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is given by F=O, where F=tanPs sinrri —tanPi sincrs
—tanPs sin(mrs —nt). Here crt, as are the projected angles
of the two outgoing prongs in the plane of the emulsion,
Pi, Ps, are the corresponding dip angles, and Ps is the
dip angle of the incoming meson. ' The deviation from
coplanarity ~F

~

is plotted (Fig. 4) versls
~
O~, the de-

viation from the angular correlation curve for sr+H
scattering. 0"= (60'+dP')&, where Ae and AP represent
the respective angular deviations of each event from
the calculated sr+H scattering curve as obtained from
Fig. 2.

The distribution of the sr++H scattering between
the forward and backward direction in the center-of-
mass system is

do, =2.7&1.3 mb/steradian for P, =35 —90',

tto, =4.4&1.6 mb/steradian for g, =90—180'.

As the scanning efBciency drops oG for recoil prongs
shorter than 50', a cutoG was taken at a recoil proton

This relation holds for either the original dip angles or the
final dip angles in the shrunk emulsion. In Fig. 4,

~
F [ is plotted

in the form using the Anal dip angles.

length of 100@,which corresponds to a meson scattering
angle of p, =35'. The asymmetry of the differential
cross section with a peak in the backward direction
found by Anderson and co-workers' at x+ energies of
135'Mev and 110 Mev appears to be still evident in
the present work at 75 Mev. From the work of Shutt
and co-workers, " there is very little asymmetry at 53
Mev. The total cross section for sr++H scattering ob-
tained is 41&15 mb for P, ., )35'. This is in agreement
with other measurements. "
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It is shown that for a crystal, under the assumption of harmonicity for the interatomic forces and as a
consequence of the periodic structure, the frequency distribution function of elastic vibrations has analytic
singularities. In the general case, the nature of the singularities depends only on the number of dimensions
of the crystal. For a two-dimensional crystal, the distribution function has logarithmically inlnite peaks.
In the three-dimensional case, the distribution function itself is continuous whereas its Grst derivative
exhibits infinite discontinuities. These results are elementary consequences of a theorem of Morse on the
existence of saddle points for functions de6ned on a torus.

I. INTRODUCTION

'"T is well known that the shape of the frequency
~ ~ distribution function g(o) of a crystal (defined as
the number of elastic frequencies per unit frequency
interval, divided by the total number of frequencies)
determines an important part of the thermodynamical
properties of the crystal. The frequency distribution of
two- and three-dimensional crystals, as predicted by
the Born-von Karman theory of crystal dynamics, has
been extensively studied by approximate methods based
on the use of a finite sample of elastic vibrations. ' A

' M. Blackman, Repts. Prog. Phys. 8, 11 (1941) and references
there quoted; K. Montroll, J. Chem. Phys. 10, 219 (1942); E.
Montroll and D. Peaslee, J. Chem. Phys. 12, 98 (1944); H. M.
J. Smith, Trans. Phil. Soc. A241, 105 (1948); %. V. Houston,
Revs. Modern Phys. 20, 161 (1948); R. B. Leighton, Revs.
Modern Phys. 20, 165 (1948).

smooth distribution function was obtained in all cases,
showing for small frequencies a behavior in full agree-
ment with the Debye continuum theory, tending con-
tinuously to zero at the maximum frequency and
displaying for intermediate frequencies a few finite
maxima. ~

The analytical nature of the frequency distribution
function, or rather of its asymptotic form for a crystal
of infinite extension, has recently attracted attention
as a consequence of an exact calculation by Montroll
for a two-dimensional square lattice. ' As found by

' The frequency distribution obtained by Leighton (reference 1),
has at the maximum frequency of each branch a singularity very
similar to some of the singularities we shall show to exist in three
dimensions. The singularities obtained by Houston (reference 1)
are entirely spurious.

