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our apparatus. Both of these effects would increase the
calculated spread for a given depth thus increasing the
agreement between the experimental points and the
curve calculated for the exponential form of the differ-
ential cross section. Evidence in favor of this form of
differential cross section has already been given by
Messel and Green, " and Hazen et a/. "has shown that
the Fermi distribution tends to give lateral spreads of
extensive air showers considerably greater than those
reported experimentally.

CONCLUSION

Ke have been able to determine experimentally the
variation of the intensity of charged particles with
depth, the variation of the lateral spread with depth,

'~ Hazen, Heineman, and Lennox, Phys. Rev. 86, 198 (1952).

and the' variation of the number of charged particles
at the maximum of the transition curve with the depth
of that maximum for the nucleon induced cascade in
water. In all cases there-is qualitative agreement with
theory. Whereas in some cases the theory of the com-
plete cascade is not suKciently developed for a quanti-
tative comparison to be possible, in the case of the
lateral spread our results make it seem very likely that
the differential cross section in high energy nucleon-
nucleon collisions cannot have a quasi-isotropic form.
On the other hand the exponential form suggested by
Messel and Green gives good agreement.

We wish to thank Professor K. Schrodinger and Dr.
R. C. Geary for their help and advice, Professor L. W.
Pollak for allowing us the use of his meteorological
records, and Messrs. A. Guinness, Son and Co. Ltd.
for the loan of a large iron tank.
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A re-examination of the problem is reported. The results for the vector and scalar casesin the case of the
deuteron are explained in terms of known correction factors for the one-body problem. For the vector
equation part of the result is caused by an induction eGect which is the meson theoretic generalization of
Faraday's law of induction. In the scalar case the relation to the one-body result is made in a form employing
an effective change in mass caused by the presence of the scalar. These interpretations are substantiated
by an analysis in terms of plane waves. Simple forms are obtained for one particle in a pseudoscalar field
and a tentative application to the deuteron is made and criticized.

l. INTRODUCTION AND NOTATION

ELATIVISTIC corrections to the magnetic mo-
ment of a single Dirac particle in a central

potential 6eld have been discussed by Breit' and by
Margenau. ' The latter has pointed out that an appli-
cation of the formula applicable to the one-electron
case to the deuteron problem gives effects comparable
with the change of the magnetic moment expected og.
account of the admixture of a D-wave to the ground
state of H'. Caldirola' was the 6rst to consider the
relativistic correction for the case of a particle having
an intrinsic magnetic moment in Pauli s sense. Caldi-
rola's signs are either inconsistently used or applied
with a misunderstanding regarding the correction factor
for the proton, which differs from unity by an amount
which is too small in absolute value under his postulated
assumptions having been obtained as —0.667+0.596
= —0.071 rather than —0.667 —0.596. Since there is

*Assisted by the joint program of the U. S. Once of Naval
Research and the U. S. Atomic Energy Commission.' G. Breit, Nature 122, 649 (1928).

s H. Margenan, Phys. Rev. 57, 383 (1940).
s P. Caldirola, Phys. Rev. 69, 608 (I946).

an almost compensating error for the neutron, the
result for the deuteron is practically unaffected by this
ambiguity. In view of this situation and the fact that
Caldirola's work considered the particle with intrinsic
Pauli moment to be in a central 6eld, a condition which
is not satisfied in the deuteron, the problem was again
brieQy treated by Breit.4 Iri this discussion the correc-
tion for the intrinsic moment has the form

1 (T.Y/Mc'—
where T,is the part of the kinetic energy owing to
motion along the direction of the particle spin. The
character of the Geld enters the result only through T„
and this part of the correction may therefore be used
directly for the deuteron. The relativistic factor for a
single charged particle in a central scalar 6eld was also
contained in this work. It was pointed out in the same
note that a single particle treatment does not suf5ce
for the calculation of e6'ects stemming from the Dirac
current of the particle's charge; the contribution to the
relativistic correction arising from the charge of the

' G. Breit, Phys. Rev. 71, 400 (1947).
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proton may in fact be affected by the two-body char-
acter of the problem.

This aspect has been treated by Sachs' and by Breit
and Bloch, ' the papers being concerned with hypothe-
sized scalar and vector interactions. The calculations
of Breit and Bloch contain an error in manipulation as
has been ascertained for the scalar case by Adams~ and
confirmed by Breit. ' The corrected result agrees with
that obtained by Sachs' for the same field. The error
just mentioned affected the results for the vector 6eld
as well, the same erroneously evaluated integral having
entered both cases. The corrected vector case factor
turned out to be unity in disagreement with the result
of Sachs. The procedure used by Sachs was not con-
vincing; the effective Hamiltonians were riot covariant
and, the employment of momentum operators for cur-
rent was made in such a way as to omit part of the
eRect of spin currents in the vector case. On the other
hand, the main point brought out in the discussions of
Breit, ' Sachs, ' Breit and Bloch, 6 and Primakoff' has
been that it was not possible to make relativistic
corrections with certainty and there existed considerable
uncertainty in attempts at quantitative conclusions
regarding the fractional content of the 'D state in the
ground state of the deuteron. From this viewpoint the
result of Sachs for the vector case may be regarded as
an illustration of the flexibility which could be attained
if one invented a vector meson field in which coupling
to the nuclear spin current would be absent. The
papers mentioned have not considered the pseudoscalar
interaction which appears at present to be the most
probable one. In view of the absence of a consistent
and error free treatment of the two-body problem it
appeared desirable to reexamine the subject, estab-
lishing more obvious connections between single particle
and two-body results and removing some of the uncom-
fortable dependence on involved calculations which has
been necessary so far. A discussion of the pseudoscalar
interaction is included. The answer in this case is
especially simple, the correction factor being 3fc'/E for
a single particle. The small magnitude of this correction
suggests agreement with experiment for the deuteron,
where (pN+pr) —'pal=0. 879 —0.857=0.022. Here pN,
p,~, pD are the magnetic moments of the neutron, the
proton, and the deuteron, respectively. However, such
an identification is diKcult to justify since it involves
the assumption of additivity of nucleon moments. " "
The possibility of additional corrections having their
origin in distorting or exchange sects between nucleons
is not denied, but the percentage of D state arrived at

