellam disk experiment"
registers a force proportional to

p v '+p.v'=(p /p. )P'/p 2¹—J/S+Ã'/S'7 (33)

while first sound carries an entropy Quctuation

(p./p )S
Si =p, Pi.

p(Its —css)
(28)

at the center of the cavity. It appears from the fore-
going considerations that an analysis of this eGect for
mixtures, " as was attempted by Koide and Usui, '
should take due account of the coupling measured by p.

However, these are not the only coupling eQects which
we may expect in practice. .If, for example, we generate
second sound. in the conventional way, by a resistance
strip carrying an alternating current, then the boundary
conditions at the heater will be such that the first-sound
mode must be generated at the same time. Picture the
heater as a plane rigid wall, generating plane traveling
waves by an oscillating outward entropy Rux" X(1):
then, by the first of Eqs. (25), gradP=O at the heater
wall. Since the two wave modes generated have the
same time variation, this means

Pt' =(Nr/Ns)Ps'—, at the heater. (29)

Thus the coupling of modes at the wall leads to a bigger
pressure component than does the coupling within the
second mode. From (27), (28), and (29):

Sj' (ps/pa)cl N1Qs
p2 (3o)

Ss' (ct' —Ns')(Nt' —cs')

and hence, by the second of Eqs. (25),

QsS p (pe/pa)cl Ns
Ss'= 1+,at the heater. (31)

pcs' (ct'-Ns')(Nt' —cs')

If the oscillating Qux Ã is periodic, then at increasing
distances from the heater the pressure oscillations P~'
and P~' will be alternately in and out of phase. If
Ns is the amplitude of ft'f at the heater, then (neglect-
ing p') by (27), (29), and (31) the pressure amplitude
will vary between the limits

p&o
Pp=

S It+Is
Pgp Ng~

, and Po=
5 Ni-e~

(32)

A rough estimate shows that amplitudes of grams per
cm' should be readily produced in this way (indeed, for
low temperatures and appreciable concentrations the
cavitation threshold may be an eGective limitation on
second-sound. amplitudef) . It is suggested that measure-
ments of this pressure eGect be made to obtain an
estimate of p, and hence, when Bv/Bw is determined, of e.

'SThere will necessarily also be a constant (dc) Bux, which
does not affect this analysis and which we ignore.

1' Pots added sm proof: With positive temperature pglses, r—ather
than continuous ac, the tension tending to cause cavitation would
have the smaller value given by (27).

IV. EVALUATION OF RESULTS; DILUTE SOLUTIONS

The formulas (20') are in terms of thermodynamic
functions for mixtures, and their derivatives with
respect to concentration, which are not known directly
from practical measurements. This deficiency may be
largely filled by combining the values of the functions
for the pure He' and pure He' liquids with the extensive
data on the partial vapor pressures of mixtures which
have been obtained. " The link between the vapor
pressures and the liquid functions is the equality of
each of the chemical potentials in the two phases. This
equality is expressed by the equations"

g w(Bg/—Bw)pr= g4+, (kT/m4) ln(P4/P4'),
(34)

g+(1 )(Bg/B )—. =g+(kT/~) l (P/P '),

where ms and m4 are the atomic masses, ps and p4 the
partial pressures, and where gs and pss refer to pure He'
liquid, g4 and P4' to pure He' liquid. (To allow for the
nonideality of the vapor, the pressures p should be
replaced by fugacities. ") In obtaining the other
functions for the liquid from Eqs. (34), we have to
remember that the latter are valid only on the satura-
tion surface in the P —T—m diagram. Thus, taking the
difference of the two equations and diGerentiating along
the line "7=constant" in the surface:

+I
(B'gl (B
(Bw)pz ( Bw)p r( Bw

1 (BPsp 1 (BP4)

8$sPs KBw j r 5$4Ps (Bw ) r

Since the second term on the left may be neglected,
this result gives the w'( 'B/ gB)w~, rwhich occurs in.

the formula (20') for cs. 8 and Cp, are derived in the
same way. Writing

ln(ps/pss) = rs, 1n(p4/p4') = r4 (35)

for brevity, and neglecting terms in P„t, as before, we

» J. R. Pellam and W. B.Hanson, Phys. Rev. SS, 216 (1952).
ss B.Weinstocit and J.R, Pellam, Phys. Rev. 89, 521 (1953).
s' H. S. Sommers, Jr., Phys. Rev. 88, 113 (1952).
~ See E. A. Guggenheim, Thermodynamics (North-Holland

Publishing Company, Amsterdam, 1949), Chap. 5. For the
purposes of this paper, we express the formulas in terms of the
concentration by mass m.
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have altogether:

