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An attempt is made to correlate in a unified picture the features
of the empirical evidence on nuclear constitution, some of which
appear to require for their explanation the liquid drop model as
others require the independent particle picture. As an idealized
and exploratory basis for an inclusive description, the extreme
saturation assumption has been adopted: potential on a typical
nucleon in the nuclear interior nearly independent of the position
of the other nucleons, this potential falling off in a small distance
at the nuclear surface. In the resulting collective model of the nu-
cleus a distinction is made between the nucleonic state of the
system—as defined by the states occupied by the individual
nucleons—and the state of vibration and rotation of the nucleus
as a whole. On quantum-mechanical grounds it is shown how the
kinetic energy of this motion receives an explanation in terms of
the degrees of freedom of the individual particles. As in the elec-
tronic-vibrational-rotational description of molecular constitution,
so in the case of the nucleus it is reasonable to think of the sums
of the energies of the individual particle states, plus the sum of the
interaction energies, as defining a potential energy of deformation
as a function of the shape of the system. Different states of the
totality of individual particles give rise to different potential

energy surfaces. A given sheet touches one of the surfaces im-
mediately above or below it only at certain isolated “funnels” asin
the case of polyatomic molecules. For full validity of the collective
model it is necessary that nonadiabatic transitions from one
surface to another occur infrequently compared to the frequency of
rotation and capillary oscillations, so that these collective motions
have a well-defined existence. The mathematical consequences of
the collective model have not been explored fully enough to tell
whether this condition of self-consistency is fulfilled well or very
roughly or not at all for any given excitation energy. The vibra-
tional frequencies correspond in general terms to those predicted
by the simple liquid drop model, with, however, certain charac-
teristic quantum mechanical differences. Instances of the Franck-
Condon principle have to be accepted, analogous to those in the
molecular case. Discussed are some consequences of the collective
model or of its liquid drop simplification for energy levels, com-
patibility of strong neutron capture with individual particle effects
in binding, quadrupole moments, alpha-decay, fission thresholds,
photofission, spontaneous fission, asymmetry in nuclear fission,
hydrodynamics of the division process, fission alpha-particles,
and fragment excitation.

I. THE LIQUID DROP AND THE INDEPENDENT
PARTICLE

ISSION is unusual among nuclear processes. The
division of a many-particle system into two equal
fragments is beyond explanation in terms of the move-
ment of a single nucleon, or any small number of
nucleons. In evidence is the collective behavior of the
nucleus as a whole. This behavior has been idealized in
the liquid drop model. The nuclear substance is com-
pared with a nearly incompressible fluid, of almost
uniform volume density of electrification, with an ap-
proximately constant energy of binding per particle,
except as modified (1) by the electrostatic energy of
interaction of the different portions of the fluid and (2)
by the deficit of binding of the incompletely surrounded
particles at the surface—a deficit proportional to the
extent of the surface, and therefore responsible for the
phenomenon of a surface tension, as in ordinary lig-
uids.!'? Such a system is susceptible to deformation
(Fig. 13). The stabilizing effect of the surface tension
overbalances the potentially disruptive influence of the
electrostatic repulsions even for heavy nuclei in their
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normal nearly spherical configurations. Corsequently a
small disturbance will lead to oscillations about the
equilibrium shape. However, a marked dumbell-like
distortion will decrease the perimeter available for the
action of surface tension proportionately more than it
cuts down the electrostatic repulsion of the two halves
of the system.? Consequently sufficient deformation of a
heavy nucleus will cause instability. Then a still greater
extension will occur, with electrostatic energy being
set free faster than the consumption of energy in the
increase of the surface. The movement thus accelerates.
Ultimately the nucleus breaks into two or more parts.
Thus the act of fission has several stages: (1) raising
the nucleus to the given level of excitation by radiation
or impact of a material particle; (2) concentration of
sufficient of this energy in a capillary oscillation to lead
to a critical deformation (Figs. 2 and 3); (3) subsequent
automatic growth of this deformation (Fig. 4); (4)
scission into distorted fragments; (5) separation of these
fragments; (6) de-excitation of the new nuclei.

While fission demonstrates that nucleons can undergo
collective modes of motion, evidence has recently been
growing®? that nucleons also behave as if they possess
individual and nearly independent states of binding—
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evidence from spins and magnetic moments, and from
the shell structure in nuclear binding energies. We are
forced to conclude that two such apparently dissimilar
views as the liquid drop picture and the independent
particle model are necessarily incomplete parts of a
larger unity. Consequently, it must be possible to see
and understand the collective aspects of nuclear be-
havior starting with what we can reasonably say about
the properties of individual nucleons. If we justify in
this way hydrostatic-theoretic calculations of the gen-
eral trend with atomic number and atomic weight of
the critical energy required for fission, we must at the
same time expect that deviations have to be expected
about these average values from nucleus to nucleus
because of the individual character of nucleon states.

That neither the liquid drop model nor the model of
individual nucleons moving in a field of spherical sym-
metry are separately adequate shows very clearly in
the evidence on nuclear quadrupole moments (Figs. 5,
and 29). Both pictures fail to account for asymmetries
in the distribution of nucléar electric charge nearly so
large as many of the typical observed values.!®!
However, one must recognize that the pressure of a
few individual nucleons against the nuclear surface will
deform the collective assemblage of nuclear charge
(Fig. 6). In this way one estimates quadrupole moments
of the observed order of magnitude, as first pointed out
by Rainwater.??

The lesson of the quadrupole moments is the strength
of interaction of nucleons with each other by way of the
surface compared to the strength of their direct inter-
actions with each other. In support of this conclusion
is the empirical evidence on nuclear binding energies.
The energy of a nucleon which has an adequate com-
plement of neighbors within a distance of order 10—
cm is evidently little affected by the presence or absence
of more nucleons outside this distance. Neither does
this difference much affect the average spacing of the
closer neighbors. How this saturation character of
nuclear forces comes about is as little understood as the
origin of these interactions.’®:** Nor is it clear why spins,
magnetic moments, and finer details of the nuclear
binding energies should be consistent with the picture
of individual nucleons travelling nearly independently
through an average potential. Nevertheless, the evi-
dence requires us to take seriously and to explore the
consequences of the idealization in which each particle
moves in a potential well, of depth approximately
constant throughout the nuclear interior, abruptly
falling off within a distance of the order 7, near the
surface.

Finer details of nuclear shell structure have suggested
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14V, F. Weisskopf, Helv. Phys. Acta 23, 187 (1950); Science 113,
101 (1951),
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the hypothesis that the individual nucleons are subject
not only to the nuclear potential field but also to a
spin-orbit coupling.® Without in any way questioning
this fruitful proposal, we can legitimately overlook the
existence of such a coupling in a first survey of the
relation between the independent particle picture and
a more nearly unified description of the nucleus.

II. THE COLLECTIVE MODEL

We shall explore the collective model of the nucleus,
based upon the following assumptions.

Features Regarded as Reasonable
in Any Model

(1) Roughly constant density; one particle per vol-
ume (47/3)r¢®, with ro~1.4X 108 cm = 2/ 2mc2.

(2) Maximum kinetic energy, F, per nucleon con-
sequently nearly independent of mass number; roughly
24 Mev.

(3) Distribution of charge over volume uniform to
perhaps 25 percent or better.

(4) Nucleon binding energies generally between 5 and
10 Mev; average potential energy of order of —30 Mev.

(5) Saturation character of nuclear forces.

Special Assumptions

(1) Extreme saturation: forces regarded as giving a
potential for a typical nucleon in the nuclear interior
nearly independent of the position of the other nucleons,
this potential falling off in a small distance at the nuclear
surface. Contrast this idealization with the opposite
extreme model of an impenetrable liquid drop, with
forces conceived as sharply dependent on positions of
nearby nucleons, whether the particle in question is in
the interior or at the surface. In that picture the direct
coupling between the particles is envisaged as so large
that individual nucleon states have absolutely no well-
defined existence. The observations which suggest the
notion of nearly independent particle orbits refer mostly
to ground states and low, excited states. There circum-
stances are at work specially favorable to suppress
the consequences of nucleon-nucleon interactions which
deviate from the saturation average. There appear to
be no strong arguments for or against such over-the-
background interactions of quite significant strength.
Nevertheless, the essential idealization of the collective
model is to neglect these direct couplings in comparison
with the indirect couplings which take place through
the intermediation of the movable potential wall. In
this respect the picture is a first approximation whose
distance from the truth will only be found by full
exploration of its consequences. The theory of the
collective model is in too early a stage to make a de-
tailed confrontation with experiment.

(2) The state of the whole system is assumed to be
specified in first approximation by the states of motion
of the individual nucleons—or, as will be seen, by a
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particular one out of many potential energy curves—
and by appropriate quantum numbers for the rotation
of the system and its collective vibration on the poten-
tial energy curve in question. In actuality exchange of
energy will take place with a finite probability between
vibration and individual particle excitations, via coup-
lings of both modes of motion with the wall. These
exchanges are not accidental side issues of the collective
model—they are the vital part of reaction kinetics. But
if they are frequent, compared to the oscillation rate,
then the division of energy into a collective part and
an individual particle part will not be well defined, and
the collective model will lose its sense. We must there-
fore ask, is the model self-consistent? We have not yet
been able to carry through a detailed comparison of the

energy exchange rate with the vibration frequency.

Rough estimates below suggest the possibility of a
borderline situation, with the two rates comparable,
and the division into general vibrational and proper
nucleonic motion smudged out in part. It is too soon
to exclude the possibility that the two rates compare
more favorably; or that the numbers go the other way,
in which case the usefulness of the collective model will
be strictly limited. Unaffected would be general con-
clusions about the influence of quadrupole moments
upon alpha decay, about fluctuations from element to
element in height of fission barriers, etc., but most of
the anticipated quantitative applications of the model
would become nearly hopeless. We have hope enough
about the approximate self-consistency of assumption
B2 to have gone some distance in investigating in this
report certain mathematical details of the collective
model and its applications.

Nuclei vs Atoms and Molecules

The idealization that we now contemplate for the
behavior of nucleons in the nucleus recalls in many
ways the motion of electrons in an atomic field. There
is a similar justification to speak of individual quantum
states and transition probabilities. One is invited to
consider the same possibilities for calculation of a
self-consistent nuclear potential. Yet there is one im-
portant difference of principle. In the electronic case
the field of force is dominated by the nucleus. Percent-
age-wise the field on one electron in a many-electron
atom changes little as a second electron sweeps through
its orbit. Thus the potential is reasonably thought of as
static.

In the nuclear case the value of the potential in the
interior may perhaps be idealized as unaffected by the
orbit of any individual nucleon, and as constant in
space and time; but the boundaries of that potential as
seen by one particle are very greatly affected by the
motion of a small number of the other entities. To this
extent the potential field has to be considered as
fluctuating or oscillating.

Moreover, there is necessarily a kind of momentary
self-perpetuation in such displacements of the local
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surface from its time average position. New particles
coming up are turned back at the same place; in so far
as they in turn have an effect on the potential, they
keep the effective surface approximately where it al-
ready was.

There might be some point to overlooking fluctuations
in the position of the nuclear surface if our concern were
limited to the ground states of nuclei, where the ampli-
tude of the movements is of the order 7,.> However, it
is necessary to consider also states of excitation and
fission processes where the amplitude of motion is -
comparable to the nuclear extension itself. How are we
then to describe the quantum mechanics of a system of
many independent particles with the characteristic
new feature of collective modes of motion?

Illuminating is a comparison of the collective model
of the nucleus with a typical molecule. In that case the
electrons move rapidly in a field of force whose own
alterations—by changes in the internuclear separa-
tion—go on at a frequency 10 to 100 times slower.
Thus each electron adjusts itself for the most part
adiabatically to the potential of the moment. The total
energy of the electronic system at each instant provides
on the other hand a storehouse of potential energy.
On this supply internuclear motion can draw for kinetic
energy, and into the pool it again returns energy as the
molecular oscillation comes to rest at one or other limit
of its amplitude. Similarly the characteristic time of
radial motion of a nucleon of average kinetic energy,
T=15 Mev, is

2T 1G4+ 1)
tnucleon = f['__ ““—:I dr
M M??

® T l(l-!—l)ﬁT
Cer/ml amMTR

2R 2R 24%
< = =
(T/M)}

? B 0.18¢
=0.3X107% sec for US| (1)

an interval 15 times smaller than the estimated period,

t2= 21Th/h(z)2 -
= 27X 0.658 X102 Mev sec/0.8 Mev
=5X10"% sec, (2)

of the lowest mode of capillary oscillation of the same
nucleus. Therefore, in the nuclear case also, the states
of the particles will be expected to follow the changing
configuration of the nuclear boundary with little prob-
ability of a nonadiabatic jump from one state to
another, provided that the deformation in question is a
simple one.

Response of Nucleons to Surface

In the case of a complicated distortion of the surface,
the particle will require a longer time to feel out the
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whole surface, and the adiabaticity condition will not
be so readily satisfied. For a surface deformation of
order #, it is reasonable to require that (%/2)t,udeon
exceed the period /, of nth order disturbances, a con-
dition which plainly cannot be satisfied for disturbances
of very high order (#>~6). Such disturbances therefore
have no well defined significance in the collective model.

A natural limit to the finest irregularities to which the
nucleon can respond is clearly the square of the reduced
de Broglie wavelength, A=\/2, of the particle. The
time required to make this response will be of the order
(number of encounters to touch all regions of the
surface .S) (time between encounters) ~(S/A?)(R/v)

~(V/&3)(h/E)~h/AE, where V is the accessible vol-

ume, E is the kinetic energy of the nucleon, and AE is
the typical spacing (Fig. 11) between individual
particle levels in a region of the given size. Such a
spacing is so small, and the corresponding time therefore
so long compared to oscillation periods, that the adi-
abaticity condition will not allow any discussion of
very fine“grain irregularities. If two particles are in-
volved, and they interact strongly with each other,
then the time required by the two-particle system for
response to fine grained surface deformations will be
increased by the factor V/A®% the number of distin-
guishable positions for the second particle within the
nucleon volume V. As the number of strongly inter-
acting particles grows larger, the factor in question
goes up: by a term V/A? for distinguishable particles,
less rapidly for particles which satisfy the Pauli princi-
ple; but the increase is always such that the time in
question is % divided by the spacing of levels of the total
system. Obviously such times would be far too long to
allow any adiabatic response to surface oscillations. In
other words, the collective model can be justified only
if the individual particles interact with each other in a
strongly saturated manner, free of dependence on the
location of any one particle in the nuclear interior.

As we are accustomed to the idea of molecular
potential energy curves as a function of internuclear
separation, so we arrive at the notion of nuclear poten-
tial energy curve as a function of surface deformation.
As there are in the case of a polyatomic molecule several
independent coordinates, so in the nuclear case a
number of parameters will be required to specify the
shape of the surface (Fig. 1). We deal with a potential
energy surface. As the minima of the various surfaces
do not coincide in the molecular case, neither will they
in the nuclear case. The equilibrium quadrupole
moment will differ from state to state, according to the
special features of the push exerted on the surface by
the nucleons in excess of closed shells. The energy of the
system will consist of proper nucleonic energy, plus
vibrational energy, plus rotation energy.

Kinetic Energy of Collective Motion

In the molecular case the vibrational kinetic energy
comes into evidence in the motion of the nuclei. But
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in the nuclear case, what mass is it whose motion gives
account of the vibrational kinetic energy? The nucleons?
Is not their energy of motion already included in the
ordinate of the oscillational potential energy curve
itself? That vibrational potential energy is defined by
adding up the potential and kinetic energies of all the
individual nucleon states calculated for the static con-
figuration of a deformed nucleus. However, such a
calculation by its very nature overlooks the slow change
in the shape of the nucleus. That alteration in form
necessarily implies a bulk transport of mass from
one place in space to another. With such a current of
matter there is inevitably associated a kinetic energy
of the nucleonic system over and above the energy
reckoned for the individual nucleons in a static poten-
tial well. This additional kinetic energy has to be in-
terpreted as the oscillational energy of motion of the
system.

In the quantum-mechanical description (Figs. 7 and
8) the fluid motion comes into evidence in the transport
of the nodes of the wave function of the bound nucleon
from place to place in harmony with the motion of the
surface. In the simpler situations the nodal surfaces
move like lines of ink bodily carried along with the
irrotational flow of an imaginary liquid. The wave
function ¢ of the nucleon at any moment of the slow
wall deformation differs from the value %, which it
would have for stationary walls of the same shape by a
factor which in this approximate description of the
nodal motion may be taken to be exp(—iM ¢ /%), where
¢ is the velocity potential of the liquid movement in
question. From this circumstance it follows that the
kinetic energy of the nucleon is greater than the value
it would have had in the absence of wall motion by an
amount proportional to the square of the wall velocity.
The coefficient of proportionality is identical with that
expected for a classical irrotational fluid subject to the
same wall constraints. '

Particularly interesting among surface changes is one
which leaves the shape of the wall unaltered: a pure
rotation of the boundary. In this case the amount of
matter transported from place to place is set by the
size of the departures from sphericity, not by the total
mass content of the figure. The effective moment of
inertia of the system is likewise far less than would
correspond to the picture of rigid rotations. The corres-
ponding rotational levels lie far higher. All of these
consequences of a proper quantum picture of nuclear
rotations have been pointed out by A. Bohr,%:'¢ who
has also shown their importance for the analysis of
nuclear spins and magnetic moments.

The lower rotational excitations, though far larger
than the few tens of kev values which would follow for
a rigid nucleus, are still lower than most of the quanta

15 A, Bohr, Phys. Rev. 81, 134 (1950).

8 A, Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
26, No. 14 (1952); A. Bohr and B. R. Mottelson, Phys. Rev. 89,
316 (1953).
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of vibrational energy. For this reason it is appropriate
to follow the manner of speaking employed in molecular
physics and to employ the term ‘potential energy
surface” for the case where the rotational angular
momentum either vanishes or is treated as negligible.
Higher angular momenta produce modifications in the
potential energy surface of the kind familiar from
molecular spectroscopy.!” These rotation-induced modi-
fications in the potential surface will give rise to a
number of complicated and interesting effects. They will
be disregarded in this paper, however, in comparison
with the vibrational and nucleonic-excitational phe-
nomena.

Under certain circumstances the deformation of the
surface will displace the nodal surfaces in a manner
which is no longer even approximately described by
transport in irrotational fluid flow. Then a vortical
motion of the carrier fluid must be envisaged. The effect
upon the nucleonic wave function (see Fig. 10) may be
considered as the quantum analog of the swirls which
can be set up in classical fluids. In so far as such effects
show up only in one nucleon state out of many, the
kinetic energy of the whole system under deformation
will not differ greatly from the value expected on the
simple liquid drop picture.

Quantum Description of Collective Motion

Granted that the kinetic energy of the droplet model
can be brought into evidence in the collective picture of
the nucleus when the wall motion is regarded as given,
how is the wall motion itself ever to appear as part of
a proper quantum-mechanical description of the N
particle system rather than something imposed from
outside? Is not the full quota of degrees of freedom
already accounted for without the wall motion? How
then can the surface oscillation be described by degrees
of freedom which are not there? Physically, we answer,
the fluctuations in wall position and the collective
character they imply for the NV particle system are an
unavoidable consequence of the strong coupling of
particles at the nuclear surface. Mathematically we can
describe the situation in the following terms. Were the
wall position described by externally fixed parameters
of the type of «, then the wave function of the system—
apart from unimportant details—would have the char-
acter of the determinant:

u(l, X1, a) ............ M(I, N (X) )

, 3)

\I’stationsry=

u(N, %1; @) u(N, xy; o)

where the u#(n, x;; o) represent the individual particle
wave functions in a potential well of the given shape.