3 E. Montroll, J. Chem. Phys. 15, 575 (1947).
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MontroH, for arbitrary values of the constants describ-
ing the forces between particles, the frequency distri-
bution function has two logarithmicaHy infinite peaks,
one for each branch Of the spectrum. These singularities
were of course bound to remain undetected in the
previous approximate investigations, in which the
infinite peaks were approximated by finite maxima.
Montroll's result has been extended by Smollett to
the case of a two-dimensional ionic lattice, taking into
account the long range Coulomb forces between ions. 4

As noticed by Smollett, the logarithmic peaks ob-
tained for the two-dimensional lattices considered are
a simple consequence of the existence of saddle points
for the function v(q) expressing the frequency of an
elastic plane wave in terms of its wave vector. The
main object of the present paper is to point out that
the existence of such saddle points in the v(q) function,
far from being accidental, is necessarily implied by the
periodic structure of the lattice. According to a general
theorem of M. Morse, any function of more than one
independent variable which, as v(q), is periodic in all
its variables has at least a certain number of saddle
points; this number is determined by topological con-
siderations and depends only on the number of inde-
pendent variables. It is this mathematical fact which
accounts for the occurrence of logarithmic peaks in the
g(v) function; it implies that such peaks will appear
quite generally for two-dimensional lattices.

For three-dimensional crystals, the theorem of Morse
implies again the existence of saddle points in the
v(q) function. As will be shown below, saddle points of
v(q) produce, however, weaker singularities in the
distribution function, no longer connected with its
maxima: g(v) remains continuous whereas dg/dv has
infinite discontinuities. In contradiction with a pre-
diction by Smollett, 4 no logarithmic infinities are there-
fore in general to be expected for three-dimensional
lattices, although some could possibly occur when the
forces between particles satisfy special conditions, not
implied by the symmetry properties of the crystal.

II. TYPES OF SINGULARITIES

%e shaH now analyze in somewhat more detail the
'two elements which by their combination account for
the occurrence of analytic singularities in the frequency
distribution g(v) of a crystal, namely, the rather
elementary fact that saddle points of v(q), and more
generally points where gradv(q)=0, produce singu-
larities in the g(v) function, and the more fundamental
theorem of, Morse according to which the periodicity
of the crystal implies the existence of saddle points for
v(q). The former fact will be discussed in this section,
whereas Sec. III wiH deal with the application of
Morse's theorem.

As is known from lattice dynamics, ' under- the
' M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).
5 See for example M. Born and M. Goeppert-Mayer, Bandblch

der Ehyssh Q. Springer, Berlin, 1933), 24, No. 2, Chap. IV.

assumption of harmonicity for the forces between
particles, the elastic vibrations of a crystal are super-
positions of normal modes, each of which is a plane
wave vibration with a definite frequency v and a wave
vector 2xq defined up to the addition of an arbitrary
vector 2srg ss h; here the, n are integers and'the h
are the basic vectors of the reciprocal lattice, related
to the basic vectors sp of the crystal cell by

- se)=
1 for a=P

0 for aAP.

For a crystal with Z atoms per cell, and in / dimensions
(the cases f= 2 and 3 will be discussed here), e there are
lZ independent plane wave vibrations for each wave
vector q, and their frequencies v(q) are the positive
square roots of the eigenvalues of a positive-definite
symmetric matrix with /Z rows and columns; the
coefFicients of this matrix are periodic functions of q
with the periodicity of the reciprocal lattice. The
frequency v(q) is therefore an lZ valued function
satisfying

v~ q+Pn h ~=v(q), (rs integers).
a=i

the integral being extended to the region within one
cell of reciprocal space where v ~& v(q) &~ v+dv; an easy
calculation gives then

p& (q)~' -'
g(v)= —E ' Zl I

ds;
Zl & s(p) ~-1 E Bgo )

vo is the volume of the crystal cell, and the q 's are the
components of q. The summation g extends over all
branches of v(q). For each of them S(v) is the line (for
1=2) or surface (for /=3) of reciprocal space delned
by the equation v(q) = v and limited to one cell of the
reciprocal lattice; dS is the length or area of an infini-
tesimal portion of S(v). Equation (2) remains valid
a,fter any change of coordinates in q space leaving
invariant the area or volume element d~q of reciprocal
space.