' R. G. Sachs, Phys. Rev. 72, 91 (1947).' G. Breit and I.' Bloch, Phys. Rev. 72, 135 (1947).' E. N. Adams II, Phys. Rev. Sl, 1 (1951),
s See footnote 20 of E. N. Adams (reference 7). The authois

wish to thank Dr. Adams for his correspondence relating to this
matter and for making available some of his calculations.

9 H. Primakoff, Phys. Rev. 72, 118 (1947)."H. Miyazawa, Prog. Theoret. Phys. 7, 207 (1952)."R.Osborn and L. Foldy, Phys. Rev. 79, 795 (1950)."R. G. Sachs, Phys. Rev. 74, 433 (1948).

by L6vyts from the PSps theory and from nuclear
two-body data does not de6nitely indicate its presence.

Notation

I, II. . . subscripts designating the two particles.
For the deuteron, I designates the proton, II the
neutron.

1, 2. . . subscripts designating respectively values of
a quantity for a orie-body and two-body problem;
these subscripts are used only when a distinction
between the two cases is necessary.

8=energy including rest mass energies.
y =momentum (variable canonically conjugate to

coordinate).
e= (a„a„,a,)=Dirac's four-row square matrix vector.
a= pt(o„o„, o,), where the o are Dirac's four-row spin

matrices.
/=Dirac's a4 ——ps.
e= Pauli's two-row square matrix vector when it occurs

in a nonrelativistic approximation.
/=Dirac's spinor wave function having four compo-

nents per particle.
4=column matrix formed by first two components

("small" components) of P in one body problem;
employment of Dirac's original representation of
the 0,„is presupposed. In the two body problem 4
is operated on by spinor index matrices like the
direct product of the corresponding quantities for
the two particles.

4, xz, pic are quantities similar to 4 with + "large" in
both particles; xz "small" in I and "large" in II;
xiz "large" in I and "small" in II.

5'= energy excluding rest mass energies; lV is negative
for the deuteron.

M =mass. of nucleon.
T=kinetic energy in nonrelativistic approximation,

excluding rest mass energies.
J=negative of potential energy in nonrelativistic

approximation.
u. . . arbitrary fixed unit vector.
n. . . index used for designation of components along

ll.

f=dJ/rdr
[A, B]p=AB+BA.
r=position vector in the one-body case. In the two-

body case r=rx —rid.
r= lrl.
0', =mesic vector potential.
g=g(~y —y'~)=momentum transform of J, see Eq.

(12.4).
8'= (&8(~)/~*)*-i.-s i.
Z(y)C(y) =wave function in momentum space.
~(y) = (&'+~o')P+o(ay)
Z.=

~

grso4+ ps.s)-:~.
C= four-component amplitude column matrix, describ-

ing spin orientation and sign of energy.
'3 M. Levy, Phys. Rev. 88, 725 (1952).The authors are grateful

to Dr. Levy for making available to them a preprint of this paper.
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C = two-component amplitude column matrix, corre-
sponding to negative energy, consisting of the
first and second components of C.

C+= two-component amplitude column matrix, corre-
sponding to positive energy, consisting of the third
and fourth components of C.

&=[rXpj.
v= [uXrj.
6= two-body wave function in momentum space.
g =pseudoscalar coupling constant.
y„=pseudoscalar nonquantized wave field.

2. LIMITATIONS OF PREVIOUS FORMAL
.TREATMENTS

(a) The Treatment of Sachs'

In this discussion the scalar and vector interactions
are considered, employing explicitly a nonquantized
meson field. The field produced by I is used in static
approximation, and the terms corresponding to it are
included in the part of the two-body Hamiltonian
which belongs to II in the uncoupled problem. The
Hamiltonian is then symmetrized in I and II. The
assumption is made that it suffices to use a static
approximation for the meson field produced by I in the
process just described and that in the vector case one
may substitute for ez the approximate representation
by yr.

The approximation mentioned last neglects the eGect
of the particle spin current of I. This current carries
with it a current of mesic charge. Its neglect is analogous
to disregarding the magnetic field caused by the spin
magnetic moment of one electron in a calculation of the
magnetic moment of the second electron. According to
Lenz' law one expects the spin current of the second
electron to change in such a direction as to oppose the
change of magnetic Qux through a fixed closed curve
produced by the first electron.