17 G. Herzberg, Molecular Spectra and Molecular Structure (D:
Van Nostrand Company, Inc., New York, 1950). -
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With a changing but still externally controlled deforma-
tion, @ becomes a function of time and the determinant
on the right has to be multiplied by the factor,

exp{—i(M /M) d(x)+---+o(xn) ]}, 4)

in order to obtain the approximate wave function for
the nucleonic system. Here ¢ (expressed in cm?/sec) is
the velocity potential of the irrotational motion of the
imaginary carrier fluid. Conversely, when the nucleons
are regarded as determining the potential energy of
deformation for the coordinate e, then the vibrational
state of the system—if that could be thought of as
having an independent existance—would have the value
ha(c) appropriate to a quasi-harmonic oscillator. To
write the wave function of the whole system as the
product of determinant, of velocity potential factor, and
of harmonic oscillator function, is illegitimate because
there would be too many independent variables in the
product for an N particle system. However, integration
of this product with respect to « yields a wave function

<I>(x1, e xN)=f\I/(x1’ e, XN a)
Xexp{—i(M/h) . ¢(x;)}n(a)da, (5)

which depends only on the coordinates of the particles
themselves.!’® This function, nevertheless, provides a
physically reasonable description of the collective motion
in question. (a) It has the proper antisymmetry. (b) It is
large in the vicinity of the classical turning points of
the oscillation in the sense that presence of one of the
particles in a region a little outside the average position
of the nuclear surface is associated preferentially with
a probability for other particles to be a similar distance
outside the average surface; and a similar probability
to see one missing at a given distance outside the aver-
age surface is associated with an increased likelihood
for other nucleons to be absent there; and these cor-
relation probabilities are greatest when the distances in
question are comparable with the amplitudes of the
corresponding classical surface vibrations. (c) Two of

17a The a-factor in the velocity potential in the exponent
(Figs. 7 and 8) is of course to be replaced before integration over
a by its operator value, (%/iM,)(8/9a). Alternatively, if we use
for kn(a) its J.W.K.B. approximate value, then the exponential

operator acting on this oscillator function gives two additive
terms. In one of the terms the &-factor in the exponent is given

the value
+{2[E—V(a) 1/ Mo},

and the exponential function is multiplied into that part of Aa(a)
which represents a wave running to the right; similarly for the
other term, where & is given the opposite sign. Although the wave
function of (5) is formulated on the basis of physical reasoning,
one can of course alternatively regard %.(«) as a quite undeter-
mined function, which is to be so chosen as to make ® the “best
possible wave function” in the sense of the Ritz variation prin-
ciple. How this method of approach can be used to derive from
first principles a wave equation for k.(a) is a problem identical
in principle with the formulation of the method of “resonating
group structure” [J. A. Wheeler, Phys. Rev. 52, 1107 (1937)7].
In particular, it is not at all necessary that the potential ¥(a) be
quasi-elastic nor that %,(a) be a harmonic oscillator wave function.
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the individual determinants which are combined by
integration are very nearly orthogonal to each other
(Fig. 9) when the displacements «; and s to which
they correspond differ in normal surface coordinate by
an amount of the order 7,/IV, where IV is the number of
particles of identical character and 4(4nr?®/3) is the
volume available to one of these particles. In physical
terms there is a very high correlation between the
probability distribution of the particles and the values
of the “hidden” deformation variable «. This near-
orthogonality of the piece-wise functions makes it a
reasonable approximation to treat the alpha-variable
almost as an independent coordinate.

The deformation coordinate is indeed expressible in
terms of the particle variables; the collective model
does not contemplate a quite inadmissible increase in
the total number of degrees of freedom. How then can
we justify a count of the states of the system in which
we tally up not only the indices of the individual
particle states but also reckon in all the quantum states
of the surface oscillators? The system of functions is
already complete when the oscillator quantum numbers
have specified values. To sum subsequently over vibra-
tional quantum numbers too is to get the same complete
set many times over. The solution to this counting
paradox is of course that no such extended summations
are either intended mathematically or sensible physi-
cally. Only the few lowest modes of oscillation have a
well-defined physical existence. Moreover, the rate of
interchange of energy between vibrational and nu-
cleonic motion depends on the choice of potential energy
surface and becomes the greater the higher the degree
of excitation of the nucleons in that state. Thus there
is a limit of energy beyond which no vibrations of any
kind make sense. The problem in the collective model
is not that we have too many states but too few. The
failure of the description above some tens of Mev has
to be accepted physically. A nucleus endowed with
sufficient excitation is capable of breaking apart into
many individual particles, as evidenced by cosmic-ray
stars. The collective model is valid only for not too high
excitations. ’

Conventional expansions of nuclear wave functions
in terms of individual particle states in a spherical
potential are quite unadapted to- describe states of
collective oscillation and rotation. Staggering would be
the number of kinds of multiple excitations of nucleons
required to describe a combination of vibration and
nucleonic excitation.

III. THE DEFORMATION POTENTIAL
Definition and Survey Formula

Key to the collective description is the concept of
potential energy of deformation: sum of the kinetic and
potential energies of the individual nucleons moving
inside a nuclear surface of fixed shape. For a first survey
of the energy surfaces it is reasonable to make the
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following simplifications: (a) Neglect spin-orbit coup-
ling. (b) Treat the internuclear force as having such an
extreme saturation character that the potential energy
of a particle is constant within the nuclear matter and
at the surface suffers a sudden and abrupt rise. The
actual wave functions will penetrate into the region of
negative kinetic energy to a distance of order 7. In
dealing with wave functions for bound nucleons it is
often convenient to idealize the potential discontinuity
at the wall as infinitely high. Then the calculated
nucleonic wave function does not penetrate at all
outside the wall. This effect—and its consequences in
shifting nodal surfaces inside the potential well and
displacing energy proper values—can be corrected in
a reasonable approximation by an appropriate slight
adjustment in the values adopted for nuclear dimen-
sions. For each particle put down then a contribution
to the total energy equal to (i) the appropriate eigen-
value of V2,+ (2ME,/#*)y,=0, subject to the bound-
ary condition, diminished by (ii) a standard quantity
By, of the order of 14 Mev, representing the saturation
binding per nucleon. (c) Represent the deficit from
saturation binding of the particles at the nuclear surface
by a term in the total nucleonic energy of the system
which is proportional to the surface area, S. The con-
stant of proportionality we denote by O(potential)
—not the total surface tension!® O=0,+0;~14
Mev/4mr?, of the nuclear matter, but that part of this
quantity which has to do with specific nuclear forces.
The other part, Oy, of the usual surface tension has to
do with the total kinetic energy of a system of particles
bound in a potential, in so far as that total depends
upon the surface, as distinct from the volume, of the
potential well. This kinetic part is already included in
(b). Whatever differences there are in the dependence
of kinetic energy upon deformatipn magnitude between
statistical analysis as typified in the constant O, and
detailed analysis via summation of eigenvalues E,, the
latter is to be considered the more nearly definitive.
As to the dependence of specifically nucleonic potential
energy upon deformation, it would likewise be more
nearly accurate—if it were practicable—(i) to evaluate
the expectation value of the interaction energy with
respect to a determinantal wave function built up out
of individual eigenfunctions ¥, than (ii) to use for 4
nucleons the expression— 4 By+ 0, as statistical means
to estimate this nucleonic interaction energy. The
difference between (i) and (ii) is the less the more
nearly the forces between nucleons have the extreme’
saturation character which is assumed in the idealized
collective model. (d) The electric energy of interaction
between protons could likewise be evaluated via the
determinantal wave function of the system, but again
it is a reasonably consistent approximation to represent
the Coulomb interactions in terms of the electrical

18 W, J. Swiatecki, Phys. Rev. 83, 178 (1951); C. F. von Weiz-
sicker, Z. Physik 96, 431 (1935); E. Feenberg, Phys. Rev. 60, 204
(1941).
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energy of a uniformly charged fluid contained within
the given boundaries: :

V,,=pfffd(vol)ld(vol)g/Zrm.

It would be possible to consider—although we do not
do so here—a refinement of this analysis, in which (i)
slightly different boundaries are ascribed to the regions
in which the neutrons and the protons move,® (ii)
there are two different potential wells inside which the
two kinds of particles move, (iii) neither potential well
is of constant depth, (iv) the potential gradient is in
such a direction to make the number of protons in the
outer half of the nucleus, and the number of neutrons
in the inner half, slightly greater than would correspond
to a uniform proton-neutron ratio,?* and (v) oscillations
of the neutrons en masse relative to the protons become
possible, as discussed by Goldhaber and Teller, and
Jensen and Steinwedel,* especially in reference to the
maximum observed in the nuclear photoabsorption cross
section between 10 Mev and 20 Mev.

In summary, the collective model envisages a deform-
ational potential energy function, V{(as, as, -« ; 71, - +),
which depends (a) upon the coordinates as, as, etc.,
which specify the shape of the nuclear surface, and (b)
upon the quantum numbers #, --- of the occupied
nucleonic states. This potential energy is taken to
have the form

V(a, n)=—ABo+0,5(a)+ 2 En(0)+V(a). (6)

Level Density

Interest attaches to the deformation potential both
in its dependence upon deformation for a fixed state
n=(ny, +--) of the whole nucleonic system, and its
variation with quantum state for a specified configura-
tion, e, of the wall. The variation of potential with wall
configuration specifies an energy surface in (V, o) space.
Upon this potential surface the representative point of
the system may be considered to move like a marble.
This surface ordinarily possesses at least one minimum
—a point of equilibrium for the collective oscillations
of the nucleonic system. The location of the minimum
specifies the normal equilibrium deformation of the
nucleus. A first rough impression of the curvature of
the potential surface about the minimum is given by

identifying V(a, #)—up to an additive constantand a

shift in the origin of a-space—with the expression
Viiquid arop(@) = (0p+01)S(a)+ Ve(e). For a fixed value
of the distortion coordinates, «, there are many different

19 7, H. D. Jensen and P. Jensen, Z. Naturforsch. Sa, 343 (1950).

20 E, P. Wigner, Nuclear Masses and Binding Energies, p. 21,
part IV of University of Pennsylvania Bicentennial Conference
Publication, Nuclear Physics (University of Pennsylvania Press,
" Philadelphia, 1941); E. Feenberg, Revs. Modern Phys. 19, 239
(1947); W. J. Swiatecki, Proc. Phys. Soc. (London) A64, 226
(1951).

2 M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948);
H. Steinwedel and J. H. D. Jensen, Phys. Rev. 79, 1019 (1950);
Z. Naturforsch. Sa, 413}(1950).
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values of V, according as the nucleons are placed in
one or another set of individual particle states. The
spacing of successive potential surfaces therefore goes
qualitatively much like the pattern of levels of a spheri-
cal 4 particle nucleus, with the same statistical relation-
ship between the density of proper values of the total-
ized energy, and the density of individual particle
proper values:®® (a) The lowest level of the whole
system is found by filling up the individual particle
levels, starting at the bottom, until all 4 particles are
accommodated: kinetic energy of the order of F~24
Mev for the highest single particle state; for all particles
together, > E,~2AF. (b) The first few excited states
of the whole system have spacings of the same order as
the average spacings, AEp, of the levels of a single
particle at excitation F. (c) For excitations Exy=Y Ey
larger than several times AEp, yet very much smaller
than AF, (by which excitation the collective model
will already long since have failed) the density of system
levels increases roughly exponentially (neglecting power
factors) with an exponent 7(8Ey/3AEr)}. Consequently
the number of potential energy surfaces of the nucleus,
like the corresponding number for the case of a poly-
atomic molecule, increases more and more rapidly with
the excitation, nucleonic in the one case, electronic in
the other.

The density, dZ/dE, of states of the collective nuclear
model at relevant energies will increase with energy
even faster than the density of potential surfaces,
dZy/dE, because there are many ways in which the
total energy E=Eyx-+E,s can be partitioned between
individual particle excitation and collective oscillation:

E o dZy\  (dZu
47)dE= f (—— ( ) dEy.  (7)
0 dE /ey \ dE /E-ENn

The density of capillary oscillational levels increases
with energy, as Wergeland® has shown, at a rate also
dominated by an exponential factor, this factor de-
pending upon energy in roughly the same way as the
factor for the density of nucleonic levels. However,
instead of comparing the two expressions for level
density, we combine them by the indicated integration.
The result is to increase the exponent in the level
density by a factor in the neighborhood of 2} for those

2 N. Bohr and F. Kalckar, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 14, 10 (1937); V. F. Weisskopf, Phys. Rev. 52,
295 (1937); L. Landau, Physik. Z. Sowjetunion 11, 556 (1937);
H. A. Bethe, Phys. Rev. 50, 332 (1936); J. Bardeen, Phys. Rev.
51, 799 (1937); J. Bardeen and E. Feenberg, Phys. Rev. 54, 809
(1938); C. Van Lier, and G. E. Uhlenbeck, Physica 4, 531 (1937);
L. Motz and E. Feenberg, Phys. Rev. 54, 1055 (1938) ; K. Husimi,
Proc. Phys.-Math. Soc. Japan 20, 912 (1938); V. F. Weisskopf
and D. H. Ewing, Phys. Rev. 57, 472 and 935 (1940); I. N.
Sneddon and B. F. Touschek, Proc. Cambridge Phil. Soc. 44, 391
(1948); J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley and Sons, Inc., New York, 1952), Chap.
VIII, Sec. 6.

% H. Wergeland, Skrifter Norske Videnskaps-Akad. Oslo, No. 1,
(1941); H. Wergeland, Fysik. Verden 3, 223 ?1945); see also H. A.
Bethe, Revs. Modern Phys. 9, 86 (1937).
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excitations not so high that the collective model fails.
No breakdown of the total level density according to
angular momentum has yet been carried out, nor—
therefore—any comparison with the experlmental data
summarized by Blatt and Welsskopf %

Crossover and “Slippage”

The connectivity of the many-sheeted potential
energy surface is a matter of interest and importance for
the collective model. There are two contradictory
tendencies at work: (a) Potential surfaces never cross
nor even touch provided that the wall configurations
under consideration are devoid of all symmetry, whether
of rotation or reflection or inversion. Let the representa-
tive point of the system be required to stay away from
those lower dimensional regions in a-space which de-
scribe shapes with symmetry properties. Also let jumps
from one surface to another be ruled out. Then the
connectivity of the sheets is such that no path in
a-space, however tortuous, can ever carry the re-
presentative point from one sheet to another. The
surfaces therefore admit a unique serial numbering
according to energy, this canonical classification Vi(a),
Va(a), « -, being the same for whatever « it is carried
out provided « does not lie in the forbidden set of

“symmetry points.” (b) For deformations which do
possess one or more symmetry properties, crossovers
from one energy surface to another do take place as one

or another deformation parameter is varied. Conse-

quently there exist shapes, «, for which two successive
surfaces, Vi(a) and Viyi(a), touch each other. For
shapes of appropriate symmetry it is possible for more
than two surfaces to meet, the contact point then being
of higher order.

When the representative point is allowed freedom to
take on all values of «, it can then by appropriate choice

of path work its way up mine-shaft-like from surface to.

surface, sliding smoothly from V; to V41 at one point
in a-space, and from Vi to Viye at another point.
We shall use the word “slippage” to describe this
fundamental process, which in the.theory of polyatomic
molecules is known under the name of “radiationless
transition,” and the word ‘“funnel” to speak of the
potential energy surface near the crossover point.
Qualitative description of the character of the many
sheeted potential energy surface requires (a) ascription
of a suitable set of index numbers to each crossover
point, telling the number of surfaces that meet there
and the lowest order in deviations éa from the crossover
point in which the degeneracy is removed, (b) giving
of the lowest nonzero coefficients in the power series
development of the energy values about this point,
(c) evaluation of the frequency distribution of transition
points in a-space for a typical potential surface, (d)
order of magnitude estimate of the height or depth—
energywise—of funnel vertices relative to the immedi-

2 E. Teller, J. Phys. Chem. 41, 109 (1937); see also J. von
Neumann and E. P. Wigner, Physik. Z. 30, 467 (1929).
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ately surrounding potential energy surface, (e) order of
magnitude estimate of the curvature of a given surface
in the large (looking apart from funnels), this quality
being described by coefficients of curvature with respect
to the several axes in a-space. To discuss these points
in detail would require more study than has been given
to the subject so far. However, some glances at the
matter from various sides (Figs. 10-25) may give an
impression of the situation. In most of the idealized
cases to be mentioned, attention has been given to the
behavior, not of the surface for total oscillational
potential energy, Vi(a) [Eq. (6)], but of the individual
particle energy, E.(a). Of course every crossover in
E,(«) implies a crossover in Vi(a), so that the connec-
tion between the two kinds of surface is not remote.

Survey of Level Behavior

Figure 10 deals with two energy levels of a particle
in a rectangular potential well, a configuration of high
symmetry, except that this symmetry is destroyed by
a slight irregularity in the wall. This irregularity is
sufficient to prevent the two energies from crossing, as
they would for the symmetric surface. In that case a
given function would have a well-defined number of
nodal planes normal to each coordinate surface, a
number which does not change during the course of the
deformation. The energy of the state decreases or
increases according as the principal part of the wave
propagation is parallel or perpendicular to the direction
of stretch—as is to be expected from the corresponding
classical problem. Interesting is the contrast with the
one-dimensional case. There an expansion in the one
direction lowers all energies; two levels never cross. A
similar character is given to the three dimensional
problem by removal of symmetry. .

Figures 11 and 12 connect the discussion of the
single-nucleon curves E,(a) with the total potential
curves Vi(a). The curves of Fig. 12 give the closest
over-all analogy at this moment available to the poten-
tial surfaces for the collective nuclear model. However,
it should be noted that Fig. 12 represents a cross section
through the energy surfaces along an abnormal line in
deformation space; namely, a slice which cuts all
surfaces in such a way as to reveal their crossovers.
Were an irregular deformation superposed on the distor-
tion shown, then every crossover would be replaced by
a curve such as shown in Fig. 10. Noteworthy is the
qualitative connection of the irregularly-scalloped po-
tential energy curves with the smooth curve predicted
by the statistical concept of kinetic surface tension.
Zero potential energy contribution to surface tension
has been assumed in this simple example, and also zero
electrostatic energy. One sees that the statistical con-
cept of a constant surface tension is limited in accuracy.

Frequency of crossing of individual particle energy
levels is easily estimated. Stretch of the system in one
direction by a fractional amount « raises or depresses
levels of energy F by an amount of the order Fo,
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according as the propagation vector is primarily perpen-
dicular or parallel to the stretch axis. The average
spacing of levels of a particle without spin at the
(4/4)th level—this level having energy F—is of the
order 8F/3A (Fig. 11). Consequently an increase in «
of the order 1/4 will on the average suffice to make a
given level cross one more of the levels originally below
or above it—provided that the symmetry of the surface
allows crossings.

Considerable can be said about single particle energy
levels within an ellipsoidal wall. Inequality of the three
axes (Fig. 13) removes rotational symmetry and leaves
the configuration invariant with respect only to inver-
sion and reflection. Figures 14-18 illustrate the level
splitting brought about by small ellipsoidal deviations
from sphericity. Larger deviations, leading all the way
from sphere to fission, are considered in Figs. 19-22—at
the price of having to make the wall axially symmetric,
and therefore having to deal with the atypical case of
many Crossovers. -

The relation between individual particle levels and
system levels is further illuminated by Fig. 23. This
diagram shows how the quadrupole-producing force for
nearly spherical nuclei rises to a maximum when the
number of nucleons is about right to give a half-filled
shell. This diagram will not be valid for substantial
deviations from symmetry, for then levels change their
character, as seen in Fig. 10 and Figs. 19-22. More

about splitting of single particle levels and behavior in

the large of system levels is seen in Figs. 24-25. The
irregularities in the totalized potential energy curve for
a system of many particles will not be expected to be
greater in order of magnitude than the bumps in the
potential energy curve for the highest individual
particle state. The rise of a lower one of the filled states
to an inverted funnel and the fall of a next higher
surface to a mating upright funnel represent pertur-
bations which when added together largely cancel out.

IV. QUADRUPOLE MOMENTS IN THE GROUND STATE

Figure 26 discusses the qualitative dependence to be
expected for quadrupole moment as a function of degree
of shell-filling so long as the deformations in question
are not large enough to carry the system past a funnel.
Still sticking to this restrictive condition on the size of

distortions, Fig. 27 discusses possible consequences of

the existence of two well separated minima in the
potential energy surface for the ground state of the
system. While passage of a heavy nucleus through a
high barrier of this kind might conceivably require a
time exceedingly long in comparison with characteristic
nuclear times, passage around the barrier can take place
with greater facility in the a-y plane (Fig. 28) through
a sequence of ellipsoids with three unequal axes. Knowl-
edge of nuclear deformation potential energy surfaces
is far too scanty as yet to allow any well-founded
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discussion of energies or lifetimes of such deformation-
isomeric states.

Figure 29 recalls the empirical evidence on periodic-
ity in nuclear quadrupole moments. Here too it would
be inappropriate to carry out any detailed discussion of
the correlation between the observational data and the
model without a more detailed knowledge of the de-
formation potential energy surface than is now avail-
able (see forthcoming paper by K. W. Ford on this
point).