' In one dimension, l=l, the frequency distribution is known
to have no singularity apart from in6nities at the extreme fre-
quencies of each branch. See F. Seitz, kf'oderrs Theory of Sohds
(Mcoraw-Hill Book Company, Inc. , New York, 1940), p. 123.

It consists of 1Z branches, some of which may become
equal for special values of q. Such equalities will be
referred to as contacts between branches. According
to (1), it is sufhcient to consider v(q) as defined in one
single cell of the reciprocal lattice.

In terms of the multivalued v(q) function, the fre-
quency distribution function g(v) for a crystal of
infinite extension is given by

g(v) dv= (zo/Zl) diq,
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Two-Dimensional Crystal

(M, z=O) ei ——es ———1,

C+(zrep/Zla)+0(v —v ) for v& v

f(v) =
C+0(v—v,) for v& v,

(5, z=1) pi= —ez= &1,

Sp v

g(v) =C— log 1——+0(v—v,)
Zla

(zrz& z= 2) ei= es= 1&

a(v) = C+0(v—v,) for v( v,

C+ (zrep/Zla)+0(v —v,) for v) v, .

Three-Dimensional Crystal

(M, z=0) ei ——es ——es ———1,

C(v) = C+ (2srep/ZlaI) (v—v,)z+0(v —v,) for v (v,

C+0(v—v.) for v) v,

(Si, z=1) ear ——e s= —eas ———1,

(
C+0(v —v) for v( v,

g(v) =
IC—(2zrvo/ZlaI)(v —v,)I+0(v—v,) for v) t „

(Ss, z= 2) e i ——ear ———e~s= I,

[
C—(2zrvp/ZlaI) (v —z,)I+0(v—v,) for v (v,

g(v) =
C+0(v—v,) for v& v„

(11,z= 3) ei= es= es= 1,

C+0(v—v,) for v & v,
g(v)= i

i C+(2zreo/ZlaI) (v—v,)I+0(v —v,) for v) v..

The symbols M and m refer to raaxima and minima,
respectively. S refers to saddle points in the two-

It is now clear that the analytic singularities of g(v)
originate from the so-called critical points of v(q), i.e.,
the points where all derivatives Bv/Bq vanish. Let us
investigate the singularity produced in g(v) by a critical
point q, of v(q), in the general case where the deterrni-
nant

~

B'v/Bq Bqtt ~
does not vanish at q, (as is usual in

mathematics, such a critical point will be called non-
degenerate). Puttirig v(q, )=v„we may write in first
approximation for q near q„and after a convenient
change of coordinates preserving d~q,

l

v=v, +a+ e $ +, e =&1, (=q—q„a&0. (3)
a=1

Restricting the summation in (2) to the branch with
the critical point and the integration to a neighborhood
of q„we use (3) in (2) and obtain the following singu-
larities in g(v) for v near v, .

dimensional case, whereas for three dimensions, the
saddle points are of two diferent types, denoted by S~
and S~. The number i is the so-called index of the
critical point, to be used later. In all expressions C is a
constant and O(v —v,) denotes a rest term of the order
of v —v, for v—+v,. Higher singularities would be pro-
duced by critical points for which

~
B v/Bq Bqtt

~

=0, in
particular by a continuous family of critical points.
Such cases are to be considered exceptional as compared
to the general case just discussed: it can be shown that
they occur only when the constants describing the
forces between particles satisfy special relations not
implied by the crystal symmetries.

III. APPLICATION OF MORSE'S THEOREM

According to the periodicity condition (1), it is
natural to consider the v(q) function as defined in one
cell of the reciprocal lattice, and to identify points q,
q' of the boundary of the cell for which

l

q'= q+ P sz h, (rt integers).
a=I

The domain of de6nition thus obtained for v(q) is an
3 dimensional torus.