8=S4+ (1—e)w(Ss —S4)

8 r4T |' rs
+(1—e)w( ——(T,

BT.554 (m, m4)

8' mr&T r4T
+(1—tc)

m4
$2g 8 ra r4

=kT
ms m4

C= tcCs+ (1—w) C4—kT
BT m3

(36)

(20') gives Nss as a function of e, X, T, and p,/p . If we
assume with Pomeranchuk that the He' moves entirely
with the normal Quid (i.e., set e= 1), then we find

Nss= (p,/p„)[(S4+kX/m4)'T/C(X)+kTX/m45, (40)

which is Pomeranchuk's result. "The above derivation
of (40) shows that it is valid for just that range of con-
centrations for which Henry's Law is true. Corrections
for higher concentrations, in terms of the deviations
from Henry's Law, may be obtained from (36). We
may expect p,/p„ to be expandible as a power series in
X,~ so that according to (40)

m4m (m4
1+/ —1 f~

(m, )
(38)

is the concentration of He' by molar fraction, the
measure commonly quoted in the literature. If the
solution were ideal, we would have a=1. The second
of Eqs. , (37) necessarily follows from the first, by the
Duhem-Margules equation. " Substitution of (37) into
(36) gives:

m3
S=S,+ (1—e)—X(Ss—S4)

m4

d(T Inu)
1—(1—e) —(1—e) lnX,

8T

m3 kT d'(T inc)
C=C4+ X —(Cs—C4)—

m4 dT

(8'g ) kTX

(au') m,
'

(39)

+higher powers of X. Since Ns' —css vanishes as X for
dilute solutions, substitution of (39) in the second of

~ Application of Nernst's Law to the expression for S derived
from (34) (or equally to 8 in (36)) shows that Henry's Law must
be violated at sufficiently low temperatures. The vapor pressure
measurements only go down to 1.27', and it seems unlikely that
they can be carried much further.

~ Reference 22, Eq. (5.20.3).

(To the approximation in which the P„t term is ne-
glected, Cp and C„are not distinguished. ) Thus, if the
pure liquid data, the partial vapor pressures, and
p(P, T, w) are known, it is possible in principle to
express e and p,/p„ in terms of Nt and es.

The formulas (36) reduce to a more tractable and
interesting form for the case of dilute solutions (w«1),
on which measurements of N2 have actually been made
and published. ' It is known" that Henry's Law—the
proportionality of solute vapor pressure to concen-
tration —applies to sufficiently weak solutions of He'."
We may then set

ps= a(T) Xps'+O(X'), p4= (1 —X)p4s+O(X'), (37)

where

[+s(X))=[Is(0)3'[1+XQ(T)+ j. (40')

If, on the other hand, 1 —~ does not vanish, then N2'

may not be expanded as a power series in X. We have
instead an expansion of form

[Ns(X)1'/[Ns(0)]'= 1

+XQ(T)+ (X inX)R(T)+ . (41)

It follows that a suKciently accurate examination of
the dependence of N2 on X for very small values of X
(say 0.01 downward) would show whether or not e= 1,
i.e., whether or not p3,=0, by the absence or presence
of a X lnX term in the dependence. If such a term is
present, then the determination of Q and Jf in (41) will
serve to determine e, and. the dependence of p,/p„on X,
separately. The numerical analysis depends on values
of a(T), Eq. (3'7), obtained from the vapor pressure
data, and to a lesser extent on values of the entropy
for pure He' liquid. "Q and R will increase very rapidly
with decreasing temperature. For e=1, the part of Q
not contributed by the variation of p,/p with X is
already of order 10' at 1.4'. It is therefore understand-
able that Lynton and Fairbank found a large increase
of N2 even for small concentrations, at such temperatures.

If s/1, and varies with X, then for appreciable con-
centrations a knowledge of N2, the vapor pressures, and
the thermodynamic functions for the pure liquids, is.

not sufficient to determine e and p,/p separately. We
need also (for example) the coupling factor p and tt(X).
In principle, p might be found by comparing Nt(X) with
the values of ct(X) calculated. from P(p, T, X); but one
would not expect the practical accuracy of this method to
be good enough. However, as was remarked in Sec. III,
p might be found by measuring the pressure Quctuations
in second sound; and there seems a reasonable hope
that this method would be of tolerable accuracy.

V. DIFFUSION

In the preceding analysis we have ignored the possi-
bility of diglsion of He' relative to He' [in addition to
the reversible relative motion given by (3)j under a

~ This is not completely obvious. It would not be true if, for
example, Tissa's relation p /p= 8/Sg held for mixtures, because
the expansion of S requires a term in X lnX.