The Hamiltonians used by Sachs include some cor-
rections of order v'/c' but omit corrections for retardation
which are formally of the same order of magnitude.
Without a demonstration of the absence of effects of
retardation on the magnetic moments one cannot arrive
at a definite conclusion regarding the value of the
magnetic moment.

The construction of Hamiltonians by the procedure
described can at most establish them to the second
order of the interaction constant. The treatment of
the deuteron to this order is not sufhcient for the
reproduction of experimental results as is clear from the
fact that a calculation of p-e scattering by the first
Born approximation would be very inaccurate. The
corrections dealt with cannot be believed in, therefore,
for the whole interaction unless an additional justi6-
cation can be made.

(b) The Treatment of Breit and Bloch'

This work makes use of the possibility of formally
correcting some types of wave equations for lack of

relativistic invariance of their predictions. It employs
Hamiltonians thus set up employing all terms literally.
While consistent from the formal viewpoint of covari-
ance, the method lacks justification in the following
respects.

No proof has been given that in addition to the
terms which have been added to the Hamiltonians in
order to secure covariance there are not present other
terms of relative order n'/c'. lt is well known that
requirements of covariance alone do not determine a
two-body Hamiltonian but only restrict the choice of
possibilities. To be sure the vector equation is a rather
immediate extension of the special case of electro-
magnetic interaction. But in this case the terms of the
form

have been established" only to the extent of repre-
senting the energy correction through their expectation
value. It is in fact possible to obtain wrong results in
radiation problems by employing these terms to calcu-
late the wave function. In the magnetic moment prob-
lem the magnetic interaction-retardation terms yield a
nonvanishing contribution, and a justification of the

employment of the approximate Hamiltonian therefore
has to be given. A complete treatment would consist in
a calculation avoiding the use of a two-body Hamil-
tonian, except possibly as an intermediate step, but
based'otherwise on a consistent field theory. Since such
a theory is not available a perfect treatment is im-
possible. The scalar equation used by Breit and Bloch
is subject to a similar criticism.

It is especially unclear and uncertain that the problem
may be stated with sufhcient accuracy in terms of a
two-particle Hamiltonian with correction terms having
a universal form in terms of J.Thus, e.g. , if the correct
treatment were capable of being formulated in terms
of an expansion of observables in powers of J, then
each term in the expansion could. conceivably require
diGerent forms of relativistic corrections. The large
value of the interaction constant usually denoted by f
or g makes it impossible to disregard this possibility on
the grounds of rapid convergence of the series in powers
of J. The work of Salpeter and Bethe" indicates the
likelihood of such eGects since in hyperfine structure
calculaticms they find additional terms of relative order
am/M with n, m, 3II standing for the fine structure
constant and the masses of the particles.

3. VECTOR INTERACTION

A straightforward application of the method used by
Breit and Bloch' gives for an S state of the deuteron
system the correction factor to the proton moment
owing to the proton charge as

(&~)v "'= l —((0'r —&»).&[9'2&/(3~&') J,
'4 G. Breit, Phys. Rey. 51, 248 (1937).
'I E. E. Salpeter, Phys. Rev. 87, 328 (1952).
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(T2) =2(Tz) (2.1)

questions of frames of reference being irrelevant within
the accuracy of the calculation, Thus the correction
factor is expected to be

1 —(T2)/(3Mc'). (2.2)

The mesic field induction effect is omitted, however,
in this estimate. This e6ect arises from the fact that
particle II (neutron) produces a mesic vector potential

the two spins being supposedly oriented along the s
axis, with T2 representing the energy of relative motion.
Subscripts I, II refer to the proton and neutron,
respectively. For the parallel spin orientation in the 'S
state the whole factor reduces to

(gP) (2) —1

This result may be understood as follows. For the
single particle problem the factor'

(CI') v&'& = 1 —2(Tz)/(3Mc'), (2)

is applicable in this case. Here the nonrelativistic
approximation to Tj suffices. In this approximation

For s terms the expression yields Eq. (1.1). In the
above account of the work the presentation is such as
though the two-body wave function were a product of
one-body functions for particles I and II. The calcu-
lations have been carried, however, also for linear
combinations of products, so as to apply also in con-
figuration space. The limitations existing at this stage
will become more apparent in the analysis of the
problem in terms of plane waves.

The results obtained by the separate consideration of
the two particles agree with calculations made by
employing the covariant Hamiltonians as in the work
of Breit and Bloch. ' In the notation of this reference
and in units making 5=c= 1,

(4, I rz X ~r]4) v..
( l

+ P
' P'-

——+ + (I x+~z)
l M 2M' 4M'

Cv I—D+
4M2!

where

"sHz = —(ax nz)

in the interaction energy,

Hz'= I+ 5Hx, —

(2.2')

(2 2")

at the location of particle I. The vector potential
modi6es the single particle Hamiltonian for I by the
correction [~,&] =~&+&~,

C'v= [(+xxpxx) [+ [rz X+x]]+]+

X= —
2 (zrxrrxr) &+g (zrxr) (+'xxr) f

(3.2)

(3.2')

(3.3)

D= (i[rx XVxI]+(VzJ)(rxzrx)
—ez(rxVz I))/(4~), (3.1)

which represents the interaction of particle I with the
meson field. As in the electromagnetic case,

@i=—err/

W'&= (4, 4)-&4
=[1+(pz'+pxx')/gM'+" 1+.