We now state the theorem of Morse under elementary
and too restrictive assumptions: consider a function f
de6ned on a closed topological manifold satisfying
convenient conditions of diGerentiability and regularity;
assume f to be three times continuously differentiable
and to have no degenerate critical points. Call inclex of
a nondegenerate critical point the number of positive
eigenroots of the quadratic form in the Taylor expansion
of f near the critical point Lnumber of positive terms
in the sum in (3)). Under these conditions, the number
of critical points of index i is at least equal to the Betti
number E; of the manifold for the dimension i.'

For l=2, the two-dimensional torus has Betti num-

bers Rp ——1, Ri——2, Rs 1. If a branch of z
——(q) satis6es

the above conditions, it has therefore at least one
maximum, two saddle points and one minimum. The
corresponding singularities in g(v) were listed in Sec. II.
By reason of symmetry the two saddle points may often
correspond to the same value of v(q); they will then
produce one single logarithmic peak in g(v).

In three dimensions, the Betti numbers of the torus
are Rp= 1, Ri——3, Re=3, Rs ——1. For a branch of v(q)
satisfying the above conditions, there are at least one
maximum, three saddle points of each type and one

7 For an elementary exposition and examples, see M. Morse,
Am. Math. Monthly 49, 358 (1942), Sec. 5. For details and proofs,
see M. Morse, Trans. Am. Math. Soc. 27, 345 (1925); Caicglgs
of Varzatzorzs zw the Large, Colloqazzzta Lectgres (American Mathe
matical Society, Providence, 1934), Chap. VI; 3Eemorial Sciences
Mathdmatiqges, "Functional Topology and Abstract Variational
Theory" (Gauthier-Villars, Paris, 1939), Fascciule 92. Regarding
the de6nition of the Betti numbers, for our purpose it is suK--
cient to say that E; is the maximum number of closed i dimen-
sional surfaces on the manifold which cannot be transformed
into one another or into a point by continuous deformation on
the manifold.
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minimum. Saddle points of the same type will often
correspond to the same frequency. The branch con™
sidered produces therefore in g(v) at least one singu-
larity of each of the four types listed in the previous
section for /=3.

To determine the net number of singularities to be
expected in the frequency distribution g(v), one has
now to take into account two important factors.
Firstly, singularities produced in g(v) by various
branches may compensate each other. Inspection of the
list of singularities in Sec. II shows that for /=2 such
compensations can occur for the singularities produced
in g(v) by a maximum and a minimum of v(q), whereas
cancellations are impossible for the logarithmic peaks
resulting from saddle points. For l=3 compensations
can take place between a maximum and a saddle point
of type Ss (i.e., of index 2), as well as between a mini-
mum and a saddle point of type S, (i.e., of index 1).

Secondly, the assumptions made above for the
branches of the v(q) function are too restrictive: both
the behavior of v(q) for small v and certain contacts
between branches prevent them from being ful611ed.
Before entering into general considerations, let us
discuss the region of very small frequencies. It is
reached for the l acoustical branches near q=O (long
wavelengths), where the Debye continuum theory of
solids is applicable. For each acoustical branch v(q) has
its absolute minimum v(0)=0 at q=O. As is well

known, this minimum does not have the same properties
as the critical points considered up to now. The Taylor
expansion (3) is not valid in its neighborhood and is
replaced by an expression

.= Iql &(q/IVI)+O(lqls) (4)

for I pl small; p is a positive function of the direction
of q, which can be determined from the elastic constants
of the crystal. s According to (4), Igradv(q) I

does not
tend to zero for q/0 tending to zero, although the
gradient is unde6ned at the point q=0 itself. Therefore
this minimum of v(q) produces no singularity in g(v):
from (4) follows the familiar behavior of g(v) for small
frequencies,

g(v)- v'-'.