~~Weinstock, Abraham, and Osborne, Phys. Rev. 89, 787
(f953).
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gradient of concentration and of the other thermo-
dynamic variables. We shall see in this section that
diffusion probably has a negligible influence on the
propagation of free 6rst- and second-sound waves.
However, the generation of the waves at a solid surface
cannot in general be consistently described without
admitting diGusion. "At a solid wall the normal com-
ponents of J and Js must vanish separately; and con-
sequently, if we did not allow diGusion, only for the
Koide-Usui assumption (s=0) would the generation of
second sound waves by the usual method be possible.

Beenakker et a/. 28 have investigated the diGusion rate
in very dilute solutions by measuring their thermal
resistance. Arguing that thermal diGusion should be
negligible" compared with concentration diGusion, they
deduce from their measurements a concentration-dif-
fusion coefFicient D decreasing from about 2.5&10 '
cm'/sec at 1.2' to about 4X10 ' cm'/sec at 2.1'. Since
the ratio of temperature gradient to concentration
gradient is proportional to (1/w) in second sound,
whereas it is independent of m in the experiment quoted,
the argument for neglecting thermal diGusion does not
apply to second sound. However, we shall be concerned
here simply with exploring qualitatively the conse-
quences of diGusion, and accordingly use as a model the
simplest equations which will serve this purpose any
particular model being, at this stage, provisional. We
retain Eqs. (7), (9), (10), and (11), and replace (8) by

factor exp(2zrift), then the complex velocity of propa-
gation zz is given by substituting into (46):

Hence,
K= 2zriD f/zzz.

zz'[zz' —(cz'+ zc z))=

(44')

(47)
where

csz=2zrDf, aczz= (p,/p„)SBT/C. (48)

The two roots of (47) correspond to a very slightly
damped second sound and to a third very strongly
damped "skin" mode. For the practical frequencies f
and the Leiden values of D, c3'((c2'. Hence the roots
are, to sufhcient approximation,

zzzz = [1+z(1 —a) (cz/cz)'jczz, zzsz = zacsz. (49)

The extinction coeKcient for second sound is thus at
most of order Df'/czz and hence will be negligible.
In contrast, the mode corresponding to N3 will be
localized within a distance (from the source of the
wave) of order g(D/f): it will hence be confined in
practice to a very thin skin around the source. There
is thus a formal resemblance to the extra modes dis-
cussed by Kronig and Thellung. "

To satisfy the boundary conditions at the surface of
a heater resistance, which is the conventional source of
second sound, both second and third modes must be
generated. By (45), the entropy and He'-mass currents,
in either mode, are related by

where
B(pw)/Bt+div[pw(v„+vs)]=0, (42)

mv3= —D gradm;

N«&=(S/w)(1 —K&~&)J,«&; q=2, 3, ( )

where the superscripts label the mode. By (49) we may
set

setting m, =0, for simplicity, and neglecting ther'mal

diGusion. We also neglect the coupling of entropy and
pressure fluctuations, measured by p, of Sec. III, and
solve the equations at constant pressure. If we define
an operator iVi '/X= 1 —a at the heater. (52)

1 —K"' 1, 1 —K &"~—(1 —a)/a; (51)

and hence, since the normal component of J,= Jp&+ Js&zi

vanishes at the heater surface, we have

K=DU' ~dt

then (to linear approximation as usual)

(44) Equation (52) gives the fraction of the "signal" lost
into the damped mode, on the present model. For dilute
solutions we may write it:

wBS/Bt =S(1 K)Bw/Bt— (45)

The wave equation for entropy and concentration fluc-
tuations is hence

(1 —K)cizS/ciP = [c —(p /p„) (SST/C)K)V S (46)

where 8 and cz are defined as in Sec. III, with s=1.
If we now represent the time variation of S by the

2'This remark (and the impetus thereby to the work in this
section) is due to F. London.

28Beenakker, Taconis, Lynton, Dokoupil, and Van Soest,
Physics 18, 433 (1952l.

"Their argument for neglecting thermal diffusion in their
experiment may at best be admitted provisionally, pending a
realistic theoretical understanding of the magnitudes of the two
coeKcients; but their values for D are in any case presumably
correct in order of magnitude, and will be used here as orders
of magnitude.