Quadrupole moments of the sizes now already well-
attested experimentally will have very substantial
consequences for alpha-decay phenomena, as indicated
in Figs. 30 and 31. Likewise they must wash out the
minima in nuclear diffraction scattering (Fig. 32), an
effect which it would appear possible to observe granted
a primary beam of sufficiently short wavelength, suffi-
ciently well defined in energy and in direction of
incidence. Asymmetries in nuclear shape, far from being
isolated phenomena, are seen to connect closely with
important questions of principle in nuclear physics. It
is evidently important for the development of nuclear
physics to learn the quadrupole moments.of many
more nuclei, particularly among the heavy elements
and alpha-emitters. In this connection diffraction scat-
tering, anomalies in alpha-decay half-lives (Fig. 31), in
isotope shift,® and level splittings in the mumesonic
Chang?® K-radiation offer additional means to increase
the experimental evidence. i

V. RATE OF EXCHANGE OF ENERGY BETWEEN
OSCILLATION AND NUCLEONIC EXCITATION

Cross Section for Slippage

The distinction is not sharp between deformations
with complete lack of symmetry and complete ordering
of energy levels on the one hand, and on the other
hand deformations of high symmetry with energy levels
crossing each other. The most relevant illustration is
the probability for a jump from the lower potential
energy surface to the upper one when the system exe-
cutes an axially symmetric elongation upon which is
superimposed a small amount of an ellipsoidal deforma-
tion of each cross section of the figure away from its
otherwise circular form. The two energy levels in
question would cross were the elliptical deformation
absent. The actual coupling splits the levels as shown
in Fig. 33. It follows that if the elongation were carried
out very slowly the system would remain on the lower
potential curve as previously discussed. However, if
the time of passage through the critical region is
comparable with, or shorter than, the minimum time
i/ (Eup— Eiow) minimum associated by quantum mechanics
with the splitting, then the jump from the lower state

251,, Wilets, Phys. Rev. 87, 1018 (1952).
26 W. Y. Chang, Revs. Modern Phys. 21, 166 (1949).
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to the upper state can occur with appreciable probabil-
ity (Fig. 34).27 *

The possibilities for a nonradiative transition are seen
in more detail in Fig. 35, which is a representation of the
two potential surfaces near their conical point of con-
tact. Figure 36 describes one of the limiting cases of
leakage from the upper funnel down to the lower one,
or the reverse process. The considerations* of Fig. 35
lead to a formula,

o= (ha/s)},

for the cross section for a collision with the cone with
transition from lower to upper surface (‘‘slippage”).
Here « is the speed of motion of the representative
point, regarded classically, while s represents the slope
of the cone (energy per unit of deformation), the cone
itself being here taken for simplicity to be right circular.
The system point continues its motion in the («,y)
deformation space after this switchover as before.
However, a part of the energy which was previously
available in the form of vibration has now gone into
nucleonic excitation as the system moves on the higher
potential surface. Such radiationless switches near
points of contact between two potential surfaces give
the means for pure nucleonic excitation to go into
vibration; for oscillations in turn to be damped and
thereby to raise the nucleonic energy; and for all these
exchanges of energy to take place in a relatively smooth
manner, without discontinuous changes in velocity or
deformational potential energy.

We evidently can view the collective model as being
internally self-consistent for those energies and states
of excitation—if any—for which the probability of
slippage out of the given potential surface is substanti-
ally less than one during the time of one oscillation.
Even if the contrary is true and the characteristic time
to make one slippage is skort compared to the vibration
period, the model will still be consistent provided that
the fractional change during one period in the energy
available for oscillation is small compared to this energy
itself. In other words the general requirement for con-
sistency is that the coefficient of fractional “damping”
per period must be small compared to unity.

“Slippage” evidently constitutes the elementary act
in a viscous phenomenon. This primary mechanism is
of course reversible, as in the case of all frictional
processes. Any irreversibility comes from asymmetry in
time of the initial conditions. Consider for example the
case where the representative point oscillates rapidly
and with large amplitude on the lowest potential energy
surface. The partition between nucleonic excitation and
oscillational energy is as one sided as it can possibly be.
Then the statistical result of slippages sometimes up,
sometimes down, will on the average be a degradation
of much of the vibration into nucleonic excitation. If
the collective model is self-consistent, then this damping
must be small enough to be susceptible to a statistical

27 C, Zener, Proc. Roy. Soc. (London) A137, 696 (1932).

1111

description, with an appropriate kind of macroscopic
friction coefficient. In contrast to most familiar physical
systems, the present one has a quite restricted number
of degrees of freedom. Consequently degradation of the
energy cannot continue indefinitely. Statistical fluctua-
tions in the distribution of energy over the degrees of
freedom will go on until a given one of these modes of
excitation will have accumulated all or a large part of
the maximum available amount. When the nucleus has
sufficient energy, the accumulation may take place on
the lowest mode of capillary oscillation and lead to
fission; or the energy may pile up in excitation of one
nucleon, followed by neutron emission. In either case,
the energy concentration process will have a history
which is the reversal in time of the corresponding
dissipation process. If there are circumstances when the
dissipation is describable by an appropriate friction
coefficient, then the reverse concentration of energy will
be describable by a coefficient of the same magnitude
and opposite sign.

Estimates of Damping

It is too soon to say anything definitive about the
magnitude of the dissipation per oscillation cycle, and
therefore premature to decide whether the collective
model is self-consistent. A first crude estimate may not
be amiss, as indicating a few of the many factors that
must be taken into account in an ultimate assessment.
We shall limit the discussion to collective oscillations in
the a-y plane, ie., to deformations of order n=2
(Fig. 1). In actuality the representative point of the
system moves in a multidimensional space. Its chance
of slippage from one potential surface to another might
therefore seem to depend upon the number of dimen-
sions taken into account. However, consider the effect
of some high order deformation coordinate, a,. The
characteristic quantum of energy associated with this
mode will be large. Therefore it will be reasonable to
assume this part of the system to be always in its
lowest quantum state. The amplitude of zero-point
oscillation will be small. Moreover, per unit of amplitude
of the coordinate «, the displacement of individual
particle levels will be small, because the relevant wave
functions do not well feel surface deformations of small
wavelength. Consequently the effects of the given high
order displacement can be disregarded in a reasonable
approximation. In this sense the theory of the slippage
rate shows a satisfying invariance with respect to cut-
off of the number of dimensions taken into account,
provided that this number is large enough. However,
it is doubtful that it is sufficient to consider only de-
formations of order 2, as we shall do. In this case the
deformation space is two-dimensional in the dimension-
less parameter, «; the probability of slippage on near
encounter with a funnel is measured by a cross section,
o, one dimensional in the parameter ; and the damping
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coefficient is of the form
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< probability per > <energy change? < number of funnels >
Damping second of slippage on slippage ) ao \accessible to oscillator
<coefﬁcient> - (circular frequency) (oscillational energy)

To evaluate this expression, we shall assume that the
potential surface in question has roughly the same over-
all curvature that is predicted by the simple liquid drop

model. Then we have for the order of magnitude of the
~ excursion in & (Fig. 1) roughly sa~(v+1)}/A7/2, where
v is the vibrational quantum number and 4 is the
mass number; and for the circular frequency, w~24
Mev/hA?. The slope of a funnel (energy per unit of «)
we shall assume to be of the order of the Fermi.energy,
F~25 Mev. The number of funnels accessible to the
oscillator is of the order A4d«, provided that we limit
attention to a low-lying potential surface. About the
size of the accessible area in a-space we have the least
information. The simplest assumption is that this area
is of the order (6a)?, though it is easy to imagine shapes
for the potential surface which make this number
either much larger or much smaller (see Fig. 28). We
obtain as an exceedingly uncertain estimate of the
damping coefficient:

<~(wdag/w)(Ada/(a)’)=Aa
= A (hwa/funnel slope)i~A (a/A¥)i~(v43)14102,

If we assume instead that the accessible area is of
the order constant-da (normal quadrupole moment;
ring shaped region accessible in «-space), then we
find as order of magnitude for the damping coefficient
~(v+3)i4~t. Without knowing the numerical coeffi-
cients, we cannot say whether these numbers are less
than one or greater.

“Damping” is one way to speak of the exchange of
energy between vibration and nucleonic excitation;
another is to ask for the eigenvalues of the energy of
the combined system after this coupling is taken into
account. This manner of speaking can hardly be ex-
pected to be very fruitful in the nuclear case. The
number of parts of the system is so great, and the num-
ber of ways of dividing up energy between them is so
enormous, that it seems beyond reason to trace out all
the couplings and their consequences. Figure 37 pre-
sents a one-dimensional example of the influence of
small and large slippage effect upon energy level pattern.
When many degrees of freedom are involved, the treat-
ment of the case of strong slippage would be utterly
complicated. That of weaker slippage is obviously much
simpler. It corresponds to the notions of the idealized
collective nuclear model. The partition between nu-

cleonic and vibrational energy is well defined in first.

approximation. We limit ourselves to the study of the
collective model because there is in sight no other
mathematically analyzable picture that makes the

2 area in a-space
accessible to oscillator

necessary combination of elementary particle model
and liquid drop picture. If it should turn out that the
slippage rate is too great to make the collective model
a self-consistent scheme, then it would seem necessary
to content ourselves with a much vaguer conception of
the nucleus, but still one that inescapably unites the
individual and droplet characteristics.

Franck-Condon Principle

The molecule-like partition that we envisage between
vibrational and nucleonic energy recalls the Franck-
Condon principle (Fig. 38) and its many important
applications to the field of molecular physics. Analogous
consequences for the nucleus will be expected to include
vibrational excitation following either nuclear photo-
absorption or mu-meson charge exchange reactions or
impact of a fast particle that disturbs directly only a
single nucleon. Likewise, anomalies in the apparent
spacing of nuclear levels will be anticipated from the
action of the Franck-Condon principle.

Wall Coupling as Doppler Effect

The collective model makes the wall the coupling
between individual particle energies and oscillatory
motion. For this reason it is interesting to examine the
coupling in its time-dependent aspects. The shift, 6E,,
of a particle level due to a wall displacement, 8a, has
so far been visualized without reference to the rate at
which it occurs: 8E,=(E./da)dc. Alternatively, the
level change can be considered as due to Doppler effect
at a moving wall: a change in energy in one reflection at
the wall of the order &E.~(wall velocity/nucleon
velocity) E,~RyaE,/v,; a number of reflections per
unit time of the order v,/R,; and a time equal to o/ c; or
a total change 8E,~E,a. Left out of account in this
order of magnitude estimate is a numerical coefficient
of the order of unity, which will of course be negative
if the wave propagation takes place primarily towards
a retreating part of the wall, otherwise positive. We
are speaking here of a neutron already inside the
nucleus being reflected at the wall; but similar con-
siderations apply to a neutron which comes from out-
side and undergoes a change of wavelength on entry
(Fig. 39): then the particle will have less energy than
would be expected for a static wall, provided that the
wave comes in at a region of expansion of the nuclear
surface; conversely at a region of contraction. When
the energy of the incident neutron is smaller than the
depth of the average potential at the nuclear interior,
then the energy change due to the wall motion will
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still be of the order §.E,~RyaE,/v,, where E, and v,
are energy and velocity inside the barrier. The mecha-
nism to take energy away from an incident particle and
give it to collective oscillation—for later redistribution
to other nucleons—is obviously of interest in connection
with the neutron capture process (Fig. 40).

Nucleus as Quantum Fluid

We have encountered in this discussion some of the
properties of an unusual idealized quantum fluid. It is
considered to be completely transparent internally with
respect to motion of the constituent particles, and to
receive disturbances solely by way of surface deforma-
tions. Its near incompressibility comes about, not by
particle to particle push, as in an ordinary liquid, but
by more subtle means. It is capable of collective
oscillations, but it is the wall which organizes these
disturbances, not nucleon to nucleon interactions. Oscil-
lations experience a damping, but the mechanism of
the damping is unlike that encountered in ordinary
liquids. The liquid can evaporate a particle, but in a
way quite different from evaporation from ordinary
liquids. The wave function of the particle to come out
is spread over the whole nucleus and has energy pumped
into it by Doppler effect; it is not concentrated near a
part of the surface before emission. The rotational
properties of the quantum fluid are quite different from
those of ordinary fluids. Altogether one is dealing with
a most interesting new form of matter.

VI. FISSION PROCESSES
Barriers and Thresholds

In the account of fission given earlier,’ it was noted
that energy imparted to the nucleus by radiation or
impact of a material particle becomes redistributed over
the whole system and later by a chance fluctuation may
be concentrated either on a neutron (evaporation pro-
cess) or on the mode of deformation which leads to
fission. For fission then to take place with appreciable
probability it is necessary that the available energy
exceed the fission threshold (Fig. 3)—the energy re-
quired to produce a critical deformation (Fig. 2). This
energy was estimated then, and calculated more ac-
curately later by Frankel and Metropolis® by way of
the simple liquid drop model. According to this model,
the same mode of deformation, when endowed with less
energy, will oscillate quasi-periodically, with a charac-
teristic quantum energy shown in Fig. 41, but fission
will still be able to occur with a very low probability
by way of penetration through the barrier. These
predictions about barrier height, oscillation frequency,
and tunnel probability will be expected to be qualita-
tively correct in the liquid drop model, but there will
be characteristic differences in detail. The same kind of

28 S, Frankel and N. Metropohs, Phys. Rev. 72, 914 (1947); see

also R. D. Present and J. K. Knipp, Phys. Rev. 57, 751, 1188
(1940); and Present, Reines, and Knipp, Phys. Rev. 70, 557 (1946)
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TaBLE I. Fission thresholds obtained from neutron impact and
photofission experiments, compared with thresholds calculated
from simple liquid drop treatment, neglecting corrections for
polarizability and compressibility. The irregular deviations be-
tween observation and calculation are of the order of magnitude

to be expected from the size of typical quadrupole moments
(Fig. 29).

Neutron fission thresholds

Observed  Calcu-
Neutron Neutron barrier latedd
Target Compound  thresholda bindinge  En+Bn=Fn barrier
nucleus nucleus En B (obs) Fn(calc)
90 Th?2 60Th? 1.05 Mev  4.94+0.2 6.04£0.2 6.5
91 Pa%! 91Pa?? 0.45 Mev 49404 54404 5.0
92U28 92 U289 0.92 Mev  4.6+0.2 55+0.2 5.5
92U 92U 0.28 Mev 49404 52404 4.5
0sNP®7  ogNp®8  0.25 Mev  5.0+£04 53+04 4.2
Photofission thresholds
Target nucleus Observed photofission Calculated
(=compound nucleus) thresholdb threshold
90 Th2% 5.4040.22 6.21
92U 5.1840.27 4.19
92U 5.314+0.27 4.53
92 U238 5.08+0.15 5.24
94Pu? 5.31+£0.25 3.40

a See reference 29.

b See reference 30.

¢ The tabulated neutron binding energies are obtained by interpolation
and extrapolation among the binding energies derived from (v, #) and
(d —p) reactions, as listed by J. A. Harvey [Phys. Rev. 81, 353 (1950)],
and assuming the systematic deviation due to the 126 neutron shell which
these values indicate for the actual binding energies from those predicted
by the Weizsacker-Fermi semi-empirical mass formula [E. Fermi, Nuclear
Physics (University of Chicago Press, Chicago, 1949), notes by Orear,
Rosenfeld, and Schluter; E. Feenberg, Revs. Modern Phys. 19, 239 (1947)].
The calculated fission barrlers are taken from the formula of Fig. 3

d The fission barrier formula of Fig. 3 ylelds the listed values of Fn when
the values of y =1 —x are inserted. Here the ‘‘fissionability parameter” x is
defined as in Fig. 2 to be § the ratio of Coulomb energy to surface energy of
the spherical nucleus,

1 E; 13(e2/ro) Z2
FT3E "7 a0 A~ PP Dtimiting:

If we set 7o =}%e2/mc?=¢2/1.022 Mev, and 4m70?0 =14 Mev [E. Feenberg-
Phys. Rev. 55, 504 (1939); Revs. Modern Phys. 19, 239 (1947)] we get
(Z?/A)limiting=45.7. Because of the uncertainty in these constants, how,

ever, we compute (Z2/4)]imiting PY another method:
With £max as given in Fig. 3,

Fo=477r020)Amax;

we choose x to reproduce the experimental value of 5.5 Mev for the fission
barrier of U8, carrying through the work both for (477¢?0) =13.0 Mev, as
given by the Weizsacker-Fermi formula, and for (477020) =14.0 Mev. as
given by Feenberg’s estimate. The resulting values of (ZZ/A)llmltmg are,
respectively, 46.78 and 46.45. We do not here make the small correction
(—0.38) following from the fact that the zero-point excitation of the fission
mode diminishes from 0.45 Mev for the spherical form to zero for the form
at the peak of the barrier curves of Fig. 3. Noting the insensitivity of these
results to the choice of surface energy, we arbitrarily fix the value of
(477020) at 13.0 Mev to compute the barriers listed in the table.

We see that the calculated and the observed barriers differ by more than
the experimental uncertainties, the calculated values showing a steeper
change with Z2/A than the experimental values.

individualities in the potential energy surfaces that
cause quadrupole deformations of the order a~0.03 in
nuclear ground states will cause fluctuations of fission
thresholds of the order of ~1 Mev with respect to a
uniform dependence on Z?/A4 (Fig. 42). The experi-
mental results®-3° summarized in Table I show a similar
fluctuation about the liquid drop predictions.

29 U. S. Atomic Energy Commission Unclassified Document
AECU-2040, 1952 (unpublished), compilation of the Atomic
Energy Commxsswn Neutron Cross Section Advisory Group.

30 Koch, McElhinney, and Gasteiger, Phys. Rev. 77, 329 (1950)
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Cross Sections

The dependence upon energy of the cross section for
neutron induced fission (Fig. 43) is characterized first
of all by a threshold, below which the cross section
begins to fall off in a general way exponentially with
energy. Above, it rises to an approximate plateau.
Writing the fission cross section in the form

gf= (TgeomPf/(I‘f_*- Pn) N

where Ty and T', represent the probabilities per second
for the compound nucleus to dispose of its excitation
by fission or by neutron evaporation, we have to con-
clude from the existence of the plateaus that the ratio
of I'y to T, does not change much, though both rate
constants individually are of course rapidly increasing
functions of energy. Still another feature of fission cross
sections at neutron energies of the order of 8 Mev is a
rise towards a new plateau—a rise associated with the
possibility for the nucleus to make a*second try at
fission, if in the first try it has instead evaporated away
one neutron.®! Aside from these general features, the
results collected in Fig. 43 show most interesting irregu-
larities in the lower energy regions in the dependence of
fission cross section upon neutron energy. While the
shape and density distribution of potential energy
curves are irregular, and while these irregularities must
react upon the fission cross section, it seems premature
to try to trace out the connection any more specifically.

Also the individualities of the potential energy
surfacés must have their influence upon the life time
for spontaneous fission (Figs. 44 and 45): most im-
portant of all in causing fluctuations from nucleus to
nucleus in the heights of the fission barrier, upon which
the tunneling probability is most dependent; but also
important in changing the shape of the barrier as
between two nuclei with about the same barrier height.
From this point of view one can understand how it is
possible for the lifetime®> with respect to spontaneous
fission of U%? to exceed that of U?3 whereas the smooth
dependence upon Z2/4 given by the liquid drop model
would attribute to U?® the shorter life.

Fission Asymmetry
Energy Release not an Explanation

An outstanding feature of the fission process is the
disparity in size of the two fragments (Fig. 46). U5
split by thermal neutrons has 600 times less chance to
divide into equal parts than to break up into the most
frequent 2:3 mass ratio. The energy release is not
markedly different between the different pairs of fission
fragments, a point upon which beautiful observations
have been made by Brunton and Hanna.®* Moreover,
at the critical moment of passage over the fission
barrier, the critical form for uranium (Fig. 2) is calcu-

31 N. Bohr, Phys. Rev. 58, 864 (1940).

3a B, Segré, Phys. Rev. 86, 21 (1952).
2 D. C. Brunton and G. C. Hanna, Phys. Rev. 75, 990 (1949).
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lated to have still a diameter, 11X10~% cm, as great as
that of the copper nucleus. It is difficult to see how a
system so far from the actual act of scission can have
any feel for, or be influenced by, the energy or nature
of the fragments to which it can potentially give rise.

Shell Effects not an Explanation

Magic number and shell binding effects have been
considered as possible causes of fission asymmetry.®
While we have much to learn about shell structure, the
considerations of Sec. II show how greatly the order of
levels in a deformed nucleus differs from that familjar
from the study of spherical potential wells. Again it is
difficult to see how the nucleus in the transition state
can feel any potential shell structure in the not yet
formed products. And of systematic differences in
abundance between fission chains of even charge num-
bers and odd charge numbers there is yet no trace, much
as the energies of even-even and even-odd nuclei differ
from each other. There is some suggestion of shell
structure in recent more detailed studies of the fission
yield curve (Fig. 47), but just this circumstance makes
it seem all the more unlikely that the division into two
broad mass peaks come from the same cause. Attempts
have been made to show™®= statistically that shell struc-
ture determines the most probable division of mass.
But any account of fragment abundances would seem
unreasonable which overlooks the nature of the transi-
tion state, however thoroughly it analyzes the statis-
tical weight of the various final configurations. A simple
counting of statistical factors, with or without an ex-
amination of the relative size of the energy release,
would for instance suggest that ternary fission should
be far more probable than binary division, quite con-
trary to observation (Table III).

Barrier Penetration not an Explanation

Passage, not over the fission barrier, but through it,
is the process considered in quite another explanation
of fission asymmetry put forward by Frenkel.3 Re-
calling the expression for probability of barrier penetra-
tion® in spontaneous fission,

exp[<—2/ﬁ) f {zma)—Ejz,»der.:/da)?}*da]

- 91 potential minus
exp[( 2 /ﬁ)f { (available energy

effective)

3
d (distance)],
mass

# M. G. Mayer, Phys. Rev. 74, 235 (1948); G. C. Wick, Phys.
Rev. 76, 181 (1949); K. H. Kingdon, Phys. Rev. 76, 136 (1949).

#aT. D. Newton, Phys. Rev. 87, 187 (1952); Peter Fong,
Phys. Rev. 89, 332 (1953).