In the same way as q= 0 is for the acoustical branches
what we may call a generalized minimum, other general-
ized critical points can occur in v(q) at the contacts
between branches. For our purpose, the concept of
generalized critical point q, of index i can be described
in the following way: for a one-valued function f(q),
one branch of v(q) for example, it is a point in the
neighborhood of which, although f(q) has no Taylor
expansion of type (3), the surfaces f(q)=fs, with fs
constant and near f(q,), have the same topological shape
as for the nondegenerate critical points of index i
considered above. Just as for the generalized minimum
(i.e., critical point of index 3) discussed above for the

8 H. A. Jahn, Proc. Roy. Soe. {London) A179, 320 {1941).

acoustical branches, the generalized critical points to be
expected in v(q) give rise to an expansion similar to (4).(q) —v(q, )= lgl 4(g/lpl)yo(lgl ),

If the directions in which f(g/I)I) vanishes are
discrete for l= 2 or depend on one""continuous parameter
for /=3, such generalized critical points produce in g(v)
weaker singularities (discontinuities in higher deriva-
tives) than the conventional critical points of same
index; moreover the weaker singularities pr'oduced by
the various branches in contact are likely to compensate
each other. On the other hand, if P vanishes identically,
the quadratic terms of the expansion have to be used.
They have the form

v(q) —v(q.)= 14 I'0r(K/ I 4 I)+o(I 0 I')

and, for general values of the forces, they can be shown
to produce in g(v) the same singularities as the con-

'ventional critical points discussed in Sec. II, with
again possible compensation between the branches in
contact.

The important fact is now that the theorem of Morse
is valid under much wider conditions than stated
above. 7 For the functions which, like the branches of
v(q), may have generalized critical points, its prediction
is that the number of critical points of index i, the
generalized ones included, is at least equal to the Betti
number E;. %e have therefore to discuss under what
conditions generalized critical points can occur, and
which critical points may be expected not to be of
generalized type and hence to produce in g(v) the
singularities predicted for them in Sec. II. The absolute
minimum v=0 of v(q), reached in the acoustical
branches, is already known to be of generalized type.
other generalized critical points can be produced only
by contacts between branches and will now be discussed
for the most common types of contacts.

The condition of having two eigenvalues equal de-
creases by two the number of parameters on which a
real symmetric matrix depends. ' For two-dimensional
crystals, the contacts between branches occur therefore
in general in isolated points of reciprocal space. If we
define the various branches v&(q), vs(q), , r iz(q) by
the increasing order of their frequencies for each q:

an algebraic discussion shows that at an isolated point
of contact a maximum of one branch can coincide with
a minimum of the subsequent branch, and both can be
of generalized type. No generalized saddle points are
to be expected for arbitrary force constants.

For /=3 on the contrary, contacts between branches,
occurring along curves or in isolated points of q space,
often aGect saddle points as well as extrema. Certain
contacts are a consequence of crystal symmetries,
others do not follow from symmetry and are therefore

s J. von Neumann and E. Wigner, Physik. Z. 30, 467 (1929l.
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called accidental. Both types have been carefully
discussed for energy bands of electrons in a crystal;
this discussion applies without essential change to
crystal vibrations. "Using again (5), let us consider two
branches v, (q) and v,+i(q) in contact along a curve C,
which is necessarily a closed circuit when taken on the
three-dimensional torus. I.et the maximum of v, (q)
= v;+i(q) on C be reached at qi, its minimum at qs.
The point q& can be a maximum of v; and a saddle point
of index 2 for v;+~, and these critical points can be of
generalized type. The same holds for q2 which can be
a saddle point of index j. for v; and a minimum for
v;+~." For contacts of two or more branches in an
isolated point q/0 of reciprocal space, the generalized
critical points which are most likely to appear are a
generalized maximum for the lower branch and a
generalized minimum for the upper branch, although
more complicated situations are not excluded.