Calculation gives for s terms

(3.3')

Hx'= —I[1—(ezexx)]. (2.3)

Taking into account additional terms arising from the
inclusion of 8IIj in the calculation of the one-body
problem, one obtains an addition to the expression
representing small components in terms of large ones,
'VZS. )

&%= (I/2Mc') (or &xx)%, (2.4)

the subscripts I on C and 4 indicating a one-body
treatment of the proton (i.e. I). This change in C'z

produces a change

b(4z*[rzX zrz]Az) = (I/Mc')(%*[rzX zrzz] %r) (2.5)

lfr+J px' —prx')
I

+u&,
I

—+ — + l(&+ )
M 2M' 4M'

1 ( T2)
(3.5)

M ( 3M)

and in general

(C,)=2([~zx(«z) —r(~zzrz)]f)

which becomes

(3.6)

(D)= —(r fez)/(12M') = (T~x)/(6M') (3 4)

which is found to be expressible approximately as the
mean value of (Cv) = —(4/3)(Tsozz), (s terms). (3.7)

with

and

(5/2M'c') [oxz(rxr) —r(rzzrzz)] f,

f=dI/rdr

r=rz —rqq, r= r .

(2.6)

(2.7)

(2 7')

These calculations diGer from corresponding steps in

the work of Sachs' through the consistent use of the
operators 0. and from the work of Breit and Bloch'
through the correct evaluation of "Cv. Inserting the
values listed in Eqs. (3.4), (3.5), (3.7) into Eq. (3)
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there results

(Err X zxz)) v..=—

which is seen to agree with Eq. (1).
Comparing Eq. (3.5) with Eqs. (2), (2.2) one sees

that all terms in the two body treatment with the
exclusion of Cz account for the one-body effects caused
by I (proton) being exposed to the action of J and
without inclusion of e6'ects of 0',z which are treated in
Eqs. (2.2'), (2.2"), (2.3), (2.4), and (2.5). The correction
for the generalization of the magnetic induction eGect
treated in these equations corresponds in the two-body
calculation to the terms'arising from Cz. These terms
arise from X of Eq. (3.3), anzi this term arises from the
generalization of the magnetic interaction between two
charges with inclusion of the correction for retardation
in the action of the electrostatic potential. The values
in Eqs. (2;6), (3.6) agree. The two ways of obtaining
(CF)z &2) are thus closely related contributions arising
from the same physical eBects contributing equal
amounts in both considerations. The effect of the
correction for retardation is seen to be immaterial for
the present problem.

4. SCALAR INTERACTION

A calculation along the lines of Breit and Bloch'
gives in units for which A=c= i,

(~, LrzXuz)~) ..
( 1 W —J pz' —pzz'—+ + (4+. )

M 2M' 4'

H"= (ex zzzz) J+ (zzrr) (zzzzr) f (7)

has no e6'ect on the magnetic moment to within terms
of relative order e'/c'. This term contains the same
combinations as the term which has to be added to the
interaction (1—nzazz) J to obtain the Hamiltonian used

by Breit and Bloch and in the present paper for the
discussion of the vector case. It was found for the
latter that the same result can be obtained by the
procedure used in Eqs. (2) (2.6) as by that used in

Eqs. (3) ~ (4). The latter includes the generalization
of electrodynamic retardation effects as in Eq. (7)
which are again seen to have made no diBerence for the
magnetic moment problem. The fact that terms of this

type have no eBect could have been deduced from the
fact that

in agreement with Eq. (14) of Sachs. ' The difference
from Breit and Bloch' is caused by an error in the
calculation of (Cs,). On the other hand, the calculation
of Sachs has left out of consideration the eGect of C8,
which arises from. corrections for lack of covariance of
the two-body equation if one employs-only the term in

PzPzzJ If. one omitted the corrections for covariance
in the vector case the effect of Cv would have been
absent. It is thus seen that the inclusion of corrections
for covariance is essential in the general case. The
agreement of Eq. (6) with the result of Sachs is seen to
arise from Eq. (5.5) which has not been discussed in
the literature before and explains the apparently
accidental correctness of the answer in the work of
Sachs.

On the other hand Eq. (5.5) may be seen to mean
directly that the addition to the Hamiltonian of a term
proportional to

+D+4' + (&)
~

(5) where

EP'= —(zzz Vx) (zzzzVzz) E, (7.1)

where D is as in Eqs. (3.1), (3.4), while

Cs [(zzzrpzz) [I [rzxzzz)j+]+
with

I'=2J(zrzezz)+-', (zzrr)(zzrzr) f.

(5.1)

(5.2)

The introduction of a term of form

(exVz)G (7 2)

A straightforward rearrangement gives

((u Cs.))=((a'rr curlxz(Jur+ fr(uzr)l)), (5.3)

can be counterbalanced by making

|P= exp( —iG/hc) |P'. (7 3)

where
ur ——[uX rr], (5.4)

(Cs.)=O. (5 5)

Collecting terms one lxnds with the aid of Eqs. (3.4),
(3.5), (5.5) by substitution into Eq. (5) that

1 ) W r2q
&LrrX zzx j&s.= —

I
1 + (zzx

3M)
(6)

with u standing for an arbitrary fixed unit vector.
The two parts in curly braces on the right side of
Eq. (5.3) contribute equal and opposite amounts so that

Since G is in this case free of the xxz and pz, the calcu-
lation of [rzX zzz) is unaffected by the change from f
to lp' and the retardation terms cannot affect the
magnetic moment.