#S. Frenkel, J. Phys. (U.S.S.R.) 10, 533 (1946); also E. Bagge,
Z. Naturforsch. 2a, 565 (1947).
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he ascribes the greater probability of unequal masses
to the smaller value in this case of the reduced mass of
the system. However, such a picture does not seem to
be relevant in the case of induced fission. There, the
nuclear excitation exceeds the critical energy, and
passage over the barrier is far more probable than
penetration through it. Were the excitation so low that
barrier leakage became critical, then the cross section
for fission would have a dependence upon energy quite
different from that observed. Also the absolute prob-
ability of division would be impossibly low. Specifically,
we have between 140-94 division and 117-117 splitting
a difference in reduced mass of fragments, 56.2 vs 58.5,
of one part in 25, or—on the hypothesis in question—a
difference in penetration exponent of one part in 50.
This difference in exponent is called upon to explain a
factor of 1072 in relative probability of symmetrical and
unsymmetrical partition. Then the absolute probability
of penetration would have to be (1072)%, and fission
could not occur, contrary to observation.

Indications that Saddle Point Configuration is Symmelric

It has also been proposed as a mechanism giving
preference for asymmetric fission® that the critical
form of unstable equilibrium is itself asymmetric. The
potential barrier over which the nucleus must pass is
defined, as already illustrated in Fig. 4, by giving the
deformation energy in terms of the quantities as, a3, - -,
which specify the shape of the nucleus. For a nucleus
which has just barely enough energy to pass over the
fission barrier, one would on a classical picture expect
the unrolling of the motion to proceed in a unique way,
leading to fragments of well-defined mass. If there are
several minima in the potential energy ridge which
must be surmounted for fission, one would therefore
expect several different possibilities for the course of
fission, each leading to a specific and distinct mass
division. This deterministic classical picture of what
happens after passage over the fission barrier is, of
course, quite untenable. At most it can be taken to
suggest that there might be some correlation between
the mass division and the shape of the one or more
critical forms of unstable equilibrium, which correspond
to the one or more conceivable passes over the potential
energy ridge. Passage over various passes would occur
with relative probabilities depending on the various
critical energies, E,, and upon the effective temperature,
T, as expected from the usual Boltzmann formula. One
might in this way, for example, try to understand why
symmetric fission is so improbable at low excitation
and why the relative probability for equal division
increases with energy of bombardment.

No theoretical argument yet shows that the fission
barrier should have this suggested asymmetry. Frankel
and Metropolis®® have explored by ENTAC calculations
the shape of the fission barrier and find that a well-

3% R. D. Present and J. K. Knipp, Phys. Rev. 57, 751 (1940).

1115

defined saddle point occurs for a symmetric division.
The energy of the potential ridge increases, they find,
with asymmetric departures from this symmetric critical
form. There is no evidence for any other saddle point,
symmetric or unsymmetric. Swiatecki'® has noted that
nuclear polarizability and compressibility will change
slightly the simple liquid drop dependence of energy on
deformation, and has suggested that this effect will
work in such a direction to split the symmetric saddle-
point into two asymmetric ones. Even in the absence
of this Wigner-Feenberg-Swiatecki phenomenon of
slight redistribution of electric charge over the nuclear
volume, such a splitting of the saddle point will be
expected to occur for sufficiently small fissionability
parameter x (proportional to Z?/A4) as indicated in
Fig. 48. The redistribution effect will move to higher
% the point of first occurence of asymmetric saddle-
point forms. However, the amount of the redistribution
effect does not off-hand seem great enough to lead to
asymmetric critical forms for uranium; and for still
heavier nuclei the calculated critical form approaches
closer and closer to a sphere (Fig. 49).

Asymmetry Favored by Shape-Dependent Viscosity

It is conceivable that a certain symmetry phenome-
non in the collective model of the nucleus may also act
to favor an asymmetric deformation of the nucleus.
For a completely symmetric deformation, individual
particle states can be divided into two classes according
as the wave function does not change sign on reflection
(“gerade”) or does change sign (“‘ungerade”). For small
departures from sphericity both sets of states will be
filled approximately to a common energy, F. As the
deformation increases, the gerade states will rise more
in energy than the ungerade ones because the one kind
of wave function feels the pinch of the necking-off
process more than the other. Consequently the energy
of the deformed system could be lowered, and fission
made easier, if the particles were allowed to move from
the higher gerade states into ungerade ones. Such
slippages cannot occur for a completely symmetrical
deformation, but will readily take place if a sizeable
asymmetry is present. Consequently a quite appreciable
effect is at work to favor an asymmetric configuration
for the critical form.

Whatever the shape of the nucleus at the moment it
goes over the barrier, there is room for variations in the
division ratio between one fission act and another,
granted the same nuclear species and the same excita-
tion energy, just a little above the barrier. There will
be a quantum-mechanical spread in the possible paths
which can be taken in configuration space, from the
moment of surmounting the saddle-point, to the
moment of actual scission. A simple way to visualize
this effect qualitatively is to imagine the trajectory of
the representative point in configuration space to be
completely definable classically but the direction of
this point at the moment of transmigration to have an
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uncertainty of the order of that to be expected from
the unavoidable zero-point amplitudes of the simplest
modes of capillary oscillation.

Asymmetry Favored by Inviscid Hydrodynamic
Instability

These unavoidable asymmetries at the moment of
passage over the barrier can also lead to large asym-
metries if there is any intrinsic hydrodynamical in-
stability at work to magnify the amplitude of the
disturbances. Qualitative arguments for the existence
of such an instability phenomenon are easily visualized
(Fig. 50) and seem to receive some preliminary support
from the initial calculations on the subject which have
so far been carried out (Figs. 51 and 52). Consequently
it seems appropriate to say that there appears nothing
paradoxical about the phenomenon of asymmetric
fission. On the contrary, the problem that remains is
to decide which of the two effects that work in the
same direction is the more important quantitatively:
gerade-ungerade differences in individual particle wave
functions, or hydrodynamic instability.

The more disturbed the nucleus is at the moment of
passage over the fission barrier, by reason of more than
adequate energy, the more will be the tendency to
override the more delicate factors that favor asym-
metric fission, and the greater will be the yield of fission
fragments of equal mass. Consistent with this view is
the experimental evidence on variation of fission yield
with excitation of the initially formed compound nu-
cleus (Fig. 53). The ratio of symmetric to asymmetric
fission varies qualitatively as one might expect® from
the usual statistical-mechanical formula exp[-(dif-
ference in activation energy)/(temperature)] for the
ratio of rates of competing processes, where in the
nuclear case the temperature goes roughly as the square
root of the excitation. The activation energy difference
is reasonably interpreted as the extra cost energy-wise
of a disturbance of the nuclear surface which pinches
in the critical form of unstable equilibrium around its
equatorial symmetry plane. Any attempt to evaluate
this critical energy difference from the observational
material is of course complicated because at high
energies one is dealing with a superposition of fission
of newly formed compound nuclei, and fission of residual
nuclei subsequently formed by evaporation of one or
more neutrons. A preliminary estimate for the activa-
tion difference, neglecting these complications of identi-
fication, gives a value of the order of a few Mev?¥
which seems not unreasonable.

In spontaneous fission the distribution of fragment
sizes will have as little directly to do with considerations
of energy release as in induced fission. Energy factors
can be expected to apply only to passage through the
critical state. The sequence of events which follow will
be expected to go as in induced fission. The final result

3 Jones, Fowler, and Paehler, Phys. Rev. 87, 174 (1952).
37 J. L. Fowler et al., Phys. Rev. 88, 71 (1952).
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will therefore depend upon the same kind of mirror
symmetry and hydrodynamic instability effects. We
should therefore not expect any great differences be-
tween the fragment distribution and neutron release in
case of spontaneous fission and of induced fission with
moderate excitation, in conformity with the observa-
tions®® (see Fig. 46 and caption).

Angular Distribution of Fragments

From the moment of input of energy into the nucleus
by radiation or impact of a material particle to the
time when that energy is concentrated on the mode of
deformation that leads to fission, the simple liquid
drop picture envisages a complicated many-stage pro-
cess of redistribution of energy to go on in the nucleus.
Consequently it would be expected on that impene-
trable-fluid idealization that correlation should be
practically absent between direction of incidence of the
energy and direction of emergence of the fission frag-
ments. On the contrary, Halpern and Winhold®4° find
a correlation in the photofission of thorium between the
two directions, separated by an angle 6, of the form
1+bsin%), where in preliminary measurements b is
0.320.1 for 16-Mev radiation and about four times
that value at 8 Mev. What does the collective model
predict? According to the Franck-Condon principle (Fig.
38), starting with the nucleus in its ground state, the act
of absorption will lead to an excited potential energy
surface, with nuclear wall still in its original configura-
tion—which is ordinarily not at all a shape of equili-
brium for the new potential energy surface. Con-
sequently a very sizeable oscillatory motion will
ordinarily be set up, making excursions on both sides
of the new shape of equilibrium. If the departures
from sphericity are great enough in the course of this
motion, then the restoring force will weaken, the
potential curve will bend over, and one will be dealing,
not with a periodic phenomenon, but with passage over
a potential barrier leading to fission. On this view the
correlation between the act of absorption and the act
of fission is much more direct than in the picture of a
nearly impenetrable liquid drop. Of course we are dis-
cussing an idealized version of the collective model, in
which the viscous forces due to slippage phenomena
are neglected. How much these frictional effects com-
plicate the picture is not yet clear theoretically; from
the experiments themselves one can hope to learn more
about this point.

The qualitative nature of the directional correlation
in photofission suggests the following very schematic
and tentative picture: (1) The gamma-ray is absorbed

(lgzganna, Harvey, Moss, and Tunnicliffe, Phys. Rev. 81, 466 -

3 Winhold, Demos, and Halpern, Phys. Rev. 87, 1139 (1952).

40 1. Halpern and E. J. Winhold, Progress Report of the Labora-
tory of Nuclear Science and Engineering, Massachusetts Institute
of Technology (1952) (unpublished). We are indebted to Professor
Halgl)ern and Mr. Winhold for interesting discussions of their
results.
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by photoeffect on a single proton. (2) Among all proton
orbits those will absorb radiation the most -strongly
whose angular momenta are greatest, and whose planes
are normal to the direction of the incident beam. (3)
The most probable type of absorption is that in which
the angular momentum increases by one unit, the
direction of the plane of the orbit remaining unchanged.
Points (1), (2), (3) are simple consequences of the
theory of absorption of light by a single charged
particle. (4) The greater centrifugal force exerted by
the now faster moving excited particle pushes out parts
of the nuclear wall normal to the direction of the
photons. (5) The deformational oscillation generated as
a consequence of the Franck-Condon principle therefore
leads preferentially to fission in the observed direction.

If this description of “directional asymmetry in
photofission is correct, then a similar effect should be
observed in fission induced by neutrons of 1 Mev or
more. However, here the fragments should go preferen-
tially parallel to the direction of incidence. The pressure
exerted by the neutron against the nuclear wall in the
act of capture (Figs. 39 and 40) will be predominantly
such as to produce an elongation of the nucleus parallel
to the beam. The application of the Franck-Condon
principle to this process goes through otherwise as in
the case of photofission.f

How probabilities for the compound nucleus to
undergo neutron evaporation or fission depend upon
excitation energy and angular momentum, and how
fission widths will be expected to vary with passage
from the region of tunnel effect to the region of free
passage over the fission barrier, and what explanation
can be given for irregularities in the dependence of
fission cross section upon energy, are interesting ques-
tions on which nothing will be said here now from the
standpoint of the collective model.

Charge Division

Another feature of the act of division is a certain
variation from fission:act to fission act in the number of
protons which come off in a fragment of given mass
number. In connection with these charge fluctuations,

} Note added in proof:—The angular distribution of fragments
from neutron-induced fission has been studied, since this paper
was written, by W. C. Dickinson and J. E. Brolley, Jr., of the Los
Alamos Scientific Laboratory [reported January 24, 1953, at
Cambridge Meeting of the American Physical Society]. They
have measured the ratio of fission fragments moving parallel to
those moving perpendicular to the beam of incident neutrons,
both for thermal and for 14-Mev neutrons, with results in agree-
ment with the above expectations:

1(0°)/1(90°)
Target nucleus thermal 14 Mev
92 U288 1.0040.082 1.3240.112
92U 0.9940.09 1.2740.17
9o Th232 1.5340.21
92 U8 1.53+0.17
9sNp?7 1.2040.13

a Statistical errors defined to give 0.95 chance of bracketing true values.
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it is evidently quite inappropriate to consider the
dividing nucleus as a fluid continuum of precisely
defined charge to mass ratio. But it would be even more
misleading to view the two kinds of nucleons as be-
having like gas molecules, with quite independent
motions, susceptible to simple statistical considerations.
On the contrary, the energy of correlation of the neu-
trons and protons is quite high; and a separation of the
two sorts of entities can be considered to come about
at the moment of splitting only as a result of their spe-
cific quantum-mechanical zero-point relative motions.

To give a treatment of the zero-point motions suffi-
cient for an accurate analysis of the charge fluctuations
would of course be most difficult. However, an approxi-
mate estimate may be obtained by considering only
that mode of motion which Teller and Goldhaber? call
the “dipole vibration” of the nucleus, a movement of
all of the protons of the nucleus relative to the neutrons.
They give reasons for assigning to this vibration the
marked maximum in the photofission cross section—and
presumably also of the photoneutron cross section—
observed for U and Th at about 17 Mev. The frequency
and the restoring force associated with this motion are
high, but not so high as to exclude some variability in
the number of protons which go into a given one of the
two fragments. Thus, comparing the actually rather
complicated scission form with a sphere, and denoting
the displacement of neutrons relative to protons by «,
we have for the excess of protons on the left-hand
fragment the number

5Z=[Z/(4nR*/3) JnRox,

and for the relative probability of a displacement x the
usual quantum mechanical expression

. eXp['—MNMz(MN-l-Mz)_waz/Zh:I.

Thus, the charge variation at half-maximum probability
in the present approximation has the form

52 y= (32/4)(0.69312/ M reaR?cs)
~69(0.693X0.010 Mev/17 Mev)?
~1.38.

Two corrections have to be applied to this result, in
opposite directions. First, higher modes of vibration
up to an order n~A¥=6 have to be considered, on
which account there should be introduced inside the
square root above a further factor qualitatively of the
form

T ATIEE o

Second, the quantum energy 17 Mev in the denominator
should be substantially increased because a given move-
ment of charge will be more expensive of energy for
the deformed nucleus than for the approximately spheri-
cal system. That this second correction will outweigh
the first, and reduce the expected charge fluctuation to
one unit or less in 8Z, is the conclusion suggested by
examination of the elongated shape of the U nucleus as
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TaBLE II. The known delayed neutron half-lives,
energies, and yields.2

VYield
(percent relative to)
Energy total neutron

Half-life kev emission Reference
0.0S sec 0.025 42
0.43 420 0.085 42
1.52 620 0.241 42
4.51 430 0.213 42
22.0 560 0.166 42
55.6 250 0.025 42
3 min 8X1077 43
12 3X10™° 43
120 1.3XX10710 43

‘Total: 0.755 percent

a Delayed neutrons associated with fission to the extent of roughly one
per hundred events were interpreted in an earlier discussion (reference S) as
follows: (1) fission occurs; (2) fission fragment is deexcited by radiation; (3)
the fragment undergoes beta’ decay; (4) in the case of certain fission products
the energy release in the beta- decay is greater than the binding of the neu-
tron in the product nucleus; (5) in these cases the product nucleus is occa-
sionally left excited and promptly emits a neutron. The average kinetic
energies of some of the delayed neutron groups have in the meantime been
measured and found to be consistent with this explanation. Some of the
beta-active sources have been identified radiochemically. In these cases the
odd-even changes are such as to permit beta-decay processes with more
energy release than the neutron binding.

it approaches the point of scission (Fig. 2). A final
source of fluctuations has to be considered, due to
release of secondary neutrons. Fission chains of mass
number A4 originate partly from fragments of mass
A-+n which have given off » neutrons, and partly from
products of mass A+#-1 which have lost n41 second-
aries. A difference of mass of 4-0.5 in the relevant part
of the nuclear table corresponds to a change in charge
of about 3=0.2. Recalling that one has first to square
the magnitudes of independent fluctuations before com-
bining them, we conclude that we can neglect the
influence of variability in secondary neutron release in
an account of charge fluctuations. Then it appears that
we have a reasonable order of magnitude account of the
fluctuations in length of given fission chains,

8Z;=1.0,

observed by Glendenin, Coryell, and Edwards.#! It is
therefore reasonable to conclude that these variations
in charge distribution are indeed directly attributable
to the unavoidable quantum zero-point uncertainties
in the positions of the nucleons.

Fission Neutrons

Emission of a neutron associated with fission requires
an amount of energy for which three sources are
available: hydrodynamic disturbances at the moment
of scission; excitation of the fragments after division;
and re-excitation of stopped fragments following beta—
decay. The last effect is well known to give a reasonable
account of the phenomenon of delayed emission (Table

“t Glendenin, Coryell, and Edwards, Radiochemical Studies, The
Fission Products (McGraw-Hﬂl Book Company, Inc., New York,
1951), Paper No. 52, National Nuclear Energy Serles, Plutonium
Project Record, Vol. 9, Div. IV.
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IT)#4 responsible for somewhat less than a percent of
all the secondary neutrons from the fission of uranium.
The other 99* percent of neutrons are observed to
come off within less than 10~ sec of the moment of
fission and must be attributed to the first two processes

of excitation.

Between hydrodynamic disturbances just before scis-
sion, and just afterwards, it is difficult to make any
simple comparison of importance in exciting a neutron
to a level sufficient for escape. The rapid change of wall
shape throughout the whole scission prccess via Doppler
effect will raise the energy of neutrons with suitably
oriented propagation vector. However, it may well be
that the final stages of raising of energy to the emission
threshold occur only as the newly formed and quite
distorted fission fragments relapse towards a spherical
form. On this basis it will be expected that most of the
prompt neutrons will be given out after that particular
stage of the fission process which we name scission.
Moreover, the walls of both fragments being at that
time in rapid contraction along the axis of fission, the
Doppler effect in internal nucleonic reflections will be
in such a direction as to give maximum energy to neu-
trons with propagation vector parallel to this axis. It
thus seems reasonable to expect maximum neutron
emission parallel to the axis of fission.

The observed distribution in energy of fission neu-
trons (Fig. 54) is qualitatively consistent with the
picture of isotropic emission from moving fission frag-
ments, with a distribution in energy in the moving
frame of reference of the general character to be
expected on the evaporation picture, dN/dE~E
Xexp(—E/T). It is primarily simplicity that has sug-
gested this form of representation in the past, and there
is little doubt that a substantial preference for emission
parallel and antiparallel to the line of fragment motion
is also compatible with the observed distribution in
energy.

The observations on angular distribution fall into two
classes. De Benedetti and collaborators* have measured
the angular correlation of prompt neutrons from the
neutron-induced fission of U%5. They find that the
number of coincidences is fairly constant from 30° to
90°, and increases by a factor about 2 from 90° to 180°.
Assuming that neutrons go mainly in the direction of
the fragment from which they are emitted, they con-
clude that fission neutrons are emitted preferentially
by opposite fragments, and that there are at least
twice as many pairs of neutrons emitted from opposite
fragments as from the same fragment.

Fraser® has measured the correlation of fast neutrons
with collimated fission fragments, finding 4.354-0.15
times as many neutrons parallel to the line of fission as

“2 Hughes, Dabbs, Cahn, and Hall, Phys. Rev. 73, 111 (1948).

4 Kunstadter, Floyd, Borst, and Weremchuk, Phys. Rev. 83,
235 (1951).

4 de Benedetti, Francis, Preston, and Bonner, Phys. Rev. 74,

1645 (1948).
4 J. S. Fraser, Phys. Rev. 85, 726 (1952)
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perpendicular to that direction; and finding indication
that the light fragment emits about 30 percent more
neutrons on the average than does the heavy one.
It is premature to try to say from the observations
whether there is an indication of preference ix the moving
frame of reference for emission parallel to the line of
fission.

Tripartition

Another interesting phenomenon is the occasional
observation of alpha-particles (Fig. 55) and other light
nuclei in fission (Table IIT).%-% For this effect, a simple
explanation offers itself in terms of the liquid drop
model of nuclear division. From classical hydrody-
namics it is well known that the disintegration of a
liquid jet into drops leads to the formation between
these fragments of tiny droplets. Likewise in the case
of nuclear fission it is not surprising to find some portion
of the nuclear substance set free between the fission
fragments in the act of scission. It is necessary to
distinguish between alpha-particles, protons and neu-
trons. Of these only the alpha-particles represent nearly
saturated nuclear matter, and only they are energeti-
cally capable of emerging from the original nucleus
already in its unexcited state. But an alpha-particle at
the surface of the original nucleus is far below the level
of the Coulomb potential, on account of the coupling
to its surroundings. In contrast, an alpha-particle in
the region of scission lies at the point of maximum
Coulomb potential, and yet has less than the normal
amount of nuclear matter immediately around it with
which to form bonds. This particular alpha-particle has
in effect been raised to a point but little lower than the
top of the barrier, by means of the changes of nuclear
form which took place up to the moment of scission.
An alpha-particle in such a position will have a signifi-
cant probability to pass through the barrier. Thus it is
reasonable to connect up the energy of the observed
alpha-particles with the value of the electrostatic po-
tential in the small interval between the newly formed
fission fragments. On this view the alpha-particle will
be expelled in a direction roughly perpendicular to the
line of separation with an energy of about 20 Mev. The
unequal repulsion by the lighter and heavier fission
fragments will be responsible for some deviation from
perpendicular emission, as observed.