Apart from the absolute minimum v=0, the critical
points which can be of generalized type are seen to
belong to pairs of critical points of equal frequency.
The pairs are maximum-minimum for l= 2 or 3,
maximum-saddle point of index 2 and minimum-saddle
point of index 1 for /=3. Apart from maximum-
minimum for /=. 3, these are also the pairs of critical
points which can produce compensating singularities
in g(v). For l=2, 'all saddle points and the absolute
maximum of v(q) will therefore remain unaffected by
the contacts between branches and they will produce
in g(v) the singularities predicted for them in Sec. II.
No compensation can take place between these singu-
larities, but as noted already in Sec. II, the logarithmic
peaks resulting from saddle points belonging to the
same branch may coincide as a consequence of crystal
symmetries. This gives for the g(v) function of a two

dimensional crystal at least one logarithmic peak per
branch and at least a finite discontinuity, occurring at the

upper end of the spectrum The resu. lts obtained by
MontrolP and Smollett4 clearly illustrate this conclu-
sion.

For /=3, according to our discussion of the most
common contacts between branches, the oddly critical
points of v(q) which are never affected by such contacts
are the absolute maximum of v(q), the saddle points of
index 2 of the branch with lowest maximum frequency
and the saddle points of index I of the branch with
largest minimum frequency. These points contribute
to g(v) the singularities predicted for them in Sec. II.
No compensation is possible between these singularities,

'~ Contacts resulting from symmetry are treated by group-
theoretical methods by Bouckaert, Smoluchowski, and signer,
Phys. Rev. 50, 58 (1936), and by C. Herring, Phys. Rev. 52, 361
(1937). For accidental contacts, see C. Herring, Phys. Rev. 52,
365 (1937).The author is indebted to Dr. C. Herring for bringing
to his attention the whole question of contacts between branches.

»From a mathematical standpoint, the separation of the
branches v; and v;+~ according to (5) is unnatural: along a path
through a point of C, the natural continuation of u; is v;+I and
viceversa. Thiscan be avoided by considering the multivalued
v(g) function as a univalued function on a convenient covering
manifold of the torus.

but the crystal symmetries may imply the coincidence
of singularities produced by various saddle points
belonging to the same branch and having the same index.
The general prediction we can make for three di-mensional

crystals is therefore that, g(v) being continuous, dg/dv has
at least two infinite discontinuities, and takes the value
—~ at the upper end of the spectrum. In many cases,
of course, especially when the crystal symmetry is not
too high, the number of infinite discontinuities in dg/dv
will be considerably larger. For the detailed analytical
nature of these discontinuities, the reader is referred to
the list pf singularities in Sec. II, from where it is
obtained by mere differentiation of g(v) near v, .

IV. CONCLUDING REMARKS

As was emphasized several times, the whole discussion
carried out in this paper is of a general nature. In each
step we tried to handle the case of greatest generality,
leaving out various exceptions. Most exceptional cases
arise when the force constants strictly satisfy special
relations not following from crystal symmetry; hence
these cases have no physical interest; they will exhibit
in g(v) stronger singularities than predicted above, for
example logarithmic peaks in three dimensions. The
only exceptional case which has not been excluded for
general values of the force constants is that of three-
dimensional crystals with more complicated contacts
between branches than considered above; for them the
number or strength of the singularities, if affected at
all, could only be reduced.

In regard to the numerical determination of frequency
distributions for crystals, the above discussion shows
that great attention has to be paid to location and shape
of the critical points of v(q). This information can be
obtained from the shape of the contours of constant
frequency in reciprocal space, as was done by Smollett
for a two-dimensional ionic lattice. 4

Finally, it is worth mentioning that the discussion
presented in this paper also applies to the Sloch theory
of electrons in crystal lattices. The energy of the
electron, which is here taking the place of the square of
the vibration frequency, is a periodic function of the
wave vector and has therefore at least the minimum
numbers of critical points predicted by the theorem of
Morse, with the same consequences as above for the
distribution function (density) of states in energy. "
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~The density of states of an electron in a two-dimensional
layer of graphite has been calculated by C. A. Coulson and R.
Taylor, Proc. Phys. Soc. (London) A65, 815 (1952). In agreement
with our predictions, it has two logarithmic infinities for inter-
mediate energies and finite discontinuities at both ends of the
energy range.