The form of the two-body result for the scalar case
can be explained in terms of the one-body result. 4 The
latter is

(CF)s, &"= 1 —(Tz/3Mc') —Wx/Mc',

while Eq. (6) gives

(GF)s, "&= 1+(T2/3Mc') —W2/Mc'. (8.1)

The connection becomes more obvious by eliminating
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TV by means of

W, = (2'; —J), (i= 1, 2). (8 2)

One then has expressions equivalent to Eqs. (8), (8.1)

(CF)8.&"=1—(4Tg/3Mc')+(Jg/Mc'), (8.3)

(CF)s,"'= 1 —(2T2/3M&.")+(J2/M&, "). (8.4)

Noting that T2 includes the kinetic energy of the
neutron and comparing the one- and two-body answers
for the same mean kinetic energies of the proton one
has Eq. (2.1). With this identification it follows from
Eqs. (8.3), (8.4) that

(CF)s,&'&/(CF) 8,&'& = (Mc' J~)/(M—c' J2), —(8.5)

corresponding to expectation, since for the one-body
scalar equation J occurs in the Hamiltonian only in
the term

(9.5)

shows this relationship to the sjgn of E. The probability
of 6nding the particle in the momentum range dp with
specified spin and energy sign designated by cr is

)V') C.(y) ('dy, (9.6)

probabi1ity of a state with speci6ed spin orientation
and sign of energy, provided the reference system for 0,

and P is such as to make P diagonal. The representation
used below is such that

P-=1, (~=1, 2); P:= —1, (~=3, 4) (94)

Accordingly C&, C2 are relative probability amplitudes
for E&0 while C3, C4 are similar amplitudes for E&0.
The notation

—P(Mc' —J) 8.6
where cV arises from

and since the nonrelativistic magnetic moment contains
the factor 1/M. The part of the effect of J which is not
explicitly taken into account in the kinetic energy is the
change of the mass M to the 'effective mass M —(J/c').

Comparing this interpretation with the corresponding
conditions for the vector 'case which have been discussed
in relation to Eqs. (2), (2.1), (2.2) one sees that in both
cases the one-body answers when supplemented by the
argument concerning absence of retardation effects
either in the form of Eqs. (7) to (7.3) or of Eqs. (5.3)
to (5.5) give a complete account of the situation for
vector and scalar. interactions. It is essential here that
in the two-body problem J may be considered as
playing the same role for the motion of I as though
the motion of II were not part of the problem.

5. PLANE WAVE REPRESENTATIONS

Comparison of one-body results as in Eqs. (2) and
(8.3) shows the occurrence of an extra factor 2 in the
correction term containing T in the answer for the
scalar interaction. The work described in the present
section has been done in order to obtain a dearer
understanding of the reason for this di8erence. It
turned out' that a classifj.cation of contributions from
terms diagonal and nondiagonal in the sign of energy
gives a simple account of the facts. The wave function
iP can be represented by

(9)

where

and is given by
~V'= 2E'(E +M).

(9.7)

(9.8)

LrXnj =(vn). (10.1)

The evaluation of the expectation value of this quantity
yields the magnetic moment arising from the Dirac
current. It is seen from Eq. (9) that this evaluation
when put in terms of the C, involves the quantity
Z(vn)Z, a general form for which can be obtained by
direct calculation. One finds

Z(vn) 2= 2pa(E +M)(L„+ha „)
+p8(&/~ )L(ny)P- —P'~-1+pi{L(ny), L-j
+2'~ —LE'(E +M), t rXn3~3+)) (10.2)

where the component of orbital angular momentum
enters as

Charge conjugation is not needed and is therefore not
used. The wave function in momentum space in the
usual sense is seen to be

z(y)C(y)

and multiplication of P„(r) by a Cartesian coordinate

y is equivalent to the application of 5&7/i—&7P„ to the
momentum space wave function.

It is convenient to employ the quantity

v= PuXr) (10)

where u is an arbitrary 6xed unit vector. In terms of v
the component

k=y/5, c=1, (9 1) L„=(Lu), L=LrXyj (10.3)

Z(y)= (E +M)p+ny, 8 = I (M'+P')&j, (9.2)

(~(y)C(y)).= ~..(y)C'(y) (9 3)

The convention of omitting summation signs over
common indices is used and units are adjusted so as to
have a= i. The 4-row column matrix C describes the

and components of other quantities along u are similarly
designated by the subscript N. In Eq. (10.2) the erst
two terms contain p3 ——P and are, therefore, diagonal
in the sign of energy. The remaining part of Z(vn) 2
contains the 4-row square matrices only as p~ and o
and is nondiagonal in the sign of energy.
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(C-)=(1/4M') (e(y+y')) g(C+ )dP (12 6)I.„+ho „(oy)p„—p'o „—((va)) = +h
2(&')'(&'+o')) Nc, and. employing this form in the p~ containing part of