Similar effects will be expected for other light nuclear
fragments, except that here the relevant potential
barriers will be higher, and emission probabilities lower.

4% 1. Rosen and A. M. Hudson, Phys. Rev. 78, 533 (1950).
47 K. W. Allen and J. T. Dewan, Phys. Rev. 82, 527 (1951).
48 E. W. Titterton, Phys. Rev. 83, 1076 (1951).
49 Goward, Titterton, and Wilkins, Nature 164, 661 (1949).
5 K. W. Allen and J. T. Dewan, Phys. Rev. 80, 181 (1950).
5L E, W. Titterton, Phys. Rev. 83, 673 (1951).
82 E. W. Titterton, (private communication, March, 1950).
a ;3453). W. Titterton and F. K. Goward, Phys. Rev. 76, 142
% D. L. Hill, Phys. Rev. 87, 1049 (1952).
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Tasre III. Modes of ternary fission.2:?
Mass of third Binary
particle in fissions
Compound atomic Range Energy per Refer-
nucleus mass units in c.a.e. in Mev event ence
U +slow 40 to 90 >40 7X10¢ 46
neutron
Us +slow 1343 0to0.8 75 47
U2 neutron  13+3 0t00.8 75 47
Th?2 +2.5-Mev 8 20 108 48
neutron to
U%  +423-Mev 8 20 10t 49
photon
o slow 4 10to 501 Sto25 400 50
s neutron 4 10 to 50 | maximum 500 S0
Pu®® 4 10 to 50 { frequency 450 50
at 15
Th22 +2.S-Mev 4 5to23 ~400 51
U2 neutron 4 Sto21 ~400 51
Th22 +23-Mev 4 ~400 52
Us photon 4 17 53
U Jslow 1 up to 2.1 5000 54
neutron

a The range is given in c.a.e. (cm of air equivalent). One c.a.e. is an ab-
sorptive unit equivalent, for range diminution of an alpha-particle or proton,
to one cm of air at 15°C and 760 mm Hg pressure.

b Following the original work by Alvarez (see reference 54) many modes
of fission into more than two charged fragments have been identified. The
earliest published measurements [L. L. Green and D. L. Livesey, Con-
ference on Physics of Fundamental Particles (Cambridge University Press,
1946); Tsien, Chastel, Ho, and Vigneron, Compt. rend. 223, 986, 1119 (1946);
224,272 (1947); Farwell, Segré, and Wiegand, Phys. Rev. 71, 327 (1947)]
identified «a-particles emitted in coincidence with fission. This work was
refined and extended [Tsien, Ho, Chastel, and Vigneron, J. phys. et radium
8, 165 (1947); 8, 200 (1947); L. L. Green, and D. L. Livesey, Phil. Trans.
A241, 323 (1948)] as indicated by the present extensive literature, from
which some of the more recent and complete papers are cited for each of the
fission modes listed in the table. For. the fission alpha-particles it has also
proved possible to measure the angular distribution [Wollan, Moak, and
Sawyer, Phys. Rev. 72, 447 (1947); L. Marshall, Phys. Rev. 75, 1339
(1949)] which turns out to be near-Gaussian about 82° (relative to the
light fragment) with a half-width of 25° (Titterton, reference 52). The
infrequency of symmetric tripartition serves to emphasize the principle
(which is already apparent in binary fission) that the mass division is
primarily determined by the dynamics of passage through the transition
forms (Fig. 50) rather than by the total energy content of the final nuclei,
which is much lower for the fragments of symmetric ternary fission than
for the fragments of binary fission. '

When C'2 or Het are emitted, the mass division between the heavy frag-
ments is comparable to that observed in binary fission [Allen, reference 50,
and L. Marshall, Phys. Rev. 75, 1339 (1949)].

Lines 4 and 5 of the table refer to Be® nuclei, which are actually observed
as two Het particles in small angular separation. Thus from the description
of ternary fission follows a process which might be classified as quaternary
fission, occasionally reported elsewhere (Tsien et al.) as occurring with
similar intensity but with all four fragments of mass number greater than 20.
However, in this connection see E. W. Titterton [Nature 170, 794 (1952)],
where strong reasons are given to doubt any evidence so far presented in
favor of quadripartition.

Emission of protons will be practically forbidden in
comparison with alpha-particle emission, because the
binding of the particle to nuclear matter—even near
the scission neck—places its energy far below the top
of the Coulomb barrier. Those protons which are
observed (Fig. 56) have rather to be interpreted as due
to processes of impact between fission fragments and
the stopping material through which they pass. Their
energy distribution is consistent with this view, and
quite contrary to what would be expected if they came
directly from either the dividing system or the fission
fragments.
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VII. CONCLUSION

This summary of the collective model of the nucleus
and some of its connections with fission phenomena,
while not comprehensive, may indicate how liquid drop
and individual particle models come naturally together
in a larger unity, consistent with experiment; and indi-
cate also how important is the nuclear wall in the
exchange of energy within the nucleus.
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APPENDIX. FIGURES AND DISCUSSION

Fi1G. 1. Independent modes of small oscillation of a liquid droplet.

Illustrated are the first three orthogonal modes of small oscilla-
tion for a liquid moving under the constraint of surface tension.
Addition of uniform volume electrification, as in the liquid drop
model of the atomic nucleus, does not affect the form but does
affect the frequency of the orthogonal oscillations, for the decrease
in Coulomb energy somewhat offsets the increase in surface energy
when the shape deviates from the spherical form of equilibrium.

To evaluate these frequencies of oscillation for, say, the uranium
nucleus according to this model, note that a component of or-
thogonal oscillation is represented by each term (except the term
for 2=1, which gives no oscillation, but only a shift for the center
of mass) in the expression

R(p)=ao[1 +§:=Vl a;P;i(u)]

for the distance from the center of mass to the surface of a cylin-
drically symmetric nucleus as a funct on of u=cosf, argument of
the Legendre polynomials P;(u). (a0 is chosen for volume nor-
malization.) Evaluating the coefficients in the quadratic forms for
kinetic and potential energies of small oscillations, one finds for
the frequency of general order #:

_ 0 2n+1)(n+2)— 20x]9
=A4"% S B Sl 0 S Mt
va=d [3M,,w”(” b 2n+1 ’
where M, is the proton mass, and the other notation as in Fig. 2.
Quantization of the surface oscillations gives, for the zero-point
energy, (En)s.p.=3%hva, and for the zero-point value of the mean
square relative amplitude:
/s { [z n(2n+1)3

12M jr@(4770?0) (n—1)[(2n+1)(n+2) —20x]
Evaluating these quantities for the first three modes of oscillation
gives:

{an?)z.p.=A77 4,

" Vn (En>z.p. <Oln2)z.p.i
2 2.15X102/sec 0.45 Mev 0.064
3 6.21X10%/sec 1.29 Mev 0.054
4 10.78X1020/sec 2.23 Mev 0.053

It should be noted that the rms values of a, here predicted are
smaller by a factor 5 or 6 from the values used in illustrating the
orthogonal oscillations, each drawing having been computed from
the expression for R(u) by assuming a,=0.3 and all other a; zero.

The infinite sequence of possible oscillations for an ideal liquid
drop must be terminated at some value of # between 6 and 10
when applied to the atomic nucleus because of the finite number
of constituent nucleons present. If we then estimate the diffuse-
ness of the nuclear surface for the collective model in its ground
state, with the help of the quantity

N
Qeffective ™= [Z <an2>]
=2

we find the aggregate indetermination of the surface position to
be about 15 percent of the nuclear radius.
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Fic. 2. Critical form of unstable equilibrium.

This critical form depends, in the approximation of the simplest
liquid drop model, only upon the ratio of the square of the charge
number to the first power of the mass number; or more conveni-
ently, upon the dimensionless parameter:

o (charge)? _ 2% . (z/4)

10X volume X surface tension 104 (47/3)7¢30  (Z%/4)timiting’
where (Z2/A4 ) imiting= 2(477:?0) / (3¢%/570)=247.8. For an imaginary
nucleus, “cosmium,” sufficiently far beyond the known limits of
stability, x will be 1,and thenucleus will already be unstable against
fission in its spherical form. For values of x very close to 1 the
critical form has been found (reference 5) to be R=R,Za,P,(cosh),
where Ry is the original radius, ao=1, ¢2=7(1—%)/3, and all other
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coefficients a are negligible. For four values of « the critical form
has been calculated by S. Frankel and N. Metropolis [Phys. Rev.
72, 914 (1947)7. Interpolating between their results and extra-
polating beyond them, we find the continuous sequence of shapes
illustrated in the diagram. Each form is an equilibrium shape for
a different nucleus. It is also possible to view the set of curves as
describing the changes in a given nucleus—a nucleus with a fixed
x—as it undergoes a conceivable deformation. The curves when
used in this sense need not be considered to have anything to do
with the question of equilibrium forms. For this reason it is
appropriate to distinguish each individual shape by the value of
a parameter y, equal to 1 minus thg value of # shown on the curve.
Thus v describes the skape, and x describes the (charge)?-to-mass
ratio of that particular droplet which is calculated to have this
critical form; but we can speak of a deformation y for a system
with a different x. The curves are calculated from the interpolation
and extrapolation formulas:

_ 9.76X 10~
=1—12 i St
a=1—y [1'06+(0.49—y)4 ],

_ 5.42X10~
“2‘y[2'3+<o.49—y>4]’

_ 2.84X 105
tu——y2{1.6+y[3.0+———(0‘49_y)4]f,
4o —2:36X10°8

$TT(0.49—)t

_ —4.72X10°
8= "0.49 =)t

Other a’s zero.

It is possible that for values of the [(charge)?/mass] parameter x
near 0.65, the symmetric equilibrium form may not represent the
lowest saddle point configuration in a multidimensional plot of
deformation energy as a function of shape. It may be that two
asymmetric forms, mirror images of each other, may lie lower. It
is also conceivable that nuclear compressibility and redistribution
of neutrons and protons between surface and interior may appre-
ciably modify both the shapes themselves and the value of ¥, if
any, for which the asymmetric saddle point is preferred. These
effects have less and less influence the closer « is to unity, provided
that y is rewritten as 1—x*. Here x*=x-2, where the quantity
% is as previously defined, and z is a measure of the compressibility
and redistribution effects first considered in this connection by
E. Feenberg [Revs. Modern Phys. 19, 239 (1947)] and W. J.
Swiatecki [Proc. Phys. Soc. (London) A63, 1208 (1950)] having
a value of the rough order of magnitude of 0.04 for nuclei near
uranium, and uncertain by a factor of perhaps two. Assumption
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of a nonzero value for z will require a readjustment in the number
which now has the value 47.8, in order to leave the height of the
fission barrier unchanged.
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Fic. 3. Energy as a function of deformation en route to fission.

A given curve of the family here drawn describes the deforma-
tion energy, relative to the total surface energy of the spherical
shape, for the forms described as a function of the shape parameter
y of Fig. 2. Different curves represent different nuclei, as described
by the parameter x of Fig. 2.

In the general formula,

£(x, v)=2.178(1—x)12—4.09(1—0.645x)y*
+18.64(1—0.894x) y* —13.3335,
we note that the value of y corresponding to the maximum value

of ¢ for a given «x represents the critical shape of unstable equi-
librium for the nucleus so specified. Hence upon setting y=1—x,

.we obtain the expression for the fission threshold energies for any

x value,
£max=0.728(1—x)3—0.661 (1 — x)*+3.330(1 —x)5.

An examination of the deformation potential energy surface
(see projection in Fig. 4) indicates that for the sequence of shapes
as here defined by y the curve £(x, y) is a fair approximation to
the minimal path following the valley stream in the potential
surface of a given x, and traversing the pass to scission.
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F16. 4. Sequence of acts in fission.

The sequence of shapes leading from the initial uranium nucleus
to the separated fragments is here shown, in correlation with the
potential energy surface [taken from S. Frankel and N. Me-
tropolis, Phys. Rev. 72, 914 (1947)7] of deformations described by
points in the az—ay plane (see Fig. 1). The events leading to
fission may be imagined as follows. The capture of a neutron by a
uranium nucleus converts it into an excited compound nucleus,
in which the energy of excitation is partly in the internal motion
of individual nucleons, and partly in the collective motion of the
entire nucleus for which typical components are illustrated in
Fig. 1. The collective motion may be represented by the path of
a ‘“systen point” on an energy hypersurface of which the surface
shown is the projection in the as—aus plane. This representative
point will describe a Lissajous pattern with amplitude changing
as the energy content of the nucleus passes back and forth between
internal and collective modes of excitation.

Consider a case in which the total excitation is only slightly
greater than the height of the saddle point in the energy surface,
corresponding to the threshold for fission. Such a case results from
the capture of thermal neutrons in uranium. Then it must follow
that fission cannot occur until (1) essentially all of the excitation
is in the collective motion, and (2) the phases and amplitudes of
the different modes of collective motion are such as to lead the
system point nicely along the valley stream toward the pass in
the surface. Clearly the many degrees of freedom in the internal
and collective motion of the system will permit many nuclear
eons to elapse before the capture of a slow neutron will, on the
average, bring about fission. A similar comment applies to the
competing processes of neutron and photon emission.

Once the system point passes the saddle, however, the increase
in surface energy with further elongation is more than offset by
the decrease in Coulomb energy, and the motion is self-accelerating
until division occurs. The resulting fragments will contain high
excitation, both internal and collective, giving rise to prompt
photon and neutron emission.

SIMPLE LIQUID DROP SPHERICAL
NO QUADRUPOLE MOMENT.

INDEPENDENT PARTICLE PICTURE
QUADRUPOLE MOMENT DUE TO
ASYMETRIC DISTRIBUTION OF
CHARGE OF A FEW PARTICLES—
EFFECT TOO SMALL.
WAVE FUNCTION OF
EXTRA PARTICLE LARGE HERE

@

Fi1G. 5. Quadrupole moments and nuclear models.

Neither the simple liquid drop model nor the independent
particle picture individually are capable of accounting for the
order of magnitude of the quadrupole moment, or the asymmetry
in the distribution of electric charge, of typical nuclei.

A negative quadrupole moment does follow in the liquid drop
model if we assume that the entire nucleus with uniform volume
electrification is rotating with / units of angular momentum. For
a nucleus the size of uranium we find, upon minimizing the sum
of deformation energy (see Fig. 3) and rotational energy, that the

COLLECTIVE MODEL
PRESSURE OF EXTRA
PARTICLES DISTORTS DROP—
QUADRUPOLE MOMENTS
GREATER BY ORDER OF
MAGNITUDE.
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reduced quadrupole moment is [K. Way, Phys. Rev. 55, 964

(1939)]
Q/eR2=6aZ/5=—PX28ZA"3/(1—x).

As nuclear spins seldom exceed 4, the size of this moment is
sharply at variance with the moments of 1 to 10 units commonly
observed. Moreover, no mechanism is apparent by which the
liquid drop could assume the prolate form required to produce a
positive quadrupole moment.

More instructive is the inability of the independent particle
model to predict moments of the proper size. The shaded ring-
shaped region is the region of large probability amplitude.for the
wave function of a single proton in excess of a closed-shell (spher-
ically symmetric) configuration. The quadrupole moment due to
it in typical cases is 5 to 15 times too small to agree with observa-
tion. From the wave function ¥;,(r) of a particle in a spherical
well, the quadrupole moment may be computed on the assumption
that the charge density controlled by the nucleon in question is

. proportional to | ¥;,(r) |2. Taking the total charge so described to
be one electronic unit, we discover that, even for very large angular
momenta, and for any value of the total quantum number #, the
largest value of the reduced quadrupole moment attainable is 0.5,
and that the values to be commonly expected are less than 0.2 in
magnitude. Thus, even the assumption that the effects of four or
five nucleons could be simply additive does not allow us to account
for observed moments.

However, Rainwater (reference 12) pointed out that the pressure
of the nucleon against the surface works against surface tension to
produce a sizeable deformation. The resulting bulk displacement
of charge gives rise to a quadrupole moment an order of magnitude
greater than that directly due to the extra particle. Thus the
study of quadrupole moments provided the first convincing proof
of the importance of the interaction of nucleons with the wall,
a central point in the collective model of the nucleus.

KINETIC ENERGY
OF SINGLE PARTICLE MOVING
FREELY INSIDE SPHEROIDAL WELL
(INVERSELY_PROPORTIONAL TO
SQUARE OF AVERAGE WAVE LENGTH)
ION OF LARGE

REG|
~GIRGULAR ORBIT ~
PRESSURE LARGE AROUND
EQUATORIAL PLANE

WAVES MOVING
PARALLEL AXIS
~ PRESSURE
ON ENDS

TOTAL ENERGY
KINETIC_ENERGY OF SINGLE PARTICLE IN UNFILLED
SHELL PLUS SURFACE TENSION ENERGY DUE
TO DEFORMATION OF LIQUID DROPLET

LONG
WAVE LENGTH

F1G. 6. More detailed picture how a single extra nucleon
causes a deformation.

The upper diagram shows the energy of the particle itself as a
function of the static deformation. When the angular momentum
is parallel to the axis, the waves run around azimuthally, and the
wavelength is increased by an oblate, pancake-like deformation.
The lower diagram shows the sum of energy of the extra particle,
plus the energy of the residual closed shell nucleus, this latter
parabola being calculated from the simple surface tension ideali-
zation, energy=(2/5)(radius)?(surface tension)(deformation, a)2.
The sign of the resultant quadrupole moment differs according as

the projection of the angular momentum along the symmetry

axis 1s small or nearly equal to the total angular momentum.
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F1c. 7. Effect of wall motion on state of particle in simple
one-dimensional case.

_For the case of a stationary wall, the wave function (2/L)}
Xsin(nwx/L) exp(—i S tEdt/h), where E=n?nr*1?/2MI[?=a con-
stant. For the case of a slowly moving wall, an approximate wave
function y(x,#) is obtained by inserting in this expression the
assumedly known functional dependence of L on f, and multiply-
ing the resulting preliminary wave function by exp(—iM¢(x,2)/%).
Here ¢(x,t) is the classical velocity potential; its derivative,
v(x, §) = —d¢/dx, gives the velocity with which a classical gas of
infinite sound velocity would respond to the motion of the wall.
The term in the velocity potential ensures that the wave function
satisfies the equation of continuity,

[ h (.00 a¢*)} 8,

ax{ZMi("b ox v ox +6t(‘// ¥)=0.
It describes a motion of matter to the right as the restraining wall
goes in that direction. The resulting wave function satisfies exactly
the potential-free wave equation between the walls when the dis-
tance L increases linearly with time. For a more general depen-
dence of L upon time the wave function satisfies the equation,

ihoy/ot=— (h2/2M) (%] da2) — (ML/2L)y.

Here the extra term on the right will be negligible for the case of
a slowly accelerating wall. In this approximation the effect of the
wall motion on the state of the particle is adequately described by
the factor in the classical velocity potential.
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F1c. 8. Effect of wall motion on particle state-—three-dimensional.

We shall derive here the result that the expectation value of
the energy of a set of identical particles held within a slowly
changing boundary of constant volume content is given at any
instant approximately by the energy the particles would have were
the wall stationary, augmented by a term which represents the
classically calculated kinetic energy of an incompressible fluid of
the same mass, M, urged into irrotational motion by the same
walls. Let the symbol «x typify the three space coordinates of one
particle, the symbol e specify the configuration of the wall, f(, «)
and E(e) stand for wave function and energy for the case of the
static wall, and ¢(x, , &) represent the velocity potential of the
classical fluid motion: d¢/dt—3(Ve)2—p/p=0; Vi¢p=0; —dp/dn
=normal velocity of wall. We represent the wave function of the
particle in the approximate form

W5, 0 =15, ) exp| —i [“ElaO)d/h—id /1]
To test this function in the Schrodinger equation, we calculate
ihoy/dt=exp[ 1[ihad/da+E+Map/ot]f.
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We now argue that in first approximation the nodes and values of
f are carried along with the classical fluid velocity, so that

adf/da=(—1)%(Ve)- (V/).
Thus

ihoy/ 9t = exp[. :]Dh(Vtﬁ) (Vf) (#/2M) V2 f+ (M f/2) (V)
Mp/p)f1=— (#/2M)V*y~+(Mp/p)y.

We conclude that the wave functlon in question satisfies approxi-
mately Schrodinger’s equation, through velocity dependent
terms, and neglects essentially only the accelerative terms of the
form (pressure/density). For the kinetic energy of the state we
now find

(2/230) f(w*)(w)d(vol>=(h2/2M> (@@ natvol)
+Gh/2) [ (V=191 Vod(vo)+/2) [ (Ve)r*fa(voD),

a result in which the last term—summed over the occupied states
—goes over into the kinetic energy of the classical fluid in the
limit of large quantum numbers, as was to be shown. The first
term gives energy of the particles in a static potential. The second
is important for the interaction between unpaired particles and
wall rotation.