X k C4 d(T 1na) ( Sz)=——lnX+ —+ m, l1——
I

.
nz4 S4 S4 dT E S4)

(52')

Thus a fraction, of order I, of the signal is lost at the
generator because pf diffusion. An experimental study
of this loss (or of the corresponding effect in the transi-
mission of second sound through a thin conducting foil)
might be complicated by the processes underlying the
Kapitza temperature diGerence" at the boundary. "
If the signal loss (52) is small, then we may expect that
the formulas obtained in Sec. III for the pressure fluc-
tuation in free second-sound waves will not be appre-

'" R. Kronig and A. Thellung, Physica 16, 678 (1950)."P. Kapitza, J. Phys. {U.S.S.R.) 4, 181 (1941)."I am indebted for this remark to J. R. Pellam.
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ciably modified by diffusion; since (29) will still apply
at a distance from the wall greater than the skin
thickness but small compared with the wavelength. .

It should be emphasized that the valid conclusions
from the work in this section are qualitative and order-
of-magnitude ones. In making the simplest possible
modification, by (42) and (43), of the hydrodynamic
equations, we have not taken account of the. necessity
for preserving the equations of conservation of energy
and of momentum, and of "semi-conservation" (in-
crease only) of entropy. It seems desirable that a study
be made of the way in which the possible equations
including diR'usion are restricted by these conservation
laws and the Onsager relations. "A detailed investiga-
tion—theoretical and experimental —of diffusion should
be of some importance to the microscopic theory, in
providing a clue to the way in which the He' component
participates in the excitations of the liquid.

I am indebted to Professor I'. London, Duke Univer-

sity, for 6rst interesting me in this problem, for his
continued interest and encouragement, and for valuable
discussions; and to members of the Institute for Ad-
vanced Study, for criticisms of the manuscript.

APPENDIX A. THE EQUATIONS OF MOTION

Since

tr(pe) = [C w(Bg—/Bw) p r58p.
+ (Bg/aw) p, rh(pw)+ To(PS), (A1)

we have by (7), (8), and (9):
8(pe)/»= $—g —w(rig/Bw) p, r5 div(p„v„+ p,v,)

+(Bg/Bw)p, r div(pw v„+pw,v,)+T div(pSv„). (A2)

Limiting ourselves to terms quadratic and lower in the
velocities, we may expect the two-Quid motion to satisfy
as usual an energy-balance equation of form'4

o= ~(sp v-'+ s p*v'+ pe)/»
+div(A„p v„+A,p,v,), (A3)

where A „=A (p, S, w), A, =A, (p, S, w). We choose A
and A, such that (A3) may be reduced to the form:

0= 8(,'p„tr„'+gp, v,s-)/Bt pv„F„—p—,v, F„(A4)
where F„and F, are linear combinations of gradients
of the thermodynamic functions: —i.e., with the terms
remaining, in div(p„v„) and div(p, v,), cancelled iden-
tically. Equation (A4) may be written

.0= s(tra Pa+trrr PI)

+p.. (~.-F.)+p... (~.-F.); (A4')

"For Onsager relations see S. R. de Groot, Thermodynamics of
1rrerrersible Processes (North-Holland Publishing Company, Am-
sterdam, 1951}.

and henc- since the 6rst term of (A4') belongs to the
higher powers of the velocities which we are neglecting—the form (A4) implies equations of motion:

e„=F„, 4,=F,. (AS)

APPENDIX 3. TRANSFORMATION FORMULAS

Expand p and 5 as functions of I', T and m, and sub-
stitute for w' by (15'):

LBI') ~, EBT) p, „
(Bp ) (S'y

+ewl I I

—I, (»)
EBw) p, r ES)

BS) (BS
s'=I

I
~'+I

(BI) p, ~ E BT) p, ~

(8S y (S'y
+ewl I I

—I. (82)
(Bw) pr {S)

Equation (82) gives

BT S ) BT)
~I —I+ I(aS) p, „(S) &.aI'), (83)

which, substituted into (81), yields (18). Similarly
expanding g and (Bg/Bw) pz, we hav, e

Lg w(~g/~w—)p. r5'+w(1 e)L(~g/—~w) p r5'.
=b —ew(»/~w)p, &5I" ~T'

—saw (rl g/clw )p, r(S /S). (84)

Substituting (83) into (84) yields (19).

Thus our choice of A„and A, is just that designed to
preserve the conventional form of the two-Quid dy-
namics. Substituting (A2) in (A3), we find that (A4)
implies

A-=g+(~g/~w)»T(w p* w p )Ip+TSplp
(A6)

A.=g+(~g/~w) p. r(w*p- w.p—.)/p. ,

and

F = -gradA„+(Bg/Bw)p, r grad(pw„/p„)
+T grad(pS/p ),

A7
F,= -gradA, + (Bg/Bw) p, s grad(pw, /p, ).
From (AS), (A6), and (A7) we obtain (10) and (11),
which are evidently the only linear equations con-
sistent with the forms of (A3) (energy Qux vector) and
(AS) (d'Alembert forces).