Eq. (10.2) one obtains three terms arising from the
three parts inside the curly braces. The last term. gives
the largest contribution on account of the factor
8 (E'+M). A simplification takes place in the evalu-
ation of the effect of this term because [rXe) operating
on g gives an odd function in p —y' while the remainder
of the integrand is even. For this reason the only
contributions to be considered come from [rXef applied
to op. One has thus by means of Eq. (12.6)

(C =0), (11)

where the calculation of the expectation value of the
right side is supposed to be done by inserting the
operator occurring on the right side between E(C+*)'
and X(C+), multiplying by h &dy and integrating; the
superscript T stands for transposition. It may be shown
that for s terms, i.e. states for which Dirac's k= —1,
where h=&(j+-', ), the quantity C+(y) is spherically
symmetric in p space. In this specialization the contri-
bution to —({ve)) arising from positive energy plane
waves ls

-(.L~.(~"+M), r X &-&.)

= —(4/4M') C+*r(y) (—h/o) L
—~X~g

XgE'(E +M)C+(P')dydy'ho „hp'o.
VC o' 3(E')'(E'+M)),vc

= —(1/M') C+*r(y)1Vho.„g&VC+(y')dydp
~J

= —(h/M') (o J). (12.&)

=(h/M)(C1-(2p'/3M) j-.& ~

= (h/M)([1 —'(4T/3M) )o „).yo,

For (C )=0, taking into account the normalization Solving for (C ) from the first line of Eq. (12) one has
convention of Eqs. (9.6), (9.8), it follows from Eq. (10.2)
that

(s terms). (11.1)

The inherent relativistic correction factor for the
positive energy part of the wave function is seen to be
1 —4(T)/(3Mc')

The results for the one-body scalar interaction prob-
lem are now readily interpretable. The correction factor
apart from the effect of (J) in Eq. (8.3) is accounted
for by the effect of states with E)0. The term in (J)
must be caused therefore by cross product terms be-
tween C+ and C . One 6nds in fact that the wave
equation takes the form

(~.+~')(C ) = (pi~'){&(p, p')(C-')
al

+&(p, y') (C+') &dy',
(12)

Here the 6rst factor 4 takes account of repeated doub-

ling coming- from double order once for C *~C+ and
C~*rC and once for [ $+. Adding the right side of

Eq. (12.7) to the value of ((ve))~~ as in Eq. (11.1) the
correction factor of Eq. (8.3) is reproduced. The term
in (J) has thus been verified to be caused by matrix
elements nondiagonal in the sign of energy.

For the vector case the Schrodinger equation in the

C+, C form takes the form

(~.+W(C )=- (~/~){~.(y, p')(C-')
4

+&v(p p')(C+'))dy"
(13)

(&o—&')(C+)= — (8/~) {—&v(» P') (C-')

+A&(p, p')(C+'))dp',
where

(~o—~ ) (C+) = (8/-~") {&(p, y') (C-')
aJ

where

(C-)=(1/4M') (~(p—p')) l(C+')dy' (13 3)

~(y, y') = (~'+M)(E"+M) —(~p)(~p'), (12 2)
A procedure similar but slightly more laborious than
that in Eq. (12.7) gives

~.(p, p)=(~.+M)(~"+M)+( p)(~y'), (13.1)
—~(p, p')(C+'))dp', &v(p, y') = (& +M)(~p') —(~"+M)(&p), (13 2)

(C I) [C (yl)] (12 1) and the notation is otherwise as for Eq. (12). From the
first line of Eq. (13) there follows the approximation

and similarly for the other (C). The other quantities in
the Schrodinger equation needing explanation are

g=h ' J(r) exp{i(k—k')r)dr,

ED=energy of stationary state.

(12.4) ((v~))+=(h/2M') (C+*'){2o 9+Lo (p —p')'

+(P ' —P )(e(p —p')) 3g'/I p —p'l ) (C+')dpdp', (13.4)
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= "(P'—(pp')l(A'!! p —p'! 3(C+')dP', (» 6)

which when used with Eq. (13.4) gives a contribution
canceling ~ of the term —4(T/3Mc') in the correction
factor.

The representation of the answer in terms of plane
waves has been used so far only for the one-body
problem. It will now be made use of for the two-body
case. It is fortunately not necessary to make a new
calculation because it is possible to justify the adoption
of Eq. (11.1) for the two-body case, with T-standing
fo& the kinetic energy of the proton. Similarly one can
justify the employment of Eq. (12.7) with J standing
for J()rz —rzz! essentially on the grounds that Eq.
(12.6) can be carried over to the two-particle case with
a slightly changed meaning. The somewhat intuitive
approach used in connection with Eq. (8.5) can be thus
explained in terms of J causing transitions to (C ) and
the form of the correction factor remaining the same
for the scalar case provided the variables used are the
kinetic energy of the proton and the mean J. Similarly
in the vector case Eq. (13.3) shows how J is responsible
for the existence of (C ) and cancellation of half of
4(T)/(3Mc') occurs because the contribution in terms
of g happens to be expressible in terms of T with the
aid of Eqs. (13.4), (13.5), (13.6).