F16. 9. Approximate orthogonality of the nucleonic wave func-
tions of Eq. (3) for two slightly different values of the deformation
parameter, «

The general principles involved here are illustrated by the ex-
ample of a one-dimensional potential well, extending from x=0
to x=a=Ro(1+a) or to x=b=Ro(14+a)(1+¢), according as we
deal with the one or the other value of «. The determinantal wave
functions, ®, of the N particle system are constructed out of
individual partlcle wave functions of the form u(xn, x)=(2/a)}
Xsin(nwx/a). The desired matrix element between the wave
functions for the same nucleonic state but slightly different
values of « is

S (=P f w(m, %, @) (e, %, b)dx- - -

permutations
12-..N
aBe-ev

X [uln, =, aYu(m, =, b)dz,

where the sum goes over all permutations, P, of the labels,
71, *++, %N, of the occupied states. When the state labels are the
same in one of the individual integrals, the integral has the
approximate value

1—e[(1/8)+#*a2/6)],
and, when the labels are different, the approximate value

e(— 1)t 2mn/(m2—n?).

Combining factors of the form (1—e)(1—e2)- -
ponentials of the type exp(—e1—ea- -
of the scalar product f--
formula

exp[— &{(IV/4)+(41/288)+(12)"1(6N?*+6N+1)In3.562N } ]

from which there follows the result quoted in the text. Thus wave
functions of the one-dimensional system are nearly orthogonal for
a fractional extension e~N"1(In3.562N)* or for a volume change
equal to a fraction (In3.562N)~* of the cell occupied by the typical
particle. Generalizing to three dimensions, we conjecture that
the nucleonic system wave functions are practically orthogonal as
soon as the volume not common to the two configurations exceeds
some small fraction of one cell.

-(1—ey) into ex-
- —en), we have for the value
- S ¥.¥, d(volume) the approximate
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F16. 10. Effect of a small asymmetry in mixing two
otherwise orthogonal states.

We examine here the mixing of two states of a particle in a
rectangular box, possessing a small irregularity, as two of the box
dimensions are altered in a volume-preserving deformation.
Shown are the nodes of the total wave function at successive
stages of the deformation. In the absence of the irregularity in
the surface, the two levels cross without interaction as the de-
formation proceeds. The irregularity mixes the two wave func-
tions in comparable proportions only near the point of cross-

-over. The nodes were found by solving the equation R sin4x sinz

+sinx sinSz=0, where x and z represent the distances from the
lower left hand corners of the rectangles expressed in such units
that x=m, 2= at the diagonally opposite corners.

Fic. 11. Asymptotic frequency of proper values.

We shall “derive” here the asymptotic formula for the number
of solutions of the equations V2Y—-k% =0, Ysurface =0, with wave
numbers in the interval % to k-+-dk:

AN =Vkdk/2n*— Skdk/8n+ [fde]dk/Sﬁ.

Here V is the volume of the region under consideration, .S its
surface, and « the local total curvature of the surface. The case
actually considered is that of a rectangular parallelepiped, of
dimensions @, b, ¢. Each proper solution, sinksx sinkyy sink.z,
corresponds to a lattice point in % space, k.=lIr/a, ky=mmr/b,
k.=nw/c, with which is associated a characteristic ‘“box” of
volume (w/a)(w/b)(w/c). When the states are filled out to a given
wave number Zmax, the boxes occupy an octant of a sphere (left-
hand diagram) except for slab-like regions near the coordinate
planes. The region thus to be excluded from the volume count is
shown in more detail in the right-hand diagram, for the case when
the number of states between %k and k-+dk is desired: relevant
volume=shell—correction for ring like strips+recorrection for
corners subtracted twice in counting volume of rings

= (4n/8)k*dk— (1r/2) (kdk) [(w/2a)+(7/2b)+(w/2¢)]
+dk[(w/2a)(r/2b)+two similar terms].

Division by the volume of one box gives for the number of states:
AN = abckdk/27%— (2ab+2bc+2ca) kdk /87 (da+4b+4c)dk/16m.

Generalization of this expression to an enclosure whose shape is
not too irregular gives the cited formula. Then the number of states
with wave number less than % is

N=VEk3/6mx2—Sk2/167+ Lk /87,
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and their totalized kinetic energy, E, is given by

2ME/n2=Vk8/10n2— Sk*/32m - Lk3/ 24>
=(V/1072) (672N / V)53 (S /327) (672N / V)43
+ (672N /V)(S2/128V — L/127%).

The proportionality of a part of this energy with the surface
implies the existence of a contribution to the surface tension of
kinetic origin [C. F. Weiszicker, Die Atomkerne (Akademische
Verlagsgessellschaft, Leipzig, 1937); E. Feenberg, Revs. Modern
Phys. 19, 239 (1947)]. For nuclei with approximately equal
numbers of neutrons and protons, and a volume per particle
of 4m7¢3/3 the appropriate term in the surface tension is

Okin=4(2/64wM) (97 /8r?)¥3,
47r?Oxin=28 Mev.

This calculated value is twice as great as the empirical figure,
14 Mev, for the sum of kinetic and potential surface tension
coefficients. However, the calculated value is reduced to a more
nearly reasonable magnitude when the height of the potential
wall is diminished from infinity to a finite value, according to a
kind private communication of Professor Feenberg.

After having completed this manuscript we were kindly shown
by Professor Eugene Feenberg the June, 1951 Washington Uni-
versity thesis of K. C. Hammack, “Topics in Nuclear Structure,”
which discusses the asymptotic density of independent particle
levels for potential wells both of infinite and of finite depth, and
proposes also the three-term asymptotic formula which appears
in this caption.
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Fic. 12. Potential curves for a deformable rectangular box.

The energy of deformation depends upon the nucleonic state of
the system as well as upon the magnitude of the deformation itself.
Each potential curve in the diagram is obtained by considering the
60 particles in question to be placed in 60 specified distinct indi-
vidual particle states, and summing their energies. For the energy
of the system to keep to a minimum value, it is necessary that the
distribution of particles among states should change during the
course of the deformation. The scalloped curve therefore gives a
qualitative representation of the type of potential energy curve to
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be expected for actual nuclei. If the deformation changes so fast
that switches from one potential curve to another do not have time
to occur with appreciable probability, or if such switches are alto-
gether forbidden because of the high symmetry of the system—as
in the case of a box with smooth rectangular walls—then the
distribution of particles among states will not change during the
course of the deformation. Then the energy required to produce
the distortion will be much greater than one would estimate from
the notion of surface tension. The dashed curve is predicted by
applying the statistical arguments and formula of Fig. 11 to the
present idealized problem, putting N=60, volume= 173, surface
=2n%*+4n%*?2, integrated curvature=2n%*+4n% %2,

S2ME/H = (x/10) (360/ )53+ (1/16) (360/x)*/3(e~*4-2¢/?)
+(45/4) e 24 (45— 120/ 7)e~*124- (45 — 60/ 7).

N

a = DEFORMATION MAGNITUDE
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Fi16. 13. Coordinates (e, ) for volume-preserving
ellipsoidal deformations.

Volume-preserving ellipsoidal deformations may be described
by two polar coordintes in a plane: a=deformation magnitude,
y=shape parameter. These coordinates are defined in terms of
the semi-major axes of the ellipsoid,

by the equations

a=Ry exp[a cos(y—2w/3)],
b= R, exp[ @ cos(y+27/3) ],
¢=Ry expla cosy ],

which are required to satisfy the condition of volume constancy,
abc=Ry.

For example, a deformation in which the changes of length of
the «x, v, and z axes are —1 percent, —2 percent, and +3 percent,
or any small positive common multiple of these fractions, is de-
scribed by one or another positive value of the positive “deforma-
tion magnitude” a and a value of the “shape parameter,” v, equal
to 10.895°.

As another example, let « be given a positive value, say 0.02,
and let v be increased, starting with ¥=0. Then the ellipsoid
takes on the following shapes:

Symmetry
v a/Ro b/Ro ¢/Ro Shape axis
0° 0.990 0.990 1.020 prolate spheroid z
30° 1.000 0.983 1.017 ellipsoid none
60° 1.010 0.980 1.010 oblate spheroid y
90° 1.017 0.983 1.000 ellipsoid none
120° 1.020 0.990 0.990 prolate spheroid x

With further increase of v the cycle repeats, except for cyclic interchange of
the labels %, ¥, 2; a, b, c.
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Fic. 14. Qualitative effect of small ellipsoidal deviations from
sphericity upon the first few energy levels of a single nucleon.

Spin-orbit coupling is neglected. Consequently this diagram
and those in following few figures are to be considered as primarily
illustratory. The deformation of the ellipsoid is expressed in terms
of the polar variables, a and v, as indicated in Fig. 13. The sim-
plest case to consider is distortion into a prolate spheroid, rotation-
symmetric about the 5 axis (y=0). Then the quantum number
is well defined. The level of orbital angular momentum /% breaks
up into components, of which the one with quantum number m is
raised by an amount

3m—I(+1)
@I=1)(2I+3)

with respect to the original energy, E. Levels with m=+|m| and
m=—|m| coincide. Points not shown in this diagram: (1)
Effect on the energy surfaces of displacements so large that §E is
no longer proportional to «. Then terms of order higher than the
first have also to be taken into account. The resulting curvature of
the energy surfaces is most easily visualized by saying that energy
surfaces repel each other except in the neighborhood of exceptional
points. At such a point the two surfaces ordinarily meet in a
double funnel, as shown in Fig. 35. Many such funnels would be
seen in a more extended version of the present diagram. (2) De-
pendence of energy upon surface deformations of order higher than
the second is not shown here, for want of dimensions. In treating
the asymmetry of nuclear fission it is important to consider de-
formations of order #=3 as well as the ellipsoidal distortions
(n=2) envisaged here.

8E=2aE
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Fi1c. 15. Splitting of levels of a p particle (orbital angular mo-
mentum /=1) in a potential well of constant depth, the boundaries
of which have received a slight volume-preserving ellipsoidal
deformation away from the spherical form.

In the diagram E represents the kinetic energy of the nucleon
in the original spherical well, and 8E the displacement of the level
for a small distortion of magnitude a. This quantity, and the shape
parameter v which is plotted horizontally, are as defined in Fig. 13.
Note that a p particle will have the lowest possible energy when it
goes into a nucleus shaped like a#®prolate spheroid.
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Fre. 16. Splitting of levels of a d particle (orbital angular
momentum /=2), shown as a function of the shape parameter ¥
of the ellipsoidal deformation.

The five levels group as three for an axially symmetric deforma-
tion (y=0°, £60°, £120°, etc). The energy of a single d nucleon
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.

which goes into the lowest accessible level in first approximation
is independent of the shape parameter v. The present case, /=2,
is the neutral point. For /=1 a prolate deformation gives the

greatest energy lowering, and for /=3 or more a prolate deforma- .

tion is energetically preferred in the case of a single nucleon.
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F1G. 17. Removal of the ninefold degeneracy of a g nucleon ((=4)
by small ellipsoidal deformation.

A single g particle achieves the lowest possible energy when it
goes into an oblate ellipsoid (y=2=60°; 180°). The calculation of
first-order energy displacement is made as follows: Let %; be the
wave function which vanishes at the surface of the sphere and
which satisfies V2u;+ k241 =0 inside; let the very slightly different
function u, vanish on the surface of the ellipsoid and satisfy
V2us+ ko*us=0 within that surface. Then, by Green’s method,

k2—kl= f (u2*0ur/ On—u10uz*/on)dS / f w2 *d(vol),

where the integral in the denominator is taken over the volume”
common to the two solids, and the integral in the numerator over
the surface which encloses that common volume. Let S} be inner-
most at a certain point of S. Then on Si, #1=0 and in terms of the
normal displacement, n, of S; with respect to Sy,

Uz == — (8n) (Quz/ dn) = — (5n) (dus/on).

A similar result is found when S; lies outermost. Consistent with
the neglect of terms of order higher than-the first, we thus have

8=~ [ 0ur/om|%éndS / S wslagvo),

provided that the difference between u; and #, is indeed small; i.e.,
provided that we have chosen, or will choose for #;—as below—the
proper linear combination of the wave functions of the originally
degenerate levels. Let the corresponding proper linear combination
of spherical harmonics be denoted by

Y9, o) =Zcn V1,0,
Also let Fi(p) denote the regular solution of the radial equation
@F1/dp*+[1-1(1+1)/p*]F:=0,
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so that

.];p Ftdp=3p[(F1)*+ (F/)*1—3F:F/ —1(+1) (F1)?/2p
=3p(F/')? when p is a node.
Then the unperturbed wave function is
w=r"Fi(kr) Y (8, ¢),
and the first-order perturbation in energy is given by

2 K0S *
22 aRJ‘Y (aR)de/fy vae.
Let I be that indempotent operator which, when applied to any
general surface harmonic,

U= lE bl,myl,m(oy V’):

annuls all terms except those which belong to the value of I of
present interest to us, and leaves these terms unaltered. Then

Jravae= [v*1avag,

where A is an abbreviation for the perturbation
. A=—28R(6, ¢)/aR.
A proper linear combination ¥ will satisfy the eigenvalue equation
IA(, )Y (6, 9)=2Y (6, @),
where X is a numerical constant. This is a secular equation for the
determination of the coefficients ¢» and the energy shift,
SE=\aE.

In the standard equation for the ellipsoid (caption of Fig. 13), we
write '

x=(Ro+5R) sinf cose,

y=(Ro+5R) sinf sine,

z=(Ro+8R) cosb,
and insert the expressions for the semi-major axes, @, b, ¢, in terms
of Ry and the deformation parameters « and . To terms of the
first order it is found that the alteration, 8R, in the length of the

radius vector from the origin to the surface is given by the equa-
tion ’

A, ¢)=—28R(8, ¢)/aRo=23* sin%0 cos2¢ siny— ZPZ (cosf) cosy.

Of this quantity the matrix element vanishes between spherical
harmonics Y of the same ! value (the one of interest) but of
different m values, except in the following cases:
(1) Same m values (diagonal elements of matrix).
_2 cosy[3m2—I(+1)]
@2-1)@2+3) -
(2) Values of m which differ by two units:
+31 siny[P—m? PL(I+1)2—m2 ]t
21-1)(214+3) ’

The solution of the secular equation,

Amm

Amit, mF1=

determinant|A;z—X\| =0,

gave the values for the energy shifts of the present and preceding
figures.

The effects of deformations upon energy levels, as calculated
here for the case of an infinite well, will be decreased in the case of
a finite well by a factor analyzed by Feenberg and Hammack
(reference 9).
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Fi1c. 18. Splitting of levels for case of small ellipsoidal deformations
but very large orbital angular momentum.

The secular equation (preceding figure) has in this case so many
roots that it is appropriate to describe their distribution statisti-
cally. Plotted horizontally is the value of the root of the secular
equation, A=38E/aE. Plotted vertically is the fraction of the
number of such roots, per unit range of \:

f @f/dNdr=1."

Whatever be the value of the “shape parameter,” v, the distribu-
tion function has a singularity at one value of A, the dimensionless
measure of level shift. In other words, there are many levels
for which N lies in the neighborhood of this singular value,
Asing=C0s(y—27/3) (when v lies between 0° and 60°). The ex-
tremal values of the level shift in the present limit of large / are
Amin=C08(v+27/3); Amax=cosy. Plotted at the right for com-
parison is the distribution of levels found from the secular de-
terminant for the case /=4, except that each level has been
spread out to give an approach to a continuous distribution. There
is a qualitative but of course not a quantitative correspondence
between the cases /=4 and /= . As the predictions of quantum
mechanics approach those of classical mechanics in the limit of
large quantum numbers, the method of calculation was to write

A=0E/aE= (average of the perturbation, A(6, ¢)
= —28R(6, ¢)/aRo, over the unperturbed classical motion).

In the unperturbed classical motion the particle moves in a plane
which passes through the center of the sphere. The motion is a
series of straight line segments, with abrupt changes of direction
each time the particle hits the surface. In all orbits except a set of
measure zero, the angular period of the motion will be incom-
mensurable with 2z, and the particle will come arbitrarily close
in the course of time to every point on a certain great circle. Let
the normal to this great circle have the polar angles 6* and ¢*.
Then the average of A over this great circle gives
Apv=N=cosyP2(cosf*)+}2713% siny sin20* cos2¢*.

To ask that this quantity should lie in an interval A to AdX is to
pick out upon the surface of the sphere a band of points, any one
of ‘which specifies the direction of the axis of angular momentum
of an acceptable orbit. The solid angle, d, subtended by this band
tells the fraction of eigenvalues which lie between A and A+dX:

af 14dQ N .

L= =131 —3 —\)¢

NI 371 (siny) ™} (cosy—N) 1K (x),
where K is the complete elliptic integral and

{()\—c05120°+'y) sin120°+'y}9
K= 03
(cosy—2A) siny ’
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this expression applying when v lies between 0° and 60° and when

in addition X lies between Amin and Aging. When X lies between

Asing and Amax, the corresponding formula is
71374 (A —c0s120+v) ¥ (sin120++) 2K (x71).

These formulas were used in the plotting of the distribution curves
df/an. .
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Fi16. 19. Effect of deformation leading to fission upon single-particle
energy levels of even-gerade symmetry.

The Frankel-Metropolis sequence of forms (Fig. 2) is considered
for definiteness. Plotted vertically are the values of the dimen-
sionless measure of energy, p?=2MR:2E/#2, where R, is the radius
of the original sphere. The magnitude of the deformation is
measured by the parameter ax=(7/3)y=(7/3)(1—x), where x
and y have the meanings described in Fig. 2. This definition of
agrees with the definitions in Fig. 1 and in Fig. 13 to the first order
for small distortions, but all three definitions differ for large dis-
turbances. The right-hand edge of the diagram gives the energy
levels when the boundary is deformed into two spheres of half the
original volume, connected with each other by a small orifice.
Whatever the magnitude of the single deformation parameter
here considered, the boundary is invariant with respect to in-
version (%, ¥, 2——x, —9¥, —z) and with respect to reflection at a
plane through the origin normal to the axis, 2z, of rotational
symmetry (%, v, 2%, ¥, —z). Consequently, the levels fall into
four classes:

Ratio of values of wave function at
two points which differ by a
reflection =(—1)!tm

+(gerade) — (ungerade)
Ratio of values of wave + leven Fig. 19 leven Fig. 20
function at two points (even) m even m odd
which differ by an inver-
sion =(—1)! - lodd Fig. 22 lodd Fig. 21
: (odd) m odd m even
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Among these only even-gerade levels are shown in the present
diagram. Of the levels which are plotted in this and the following
three figures, only those are shown in full detail which have a
quantum number of angular momentum about the symmetry
axis equal to m=0 or m=3.. The full line curves in these four
figures were calculated in detail as described in the caption of
Fig. 21; the dotted curves are only schematic and have no quan-
titative basis other than the initial and final ordinates and slopes,
and the use of inflection points here and there to permit level
jumps as needed to preserve the proper relation between the
number % of nodal surfaces in the initial and final wave functions.
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F1c. 20. Energy levels of even-ungerade symmetry inside
a boundary of Frankel-Metropolis form.

The energy level diagram is consistent with the usual well
known correlation principle: two levels are then and only then
incapable of crossing—granted arbitrary deformation magnitude
—when they belong at the same time to the same one of the four
symmetry classes (here the even-ungerade class) and to the same
value of m. This principle applies only so long as the system has
axial symmetry. If instead the boundary were an ellipsoid with
three unequal axes, then 7 would not be a good quantum number
and none of the levels would cross which belong to a particular
one of the four symmetry classes. For configurations near the
original sphere, the energy levels E= (#?/2MR¢?)p? are obtained
from the perturbation formula (Fig. 17),

3m2—1(l+1

peond{ L2 s )
Here the quantity p,; is the (z—1)th root of the regular solution
F(p) of the differential equation,

@F/dp*+-[1—10+1)/p*]F =0,
for the radial part of the wave function,

U(r, 8, ¢) =r1F (kr) P1™ (cosh) exp(imd).

All values of p,2 less than 200 [ T'ables of Spherical Bessel Functions,

Vol. I (Columbia University Press, New York, New York, 19477
follow:

’
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.
A
L

1 2 3 4
0 9.870 39.479 88.827 157.914
1 20.191 59.679 118.899 197.858
2 33.218 82.719 151.854
3 48.831 108.516 187.635
4 66.955 137.005
5 87.531 168.130
6 110.519 201.850
7 135.886
8 163.605
9 193.649

The number # represents—in the case of spherical and nearly
spherical configurations—the total number of nodal surfaces in
the wave function, counted as follows: » in the ¢ direction, I—m
in the @ coordinate, #—! in the radial direction (counting the
boundary itself as a nodal surface). As the magnitude of the
deformation is increased, ! ceases to be a good quantum number
and even the total number, %, of nodal surfaces ceases to remain
constant as such surfaces migrate to the outer boundary or
coalesce inside. The only firm ordering principle is the requirement
that levels of the same 7 do not cross.
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FiG. 21. Odd-ungerade levels in the Frankel-Metropolis
sequence of forms.

Only the levels with 7 =0 are here shown in full detail. The wave
functions are taken to satisfy the equation Vy+k%/=0 in the
interior, and on the surface =0 (infinite potential wall). W.
Elsasser [J. phys. et radium 5, 625 (1934):Fand H. Margenau
[Phys. Rev. 46, 613 (1934)] have in this approximation obtained
the level spacings for nucleons in spherical nuclei. This neglect of
penetration of the wave function into the region of negative kinetic
energy outside the boundary (finite potential wall) can be con-
sidered to be compensated approximately by appropriate small
readjustment of the dimensions of the figure: normal displace-
ment by the distance z/[2M (W — E)J*, where W is the height of
the potential wall and E is the kinetic energy of the state in ques-
tion. In detailed calculations (smooth curves) the wave function
for odd-gerade levels with angular momentum = about the sym-
metry axis were written as the product of the factor exp(ime) by
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the sum
ZCij1(or/Ro) Pi™ (cosh),

where R, is the original radius of the sphere and p?=2MR2E/A? is
the dimensionless measure of energy plotted in the figure. The
sum goes over even values of / for the case of a level of even parity,
and over odd / for odd parity. This function automatically satisfies
the differential equation. Vanishing of the solution over the
boundary, 7/Ro= f(cosf), as specified in Fig. 2, gives a con-
tinuous infinity of conditions on the infinitely many coefficients
C:. The approximation was made to use only five terms in the sum,
and to require the vanishing of the sum only at the five points on
the surface for which p=cosf=pu,, with u,=0.19, 0.38, 0.57, 0.76,
0.95 for ungerade levels, and u,=0.105, 0.315, 0.525, 0.735, 0.945
for gerade levels. The resulting five equations for the five unknown
coefficients C; possess a solution when and only when p is such as
to annul the determinant,

[ 710 f2) Pr™ (o) |,

where s=1, 2, ---5 is the column index and /=0, 2, 4, 6, 8 is the
row index, for example, for the case of m=0 and even parity, and
for m=0 and odd parity I=1, 3, 5, 7, 9. The functions j and P
were generated in an IBM~CPC electronic calculator—the asso-
ciated Legendre functions [divided by (1—u?)™2] from their
terminating power series expressions, the spherical Bessel func-
tions j(x), which satisfy the equation

1 df dj 0+,

x’dx(x dx, +[1 a? ]J—O’
from their standard power series expansions when the ratio
x/(I43%)* was less than 5, and for larger values of the argument
from the well known expressions j(x)=(terminating polynomial
in 1/x) sinx+(terminating polynomial in 1/x) cosx. The roots, p,
of the determinant were found by a refined scheme of trial and
error. We are indebted for help in these calculations to Stewart
Schlesinger, Seymour Parter, Max Goldstein, and others in
Group T-1 of the Los Alamos Scientific Laboratory.

ODD GERADE LEVELS
FOR FISSION FORMS

n.'- 2000 0l 02 03 04 0506 08 L.O 2¢ Lvn
5.1 @750 W/ DY L Y B
B8 AT T o
6,3 NTK3 - L4
~ | / - 445
CAER ARl i 6,7
- A= =i D)
75 13 __,</ CI /'_7 3.5
NIED ’ 40
Y.. 2 /
15/ - -
I 35
8.7 :/ D1 Pt” I et 5.6
3 f T 24
BlSaSEReERRES
4 D : 30
- ]
5.3 3 - —CH 45
100+ = 5
3 = = 1,3
65 e —
1
| | —/"?20 3.4
I - 1 —
3. EAEENE S -5
e FH 23
43 S0 BE
40— ZME‘—‘?—TPAR'NCLE] Mo 10
= A in| Mev | |
3070 {,ﬂz £ ENE&?GY ) MY 4 12
2,1 20 %"‘"" 5
3]
' ) &
0 11 Pt
o [eX] 02 03 102 o

Fi16. 22. Odd-gerade levels in the Frankel-Metropolis
sequence of forms leading to fission.

D. L. HILL AND J.

A. WHEELER

Shown at the right in this and the three preceding figures are
the levels for two spheres of radius Ry=Ro/2}, connected by a
circular orifice of radius, @, small compared with Ro. When =0,
the levels are those of a sphere, and consequently the appropriate
values of the dimensionless energy parameter p? are 2% times those
listed in the caption of Fig. 20. When the orifice is opened slightly,
the wave functions in the two spheres join together, and two cases
have to be recognized: gerade case—the wave functions in the two
spheres join up so as to have no node at the point of join (mirror
symmetry with respect to the plane of the orifice); ungerade
case—node in the over-all wave function at the point of join
(wave function antisymmetric with respect to mirroring in the
orifice plane). A half-volume sphere contains up to a given energy
(top of Fermi distribution) only approximately a half as many
levels as the full volume sphere, so the doubling of number of
states by reason of the two ways of joining at the window gives
the right number of individual particle states for the system. The
energles of the ungerade states are in first approximation inde-
pendent of the size of the orifice opening (wave function vanishes
at point of perturbation). On the other hand, the energies of the
corresponding gerade states fall as the orifice is opened, the frac-
tional magnitude of the drop being

(1/p)8(p%) = — (2/37) (21+1) (¢*/Rs*)
for states with 7=0, and much smaller (higher power of a/R,) for
higher values of m. To derive this result, compare the gerade wave
function y, for the case of completely closed orifice and y; for the
case of small orifice opening. The two functions look alike except
within distances of the order @ from the center of the orifice.

There yo=7"1F(kr) P (cosf) exp(im¢) (in the left-hand
sphere; the mirror image of this in the right-hand sphere) behaves
for positive m approximately as yo=Q2p™ exp(im¢), where z is
distance measured normally from the orifice towards the center
of the left-hand sphere, p is the appropriate cylindrical polar co-
ordinate, and the constant has the value Q= —R;/v™kF,'(kRy)
X (4m) 1/2mm (I—m) |. In the case m=0 our approximation for
Yo increases linearly with distance from the surface. We have to
deal with the wave mechanical analog of a constant electric field.
In electrical terms, opening the orifice now allows lines of force to
leak out. Superposed on the linearly varying electric potential is
another term—a local disturbance—which also satisfies Laplace’s
equation approximately: the bucklings of this term normal to the
orifice and parallel to the plane of the orifice are opposite in sign
and both very large compared to the net buckling, k2 This net
buckling we therefore neglect in considering the correction,
SY=y1—1,, in the wave function. Hence, we compute this differ-
ence by solving Laplace’s equation subject to the boundary condi-
tions: (1) 8y falls off relative to ¢, for large distances from the
orifice; (2) 9(8y)/dz vanishes over portions of the surface (here
treated as flat) not pierced by the orifice; (3) over the orifice the
correction term has such a normal derivative as to make ¢, itself
have zero derivative (condition of mirror symmetry): 9(8y)/0z
= —Qp™ exp(im¢). General positive m is used in the last equation
because nothing about the basic argument is peculiar to #=0. The
use of new coordinates, such that z=auv, p=0a[ (1—u2)(1+?) ],

" translates Laplace’s equation to a form with separable solutions

of the type P, (u) f(v) exp(im¢). Here the function f is such as
to be annulled by the operator

d N

dv(H‘” )(E+m2—%(n+1)~

The original wave function o, not too far from the median plane,
is of exactly this form, with #=m+1, and with f(v) a multiple
of Ppy1™ (1) :

Vo= QamHu(1— a2y mPo(14-02)m12 exp(im).
In the corresponding product expression for 8y, everything must

be the same except the function f,,+1(2), which is now to fall off
at large positive v:

8y == Qam u(1—u?)™/2 exp(ime)v(1 4 12)™/2
X [ vt mid / ST = ey,

Here the definite integral in the denominator normalizes 8y so as to
satisfy the required boundary conditions. The change in wave
number produced by the perturbation is found to first order by
inserting in Green’s accurate relation,

ko= [ v/ onds [ [orpuitroD,

the expression for Y1=y,+38¢ in terms of ellipsoidal coordinates
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in the numerator,
o/ In=—Qam(1—u*)™? exp(ime)
2:2-4-6---(2m)

* = su¥* = OgmH —y2)ml’ —1 ————— T
¥ =8y* = Qa (1 —u?) ™2 exp( 1m¢)1r.3_5'7‘ TCmtly
and in the denominator replacing y1* by ¥o*,
f vi*pod(vol) = (Ry/2) [Fv' (kRy) P[4/ (204 1) J0+m) 1/ A—m) L.
Thus we find for the shift in gerade levels due to a small orifice:

ke—ki__ 2QU41) (+m)!
B x (—m)!

1 a 2m+3
X3 s @mt Dt (2m+3)1(E) :

This formula was used in constructing the right-hand portion of
the diagrams for gerade levels.
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F16. 23. Total nucleonic energy as a function of v,
for one to nine nucleons in states with /=4.

The total nucleonic energy of a many-particle closed shell
configuration plus an incompletely filled g shell containing the
indicated number of particles, for ellipsoidal deformations of small
magnitude, «, in the approximation of the idealized collective
model, is E=Eo+aE,;f(v)+ca?, where f(y) is plotted here as a
function of the shape parameter, v, of Fig. 13, and Eo, E,, and ¢
are constants, E, being the kinetic energy of one nucleon with four
units of angular momentum. The diagram has been drawn for
simplicity as if nucleons had no spin and only 9 particles were
required to fill the shell. The appropriate correction by a factor
two is easily made. The quantity f(v) is obtained by summing over
the appropriate number of nucleons the corresponding individual
particle coefficients already plotted in Fig. 17, taking in each case
the lowest energy—or most negative coefficient—allowed by the
Pauli principle. It is seen from the diagram how the quadrupole-
producing force, as measured by the coefficient f(v), increases to a
maximum for a half-filled shell and then decreases. Oblate deforma-
tions are favored at the beginning of the shell and cigar-like ones
at the end. Of course, this discussion refers to intrinsic quadrupole
moment, not the moment after averaging with respect to preces-
sion about the nuclear spin axis. ’
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Fic. 24. Splitting of two double levels near a point of crossover.

Levels which cross without interaction for deformations of high
symmetry experience a mutual repulsion for deformations of
lower symmetry. For axially symmetric deformations the crossing
levels are themselves ordinarily doubly degenerate except in the
case m=0, so that four levels result from introduction of a slight
ellipticity in the cross section of the otherwise axially symmetric
form. The appropriate deformation coordinate n=a siny (Fig. 13)
is perpendicular to the plane of the upper diagram. The cylinder
sketched in perspective there cuts the four sheeted energy level
surface in the four lines which are shown as functions of angle in
the lower diagram. An example in point would be the crossing of
the doubly degenerate level /=3, m=1 by the level /=5, m=3.
Details: Let £=a cosy—ao denote the component of departure
from the crossing point which is visible in the upper diagram.
Then, near the crossing point, the energy matrix of the four level
system, omitting unessential complications, has the form

s¢t+tn 0 In —8n
| i & —fa
N m e —sttwm 0
—gn . —fn 0 —sE—un

where s, £, u, f, and g are constants, and the diagonal elements

represent the level locations in the absence of coupling between the

one pair of levels and the other. We write £=r cosf, n=r sind, and

(energy)/r=1y, and find the secular equation for the four plotted

roots:

y4—[2s? cos?0+ (2 f2+2g2+2+42) sin?0Jy2+2s(u2—1?)

X cosf sin20y-+s* cost9+s2(2 2+ 22— 2 —u?) sin?f cos?0

+(g2— f2+ut)? sin6=0.
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Fic. 25. Qualitative picture of inverted cones in lowest
potential energy surface.

Here the lowest sheet of the multi-sheeted system potential
energy surface is sketched qualitatively in its dependence on the
ellipsoidal deformation parameters of Fig. 13. Only at the inverted
funnels, i.e., only for prolate and oblate spheroidal deformations,
which have y=0°, 60°, 120°, etc., does this surface touch the one
above it. That surface in turn (not shown) possesses both upright
and inverted funnels. Important in affecting the probability of
slippage from one surface to the one above or below it is the general
curvature of the surface and particularly the size of the region
upon this surface which is accessible to the representative point
of the system when it has any given amount of total (potential
plus oscillational kinetic) energy.

QUADRUPOLE MOMENTS
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BEFORE AVERAGING OVER
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F16. 26. Deformation potentials and quadrupole moments
expected as a function of degree of filling of shells.

This is a qualitative picture of the effect of shell building on the
intrinsic quadrupole moments, i.e., on the shape of the nucleus
as it affects the motion of particles inside, not as it appears to an
atomic electron after averaging over nuclear precession—an
averaging which cuts to zero the quadrupole moment observed in
atomic spectra when the nuclear spin is  or 0 (even-even nuclei).
Several particles in a partly filled shell bring about a deformation
in the same way that one does (Fig. 6), with these amendments:
(a) The particles cooperate. Coupling with the wall makes it
energetically preferable for the second particle’s orbit to line up
in the plane of the first’s. In first approximation the deformation
thereby produced is twice as great, and the energy lowering (with
respect to the spherical configuration) four times as large, as for
one particle. (b) With increasing number of particles the quad-
rupole-producing force (see, for example, Fig. 23) goes through a
maximum, showing a certain symmetry between the start of filling
(oblate forms energetically preferred) and the near completion of
the shell (prolate form lower in energy). (c) In the region extending
roughly from % filling to § completion, both pancake- and cigar-
like forms lie at relative minima of the energy curves, suggesting
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the possibility of configurationally-isomeric forms of the same
nucleus. (d) All these considerations assume that the contribution
to the deformation potential from all the residual, closed shell,
nucleons is a quadratic function of the deformation parameter, a.
In actuality a sufficiently large distortion will rearrange the order
of levels and even the term “closed shell” will no longer have any
simple meaning. On this account the suggested regular variation of
quadrupole moment with progress of the filling will no longer
necessarily be a reasonable expectation.

/
[} / MUTATION BARRIER
V‘/f;"

UNSTABLE
ISOMER (a)

VIBRATION STATES FOR
MODE OF CAPILLARY

STABLE
ISOMER (b)

Fi1c. 27. Nuclear mutation forms.

The phenomenon of nuclear mutation from oblate to prolate
form, or conversely, according to direction of energy release, is
suggested by the considerations of Fig. 26 as conceivable for
nuclei about § or % the way through the process of filling up a long
shell. For deformations as great as those required to give the effect
in question, it seems unreasonable to believe that the deformation
energy of the closed shells is still proportional to a2 Consequently
this diagram has to be viewed as only an idealized schematization
of the actual potential energy surface, and this only for walls of
spheriodal character (axial symmetry). The spherical configura-
tion represents a peak in the potential barrier against mutation
from the stable to the unstable isomeric form.

PROLATE

OBLATE
ALONG X ALONG Y

OBLATE
ALONG Z

POTENTIAL MINIMUM FOR
SPHEROID OBLATE ALONG X

DEEPER MINIMUM
FOR PROLATE FORM

Fi1c. 28. Contour plot of energy as a function of the deformation
variables « and +y of Fig. 13 for the ground state of a heavy nucleus
with a shell which is little more than half full.

This energy is idealized as the sum of surface energy and the
energies of the single particle states which lie lowest in a potential
well of the given shape. The minima of the total energy occur
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when the angular momenta of the nucleons lie as nearly parallel-
antiparallel to the symmetry axis as possible (oblate form) and
when the angular momenta lie as nearly perpendicular as possible
to the symmetry axis (prolate form). To pass from prolate to
oblate form via the spherical form is very expensive of energy.
The easiest route, as pointed out to us by Professor Edward Teller,
is passage over the potential ridge in the diagram. On this ridge the
system has the form of an ellipsoid with three unequal principal
axes.
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Fi16. 29. Effective nuclear quadrupole moments for hyperfine struc-
ture divided by the square of the nuclear radius (1.5X 107134 )2,

The known moments of odd-proton nuclei and odd-proton
odd-neutron nuclei (excepting Li® and CI*) are plotted as circles
against the number of protons, and the moments of odd-neutron
nuclei as crosses against the number of neutrons. The arrows
indicate closing of major nucleon shells. The solid curve repre-
sents regions where quadrupole moment behavior seems estab-
lished, the dashed curve more doubtful regions. This figure and
caption are taken from the report of Townes et al. (reference 11).
See Fig. 5 for relation between Q and a.

DIRECTED ALPHA EMISSION

@

aP, ‘FRACTIONAL CHANGE
i; ;{ IN OLD CURVE AT

NEW DISTANCE

BARRIER FOR

ENERGY ELONGATED NUCLEUS

a—EMISSION

——DISTANCE —»
Ro (1+aF, (cos 8))

o Ro

F16. 30. Directed alpha-decay.

An alpha-active nucleus will ordinarily -have a quadrupole
moment and will therefore emit preferentially from the outermost
parts of its surface, where the peak of the potential energy barrier
has been lowered. The reduced wavelength, x=X/2, of a 5-Mev
alpha-particle is 1X10™8 c¢m, a quantity small compared to a
typical nuclear diameter of 18X107% cm. Consequently the direc-
tionality of emission will have a definition relative to the nuclear
axes which is ordinarily better specified than the correlation of the
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nuclear axes themselves relative to a direction fixed in space.
In particular a nuclear state of angular momentum zero will be
characterized by alpha-emission isotropic in the laboratory frame
of reference, however anisotropic the surface emissivity is in the
nuclear frame of reference. The maximum observable direction-
ality will be found when at the same time the nuclear spin, I, is
large, when the projection, I, of I upon a chosen space axis
(strong magnetic field, low temperature) is &7, and when the
nucleus in question is on a time average prolate with respect to
the nuclear spin axis /. Then emission will take place preferentially
parallel and antiparallel to the magnetic field. Under the same
conditions observations of maximum probability for directions
perpendicular to the magnetic field will indicate an oblate ellipsoid.

LOG HALF-LIFE (YEARS)

75 55 55 3 o5 76 75 80 (5] 30
ALPHA~ENERGY (MEV)

Fi1c. 31. Alpha-particle half-lives versus alpha-energy.

The Geiger-Nuttal relationship between alpha-particle energy
and life time with respect to alpha-particle decay is not a one-to-
one correspondence, as shown in this recent compilation of re-
sults for even-even nuclides taken from Perlman, Ghiorso, and
Seaborg [Phys. Rev. 77, 26 (1950). For other compllatlons and
analyses of alpha-decay data, see the references cited in this paper,
including A. Berthelot, J. phys. et radium 3, 17 (1942); also I.
Kaplan, Phys. Rev. 81, 962 (1951) and J. M. Blatt and V. F.
Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons,
Inc., New York, 1952), Chapter XI.7] Perlman et al. give similar
curves for the other classes of nuclei. Nor should it be. The Gamow
treatment of barrier penetration gives a formula [see also Ras-
mussen, Thompson, and Ghiorso, Phys. Rev. 89, 33 (1953)]:

probability intrinsic alpha
per second of ) = (emission prob-
alpha-decay ability  /
Xexp{—2(2Z/137)2M o6*/ E2)} () },

in which there enters not only the alpha-particle energy (we look
apart from the well-known small corrections for the finite mass and
recoil energy of the residual nucleus), but also the charge and
radius of the nucleus:

o Ba _EaRy. E.d}

barrier height 2Ze¢? * 4mc?Z’
f(u)=arc cosut —ut(1—u)?.

Nevertheless, the fluctuations of the points of such diagrams
away from the curve for the appropriate Z appear too great and
also too irregular to be laid solely to the Gamowian dependence
upon Z and 4. Binding anomalies for nuclei near shell limits give
irregular variations of E, from element to element, but such
variations in energy cannot by themselves account for deviations
from the barrier penetration formula. However, the existence of
quadrupole moments necessarily implies a deviation from the
Gamow formula which will be very sensitive to departures from
closed-shell structure—or more directly, sensitive to the nu-
clear deformations called forth by asymmetric pressure against
the surface by nucleons in unfilled shells. For a distortion
R=R[14aP; (cosf)] the potential energy of an alpha-particle
outside the nucleus is altered in first order to

V=(2Ze?/r)[14(3Rs*/5r®) aP; (cosh)].
Re-evaluating the integral

turning point
2/h) R [2M o(V — E,) Jdr,
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in the exponent of the penetration factor, we find that the factor
f(u) is changed by the amount
8f(u)=—(2/5)aPs (cos®)ut(1—u)}(2—u).

This consideration neglects the fact that the area of the surface
from which significant emission takes place has been cut down
from 47R¢® to some smaller amount. This reduction we neglect
compared to the improvement in penetration through the thinner
barrier. Accordingly we insert for the angle 6 the value at the
point of maximum emission:

—aP; (cosf) = —a for prolate ellipsoids;

—aP; (cosf) =a/2 for oblate ellipsoids;

8 f(u) =a negative number in both cases.