In the argument just presented there are some gaps
which were left in order to present the essential features
concisely and which will now be 611ed in. The two-body
16-component P is analyzed as

J ~(pz, pz, pzz& pzz)'
Xexp(i(kzrz+kzrzz)) dpzdpn, (14)

the spin index p, being indicated as an argument of the
wave function in momentum space. The function 6
can be represented as

e(pz, yz, pn, yn)
= L~(pz)C'(pz)1. z!-~(p»)C"(p»).zz, (14 1)

because only states restricted by

pz+pzz (14.2)

need to be considered. For each value of the relative
momentum there enter in the representation four

with the understanding that both orders C+*~C and
C *~C+ are included and with

8'= (dA(&)/'d&)*=IP-~ t (13 5)

Inserting the value for (C ) available in Eq. (13.3) into
the second line of Eq. (13) one obtains the C space
transform of the nonrelativistic Schrodinger equation.
From this equation there follows the relation

L(P'/M)+(~ —~o)(p&n) 3(C+)

possibilities regarding sign of energy, two for each
particle, corresponding to C+', C ", etc. Since one is
concerned with the calculation of the expectation value
of a single particle operator, vis. LrzXaz], the only
combinations that matter are those diagonal in the
sign of C'z. For this reason J and g affect the cross
product terms in a manner analogous to that in the
one-particle case. It will be noted that g in the present
case is precisely of the same form as in the one-body
problem since it comes in through the introduction of
the relative momentum. The quantity C" takes no
part in the operations and the one-body result for cross
terms can be transferred to the two-body case. Another
point needing mention is the slight change regarding
the operator L„z for +, + combinations. This operator
has no eGect in the one body problem on account of
spherical symmetry of C+ for s states. In the two-body
case it also has no effect to the order that matters,
provided the presence of the D state is disregarded.
The authors hive not succeeded in reducing this part
of the argument to a simple form. It is based on the
possibility of separating spin and angular variables for
the 'S& state in the general manner used by Critchfield. "

6. PSEUDOSCALAR INTERACTIP If

The single particle problem has been calculated by
means of the Hamiltonian

H= —c(ep) Mc'P i—gPy'x— (15)

where y is the pseudoscalar nonquantized field and the
conventions

= —Zp(Xk= p20'k&
(15')

'Y =7'Y'VV =Pz~ 'PV =Pz

are used. Expressing the "small components" 4 in
terms of the "large components" + one finds by
straightforward. calculation

r
(y*r~rX e]P)dr (P* y)dr

I t'
{c/E) (e*r(L—+he)e)dr (a*re)dr

= —(c/S)(L+ h~) „(16)
where it is supposed that the energy of the state p is
E and the subscript 0' indicates averaging in terms of
the two-component function +. The result is inde-
pendent of the pseudoscalar field except insofar as + is
affected by it. Although Eq. (16) suggests that the
correction factor to the magnetic moment is Mc'/E,
the special character of the pseudoscalar interaction
makes it necessary to exercise caution in applications.

It appears probable that Eq. (16) will be more useful
in applications to heavy nuclei because the approxi-

"C. I . Critchfield, Phys. Rev. 71, 258 (1947).
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mation of a fixed field is presumably more justifiable in
such cases than for the deuteron. If one were to form
a model of a heavy nucleus by analogy with atomic
models the simplest hypothesis would consist in making

x spherically symmetric. If one did, stationary states
containing mixtures of wave functions of even and odd
parity would result:showing the inconsistency of such
an assumption with the pseudoscalar character of y.
The simple u priori reasons for considering I. to be a
good quantum number can thus hardly be transferred
from atomic theory to the present case. It is neverthe-
less customary to assume that L, is not far from being
a good quantum number and the I. meant in this
connection is usually defined in terms of 0' rather than
iP, nuclear theory being customarily stated nonrelativ-
istically. %ithin the limitations of these assumptions
there is a definite meaning to a statement that a
nuclear particle is in an s-state when the nucleus as a
whole is in a stationary state. Under such conditions
Eq. (16) gives the simple correction factor

Mc'/E (16.1)

= Q' L(«) (ap)+(~p)(va)]4) (17 2)

Linearizing the operator on the right side of the last
equation with respect to the Dirac cr's and employing
commutation relations for coordinates and momenta,
one finds after a short calculation

The form of this result is similar to that of Eq. (16).
For two states with different energies 8, E' one obtains
by employing P'*r in place of P*r

Q" ErXajf) = —L&&/(&+&')](p', )I+ho)p), (18')

which furnishes nondiagonal matrix elements. The last
result shows the presence of vanishing denominators
between states with the same absolute value but

to the nonrelativistic moment. This factor, as well as
the general result in the form of Eq. (16), means that
the relation between the magnetic moment and the
energy which applies to free particles is not disturbed

by the introduction of the pseudoscalar interaction. .
It may be shown that a relation similar to Eq. (16)

holds in terms of the four component wave function f.
The wave equation corresponding to the Hamiltonian
of Kq. (15) is

—(E/c)$= L(eP)+Mcp —(g/c) p2xfp (17)

Multiplying by (vn) it becomes

—(&/~)(v~)4

)( P) —IM & —(g/)p xl( )}0 (17 1)

Mult:iplying by f*r, integrating over r, and employing
the complex conjugate of Kq. (17) to eliminate the
combination McP —(g/c) p2x one obtains

opposite signs of E and is nugatory in such cases. The
existence of Eq. (18) shows that the relationships to
conditions in heavy nuclei which have been discussed

in connection with Eq. (16) are more general than the

usual nonrelativistic approximation.
The usefulness of Eq. (16) in applications to. the

deuteron is questionable. If it were justifiable to con-

sider the ground state of this nucleus as a linear combi-

nation of wave functions consisting of products of

proton and neutron wave functions and if these states
contained only proton functions with energies between

approximately W+Mc' and. Mc', one would be justified
in employing a mean 8 in place of 8 in Eq. (16.1).The
discussion of other cases in the section concerned with

plane waves has shown however that states with E&0
matter, so that this simple procedure is not correct in

the general case.
By analogy with the cases of the scalar and vector

interactions one can attempt to estimate the correction
factor for the deuteron by attributing the difference

between the factor 1 —4(Ti&/(3Mc') and

M~'/E, =1—Wi/(Mc') (19)

and are decidedly directional in character. The fact"
that for the two-body problem the net result of the
quantized pseudoscalar theory is to give a relatively

small proportion of the 'D state does not remove this

diQiculty. Furthermore there is no proof that the

as arising from cross product terms between. states with

opposite signs of energy. This difference corresponds to
the inclusion of a factor

1+L4(T )/3 —Win/(Mc')
= 1+L(Ti&/3 —(Wi —(Ti&)j/(M~') (19 1)

in the one-body case, as an allowance for the effect of

cross terms. If one replaces Wi —(Ti) by W2 —(Tn) on

the grounds that the mean potential energy must be
responsible for the proportion of states with E&0 and

if one supposes that (Ti/3) is present in Eq. (19.1) as a
direct property of the proton, then the correction

factor for the deuteron should be

$1—2(T2&/(3Mc') j(1+(Tu)/6 —(Ws —(Tu&) }
=1+DT2)/2 —Wgg/(Mc'). (19.2)

This formula is subject to considerable uncertainties

and doubts. The interaction between the particles is

inherently not of the central field type. It is therefore

rather questionable that there is a simple connection

between the properties of a one-particle s state and the
'S state of the two-particle system. There is no proof

that the latter does not contain linear combinations of

products of wave functions corresponding to vector

coupling of states with J&0. For a nonquantized

pseudoscalar held the sources of the e—""/r terms are in

fact proportional to

&(0 *'~-s'+~)l»'
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contributions of I.„arising from C+ are sufficiently
small in the present case to be neglected. There is
besides no assurance that the formation .of virtual
nucleon pairs which is known to be important in
applications to nuclear forces does not appreciably
aGect the conclusions. This question is so closely
connected with the perturbing inQuence between
nucleons that it becomes hard to separate it from the
general question of additivity of nuclear moments. "—"
It is necessary therefore to regard. Eq. (19.1) as a
speculation.

V. THE DIAMAGNETIC EFFECT AND
CONCLUDING REMARKS

In addition to the relativistic eGects, the comparison
of calculated with measured values should include the
consideration of the diamagnetic eGect caused by the
shielding of a nuclear moment by the current system of
the deuteron. This effect is related to the diamagnetic
eGect calculated for atoms by Lamb. " It has been
apparently omitted in previous discussions. Formally
such an omission amounts to disregarding magnetic
interaction terms between the particles. While these
terms produce smaller effects on the mutual energy
between the particles they produce, nevertheless, effects
which are formally of the same order of magnitude as
the relativistic corrections. It is estimated to be smaller
than the direct effects of (T) or (J) but not necessarily
negligible in comparison with W/Mc'. In the general
case it is necessary to consider the dHFerence in the rates
of precession of L and e. For s terms in the single body
case only the precession of the spin matters and the

' W. E. Lamb, Jr., Phys. Rev. 60, 817 (1941).

effect is then' very similar to that calculated by Lamb.
Estimates made on this basis indicate that this eGect
is small compared to the others considered here. On
the other hand there is an obvious inconsistency in
applying a one-body treatment to this problem. Some
of the smallness of the eGect results from the spherical
symmetry of the s term and this condition is not
satished on account of the tensor force.

The treatment of relativistic corrections has been
discussed in the present paper in terms of somewhat
arbitrary assumptions concerning the form of the two-
body equations, the primary object being to explain
the diBerences between the diGerent results in terms of
eEects which can be described in simple language. The
existence of additional effects is, of course, not excluded
by the fact that the formal calculations have been
interpreted in another way. The fact that two of the
Hamiltonians used are covariant to the relative order
e'/c' is not a sufhcient condition for their correctness
and the results may not be regarded as Gnal. In fact
the more detailed discussion has brought out reasons
for believing that additional terms including the inter-
action constant with the meson Geld will occur in a
more complete treatment. In this connection it may be
especially desirable to draw attention to the fact that
the possibility of clearly distinguishing between rela-
tivistic corrections and nonadditivity of nuclear mo-
ments has not been established. The eBect of the tensor
force has been omitted on the grounds that the deuteron
is probably predominantly in the '5 state. The errors
committed at this point have not been ascertained and
are probably impossible to separate from the questions
raised in connection with the pseudoscalar interaction.