The factor of improvement in decay rate made by the ellipsoidal

deformation is
22\ [2M oc?\*
CXP—Z(B; ( Ea )5]'(”),

or, for Z=90, A =234, barrier height of 30 Mev before deforma-
tion, decay energy E=5 Mev, rest energy of alpha-particle M¢?
=3700 Mev, with the dimensionless ratio =35 Mev/30 Mev,

_ _ Jexp 28a (prolate) |

exp—1015f=exp—101X —0.273aP,= {exg_ 14at (oblate)
Thus a deformation which stretches the axis by the fractional
amount a=0.1—a value well within the range indicated by ob-
served quadrupole moments—will be expected to increase the
decay rate by a factor of roughly ¢*8=16. Of course, from the
observed decay rate associated with a given alpha-emission process
one cannot determine bot the nuclear radius and the quadrupole
moment. One gets only some combination of the two, which we
have to identify—in the absence of other effects—with the quan-
tity generally known as the effective radius. Between it, the radius
Ry of a sphere of the same volume, and the quadrupole moment
exists the relation

Rett= (226 Ea)utest= 226/ Eo) [u+51/(df/du)]
=R[14+(2/5)(2—u)aP:],

or with sufficient accuracy for most nuclei

0.533« (prolate) .
—0.267« (oblate)

These considerations have an interesting application to the alpha-
activity of samarium. The alpha-energy has been measured as
2.18 Mev by W. P. Jesse and J. Sadauskis [Phys. Rev. 78, 1
(1950) ] and the activity has been assigned to Sm!*’, [A. J. Demp-
ster, tentative result given in Argonne National Laboratory Report
ANL-4355, 1949 (unpublished); Rasmussen, Reynolds, Thomp-
son, and Ghiorso, Phys. Rev. 80, 475 (1950)7]. We are indebted
for discussion of this case to Professor I. Perlman, who with a
nuclear radius of 7.81X 107 cm, such as would normally be ex-
pected, calculates [I. Perlman and T. J. Ypsilantis, Phys. Rev. 79,
30 (1950)] a half-life 2.9XX102 years (private communication)
compared to a measured half life 10-20 times shorter. Perlman
also concludes that a 80-kev increase in the value of the decay
energy, or a roughly 10 percent increase in nuclear radius, would
resolve the discrepancy. Alternatively we can say that a prolate
distortion of 10 percent/0.533 =19 percent or an oblate deformation
of 10 percent/0.267 =37 percent would account for the situation,
assuming that 7.81X1072 cm is indeed an appropriate figure for
the radius of a sphere of the same volume. Quadrupole deforma-
tions of these general magnitudes are found experimentally for
nuclei in the general neighborhood of samarium. P. Brix and H.
Kopfermann [Z. Physik 126, 344 (1949)] mention their reason-
able bearing on the alpha-lifetime of this substance. Of course the
shortening of life that occurs for Sm in extreme measure must
also occur for most other nuclei in greater or lesser degree. Con-
sequently the nuclear radii which have been found from analysis of
alpha-decay must on this account at least be larger on the average
than the appropriate volume-equivalent spherical radii. For this
reason the nuclear radii reported [Phys. Rev. 77, 26 (1950)] for
polonium isotopes, previously .thought of as abnormally low, are
perhaps now to be considered as the more nearly normal figures.
Obviously direct measurements of the quadrupole moments of
alpha-active nuclei—where possible—are most relevant to the
further discussion of this topic. Mention should also be made of
anomalies in the isotope shifts in atomic spectra, (reference 25),
which may be in good measure explained by increase in electron-

(Reff_ Ro) /Ro = 05330LP2 =
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effective nuclear radius via ellipsoidal deformations, according
to recent interesting discussions with Dr. Lawrence Wilets of
Princeton. From the characteristic or “Chang’” radiation given
out when mu-mesons drop from 2p to 1s Bohr orbits it is not
impossible that one may be able to develop another experimental
tool to study nuclear quadrupole moments—closely related to the
study of atomic spectra, but with energy shifts and splittings
percentage-wise enormously greater than in the atomic case
because of the larger fraction of time spent within the nucleus by
the meson. Alpha-lifetimes are affected not only by the Gamow-
Gurney-Condon penetration factor, but also by the Franck-
Condon principle; not only by the equilibrium deformation in
the original nucleus, but also by the difference in normal shapes
between initial and final nucleonic states. If this difference is
large, the residual nucleus will have little chance to be formed
in the state of zero-point oscillation. On this account there will
be a reduction in alpha-decay rate not taken into account in the
above discussion. Transitions to the lowest vibration state will
be inhibited relative to transitions to those vibration states
favored by the Franck-Condon principle. This circumstance must

- evidently be taken into account in interpreting the fine structure

of typical alpha-spectra.
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Fic. 32. Diffraction by ellipsoidal nucleus.

Will not diffraction or “shadow” scattering by an ellipsoidal
nucleus be sufficiently different from that by a spherical nucleus
to allow observation of the difference? This interesting question
was raised in discussion with us by Dr. J. B. Cladis of Los Alamos.
The qualitative analysis in the figure shows that the ratio of
minima to maxima in the diffraction by randomly oriented nuclei
of the given species is indeed a sensitive measure of nuclear de-
formation, being zero (in the diffraction-idealization of scattering)
only for spherical scattering centers. A quantitative analysis can
be made along the following lines. Let f and g be the principal
axes of the ellipsoid as projected in imagination onto the plane of
the receptor, and let the X and ¥ axes be oriented parallel to the
f and g axes. The absence of the ellipsoidal piece from the trans-
mitted beam produces the same scattered wave as if this piece
alone were present. A portion dS=ddn of its area makes a con-
tribution to the scattering amplitude at a distance 712 and at not
too great an angle 6 to the primary beam equal to (—ik/2m712)
Xexp(ikr12)dS, where k is the wave number. The differential
scattering cross section is the square of 7 times the absolute value
of the integrated scattering amplitude:

2
do/d=|(k/2m) [fexpl —ik(xt-+ym) s
Here the direction of the scattering is indicated by the ratios x/r

and y/r. We write £= fu cos, n=_gu sin, and integrate first over
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0, then over % from 0 to 1, finding
dojda= | HELEL P gy ]
(k2f2x2/72+k2g2y2/7-2)§

for the scattering for one orientation of the ellipsoid. A superposi-
tion of such curves gives the distribution which is to be compared
with observation. Richardson, Ball, Leith, and Moyer [Phys.
Rev. 86, 29 (1952)] first mentioned the existence of this effect
which with present experimental accuracy remains undetected.
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F1c. 33. Behavior of two levels at a point of near cross-over, &= aq.

The levels, as they would be in the vicinity of cross-over in
absence of interaction, are
Ea=Eo+a(a-— ao) H Eb=Eo+b(a——ao).
The coupling which brings about the interaction is Hap=Hq; its
dependence upon « is neglected in immediate neighborhood of
ao. The actual wave function for a stationary state of the system is
v=A4Aya+Bye.
The equation for determination of coefficients 4 and B and energy
value E in case of any fixed value of the deformation parameter,
o, is
ih=Ey=Hy,
EA=E,A+HaB ’
EB=HyA+E3B.
The two eigenvalues of the energy are shown in the diagram:
Eup=(GEc+3E) +{(GEa—3Ev)*+ | Has |2},
Eiow= (%Ea_,_%Eb) - {(%Eu'— %Eb)z'*' I Hap I 2} 3,
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0.2 \
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R |
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; .
0 0z o4 06 08 10

F1G. 34 Probability of transition from state ¥, to state ¥ when
the deformation « passes through the neighborhood of the cross-
over, ao, (Fig. 33) at the fixed speed & (reference 27).

The probability of a jump is very small when the interaction
H ., between the levels is very weak, or when the rate of deforma-
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tion, &, is very large, or both. Then the system, if originally in the
state Y, with energy E,, will have high probability to be in the
same state, y,, after deformation has carried the system through
the region of cross-over. In other words, there will be a high
probability for a jump to take place from the lower level, Eiow,
to the upper level, Eyp, as in other familiar cases of nonadiabatic
excitation. The opposite will be the case for strong interaction,
or slowly varying deformation, or more generally, for large values
of the dimensionless “interaction parameter” G, defined by
- Hal?

had(Ea—Ey)/2da
The detailed dependence of transition probability upon G is found
by considering the equation

ihp=H@O)Y¥,
ihA=E.(()A+HauB,
thB=H A+ Ey(f)B.
To translate into dimensionless variables, write
A @)= f(t) exp[ —i(Eat+Eu)t/2h],
B(t)=g(t) exp[—i(Eat+En)t/22],

in order to abstract away from the unimportant general slope of
the cone, and ’

G2

or

=221/ (a—b)&,

where a—b represents the difference in slope of the two unper-
turbed potential energy curves, d(E,— Es)/da. Also assume Hop is
real and positive, since any complex argument present in Hgp can
always be absorbed into the probability amplitudes, 4 and B.
The origin of time is chosen as the moment when the deformation
arrives at the cross-over point, e=ay. The problem is then to find
for very large positive times the value of the probabilities | f|2
and |g[? of being in the states ¢ and b from the differential equa-
tions,

idf/dx=1xf+Gg,

idg/dx=Gf—xg;

or from the equivalent single second-order equation,

& f/dx*+ (G’+x2+i)f§ 0,

subject to the initial condition that at {=— o, or x=— o,
J~exp[— (i2?/2) — (iG*/4) In24*],
g~0.

The solution is

f=@m [ dy explint/2— /2 (i6/2) Iny] :
X {exp[7G?/8— (1—i)xy]+exp[ —37G?/8+(1—2)xy]},
and behaves asymptotically for large positive time (x=- ) as
exp[ — #G?/2—i32/2— (iG?/4) In2x%].
The probability of a jump having taken place is evidently
J(G) = ftina1|?/| finitia1|2=exp(—7G?).

The values of the function are plotted in the figure. It is to be
noted that this analysis of the transition probability treats the
nucleonic motion in appropriate quantum-mechanical terms: a
wave function ¢, or probability amplitudes 4 and B of being in
states ¥, and y». However, the progress of the deformation itself
is treated as a pure classical motion: a=at. This procedure is
ordinarily justifiable because the mass of the individual nucleon
is so small compared to the mass of the capillary oscillator.
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Fi1G. 35. Transition cross section for energy
surfaces in conical contact.

This figure illustrates the concept of effective cross section for
the jump from one potential energy surface to another, as first
introduced by Teller [reference 24; F. O. Rice and E. Teller,
J. Chem. Phys. 6, 489 (1938)7] in connection with the vibrations
of polyatomic molecules. Vertically is plotted the energy. In the
two horizontal directions go two of the several coordinates which
are required te describe a deformation. The two potential energy
surfaces meet in a double cone, which in the present example 1s
supposed to be circular in cross section, for sake of simplicity.
Represented here in magnified form is only a very small portion
of the two potential energy surfaces (see Fig. 25 for other details).
The kinetic energy with which the collective oscillation is endowed
is considered to be large in comparison with any of the energies
seen here. Consequently, the deformation is idealized as proceed-
ing in a direction and at a rate, &, uninfluenced by this minor
local irregularity in the potential energy surface (plan view). When
the oscillator coordinates pass close to the vertex of the cone; that
is, when the representative point of the system has a small impact
parameter, amin, there is an appreciable chance for the nucleonic
state of the system to jump from the lower surface to the upper
surface (case @). When the oscillator coordinates stay far from the
critical value, the chance of a jump is negligible (case b). When the
state of the system executes repeated oscillations, the representa-
tive point of the system carries out a Lissajous type of motion
(not shown) in plan view. In this case the probability of a jump
is best stated in statistical form, in terms of the concept of “cross
section” for a jump. In the present case this cross section, o, has
the dimengions of the deformation parameter, «, raised to the
first power, for the space of the motion itself is only two dimen-
sional. From dimensional arguments Teller showed that

o=const(%a/s)?,

where s is the slope of the circular cone. The value of the cross
section also follows directly from the jump probability, J(G), of
Fig. 34:

o= [ 1(G)dau,

where oy is the impact parameter or the distance of closest ap-
proach. Let the deformation & be measured away from the center
of the circular cone as origin, so that (Fig. 34):

Eo—Ey=12s0,
Hap=s0ay,
Eup=—Eow=s(a?+ o) t=sa,

Gr=a2s/héx.

Integration gives for Teller’s constant in the expression for the
cross section the value

const= f:’ J(G)dG=1.

In the more general case where the two potential energy surfaces

HILL AND J.

A. WHEELER

meet in tilted cones, elliptical rather than circular in cross section,
the axes # and y can still be oriented to lie along the principal
axes of the ellipse,
Eup=61a1+02ay+(Szzaxz"}‘syzayz)ir
Elow= Claz+52¢1y— (3326\‘.22—*"81,2(1112)%.
Directions of incidence of the representative point of the collec-
tive oscillator are now inequivalent and have to be considered
separately : .
;= at cosf—ay sing,
ay=at sinf+ay cosf.
Then
= (522 sin0-+s5,2 cos?0) oy 2
B (522 cos?0+-s,2 sin20) ¥
the cross section for incidence in the direction 6 is
o= (ha)¥(s,? cos?0-+s,2 sin?6)i(s,? sin20+-s,2 cos?d) 4,

‘and the effective cross section is found by averaging this expression

over all’angles of incidence (Lissajous motion).
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F1c. 36. Probability of a radiationless jump for system
bound in cone of intersurface contact.

We consider here the exceptional case where the amount of
energy in the collective oscillation is so small, and the potential
energy surface is so shaped, that the system oscillates about in the
neighborhood of the funnel’s mouth with only a few quanta of
vibrational energy. In this case both the nucleonic end the collec-
tive oscillation have to be treated quantum-mechanically. The
system behaves in first approximation as if bound in a stable
conical potential, with characteristic energy levels. In next ap-
proximation it is necessary to allow for a characteristic probability
to switch over to an unstable potential energy surface, without
change in total energy, but with great increase in kinetic energy.
From the results of the quantum-mechanical analysis can be pre-
sumably derived, in the case of large quantum numbers, the same
formula for the cross section which is derived and discussed in
Fig. 35. Details follow for the case of a right circular cone of
slope dE/da=s. Here yu(os, o) represents the probability ampli-
tude for the oscillator coordinates to have the values o, and ay
and for the nucleonic system to be in the state a; similarly for ys.

‘Then the wave equation for a stationary energy state of the whole

system is
62 8 a
E\ba"‘ ZM ‘pa ¢ +Saz¢u+say¢by
02 i
af; ‘//b) +sau\[’n—saz\1/b7

where M is the coefﬁcxent in the classical expression, %
the kinetic energy of the oscillator. We write

o= (B2/2M o E)}u cosb,
= (#*/2M E)*u sing,
B=hs/(2M E)},
and use the circular symmetry of the system to separate variables:
VYo=u"F(u) cos}6+G(u) sin6] exp(im9),
Ye=u"tF(u) sin}0—G(u) cosif] exp(im8),
finding the radial wave equations

«02, for

m? im
LN PR P
Ay [1+6 ——]G-——F



COLLECTIVE

In absence of the coupling term on the right the first equation
describes the motion of a system of the prescribed angular mo-
mentum in an upright funnel. The second equation describes the
runaway motion of a system of the same energy and angular
momentum under the action of the potential of an inverted funnel.
The coupling term makes possible transitions from the stable state
to the unstable state. The coupling term vanishes for the case
m=0, contrary to what one might have expected from the classical
analysis of Fig. 35, where the probability of a jump is the greater
the smaller is the impact parameter. However, this classically
founded expectation must be confirmed by detailed calculations
of the jump probabilities for values of 7 greater than 0 from the
above coupling terms. Despite the proportionality of these terms
with m, the leakage probabilities fall off fast with m. These prob-
abilities can in principle be evaluated by perturbation methods.
We calculate F from the first equation neglecting the term in G
on the right hand side. The eigenfunction F is then inserted on the
right-hand side of the second equation to determine G:

G(u)={ S e+ G,(u)cl(w}(im/vz)F(v)dv,

where G; and G; are two independent solutions of the Zomogeneous
equation for G, the first behaving as an outgoing plane wave at
infinity, but irregular at the origin; and the second regular at the
origin. The normalization is chosen so that

szGl/du—Glng/du= 1.

For large u these functions have the form

—% % ]
Gi= —-(1+6u—z¢—22) exp[i{%—l— ﬁmin(1+ﬁu—uﬂf) du—{-a}],

2\ —% u 2\ 3
Gt (1+8u—15) " sind T [ (1B ) dut s

where & is the correction to the phase shift of the J.W.K.B. ap-
proximation. The probability per second, 4, for transition from
the upper potential energy surface to the lower one is found by
comparing the flux of particles outgoing in G asymptotically at
large » with the number of particles bound in state F:

A =2x[Gw)?du)dt ) 27 f F2()du,
=2—f[ /. mGz(v)(m/vg)F(v)dﬂ]z/ J7 Pau.

The dependence of transition probability upon the quantum
number m of rotatory oscillation is derivable by semiclassical
arguments in the case of small 7 and large energy. Then the transi-
tion occurs—if at all—when the representative point in a-space is
near its point of closest approach, a=amin. The point is then
describing a nearly rectilinear path. Consequently it is appropriate
to use the previously derived formula for the probability of a
jump in a single pass (Fig. 35):
exp(— 7G?) = exp(— ws2amin/has).

The number of passes per unit time in the periodic orbit of the
representative point follows from the classical mechanics of a sys-
tem with energy E, mass M, and angular momentum m# moving
in a conical potential, V =sa,:

. doy day
Period= §'7== /M N E—sco—mo2/2M aat?)?
=(8ME/s)1 .
Inserting in the expression for the transition probability the value
Amin=mh/(2M E)3,
a=(2E/M.)},

and dividing by the period, we find for the chance per second of a
jump:

A=(E/h)(hs/23EXM o2) exp(—wm?hs/23EIM o),

A== (E/h)(8/2) exp(—mpm?/2).
As an example, consider a slope of the cone equal to 10 Mev per
unit in the magnitude, «, of ellipsoidal deformations. The kinetic
energy is
IM jo2=%p(47R*/3) (3R2a2/10),
so that for the case of U2 the effective “mass” is
M ,=236M (3r:/10)(236)%.

and
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Finally, let the energy E available for oscillation about the vertex
of the cone be 4 Mev. Then the dimensionless quantity 8—whose
reciprocal is related to the number of states bound in the cone with
energy less than F—has the value

B=10 Mev (#2/0.6M7)}/(236)5/5(4 Mev)}
=0.0781.

The probability ‘for a radiationless jump from a state bound in
the upper cone with m=1 to the lower state is

A= (4 Mev/0.66X 1072 Mev sec) 0.039 exp(—0.123)
=2.1X10% sec™?,

corresponding to a level width A% of 0.14 Mev.

A

7~

Z

F16. 37. One-dimensional example of influence of slip-over
effect upon energy level pattern.

We shall describe the slippage phenomenon in terms of dis-
placement of stationary energy values rather than in terms of
transition probabilities. The latter way of speaking is the more
natural in the idealized collective model where these transition
probabilities are relatively small. The energy level description is
unworkable in practice when the number of ways of dividing the
energy between oscillation and nucleonic excitation is very great.
In contrast, the figure shows an idealized case—not expected to
occur in actual nuclei, but illustrative of the general principles
involved—where only two nucleonic states, ¢ and b, come into
play. The probability amplitude function has two components,
Va(e) and yp(a), whose absolute squares give the probabilities
for the system to be in one or the other nucleonic states with a
wall deformation, . We write the Schroedinger equation in the

form
hoye/dt=— (H2/2M ») 3Yu/ B2+ V() Yat+Havys,
thdys/dt= — (1?/2M &) 9%/ 3024V 5(c) Yo+ Hpatla.

" In the extreme case of very small coupling Hos, the problem sepa-

rates into two eigenvalue equations which will possess character-
istic energy values as shown in the upper part of the diagram. In
the opposite extreme case of large coupling, the simplest descrip-
tion is obtained when the characteristic level spacings are small
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compared to the coupling constant H,p; in other words, when the
mass M, is very large. Then it is reasonable to consider the eigen-
value equations,

E‘l’a= Va‘//a+Hab‘pb)
Eyo=Vwot+Hpas.

The two energy values Ei(e) and Ex(e) obtained from these equa-
tions give two new potential energy curves with respect to which
the oscillation now takes place—at least in so far as those poten-
tial curves can be considered to be felt out by a particle of very
large mass. In the case of intermediate coupling the ordering of the
energy levels will be very complicated. However, in all three cases
the total number of energy levels less than any given large energy
E will have the same rate of increase with E.
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F1c. 38. Franck-Condon principle for nuclear transitions.

In the collective-model idealization of the nucleus as in a mole-
cule, excitation processes (very high energy impact; photoabsorp-
tion) which raise a single particle (nucleon; electron) to an excited
state can be thought of in first approximation as taking place in
such a way that the heavy part of the system (collective oscillator;
atomic nuclei) will keep position and velocity coordinates un-
changed. The individual particle therefore may be considered to
jump from one potential surface to the other at a fixed value of the
deformation coordinates. The principle of Franck and Condon
indicates that the energy absorbed in the primary act bears a
simple relation neither to the energy difference between the
minima of the two curves, nor to the separation of the curves for
zero deformation, nor to the amount of the absorbed energy which
will be available afterwards for vibration (right-hand portion of
diagram). In the nuclear case subsequent slippage down from one
potential energy surface to another will of course occur after
repeated oscillations, and the distribution of energy over the
system will finally be randomized, granted time before radiation
carries the energy away. From the diagram it is seen that the ob-
served spacing of energy levels may be expected to depend upon
the ellipticity of the configuration in which the spacing is meas-
ured. It appears reasonable to attribute to this circumstance an
appreciable part of the observed anomalies in the spacing of the
levels of Pb and Bi [J. A. Harvey, Phys. Rev. 79, 241 (1950)].
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F16. 39. Phase modulation of nucleon wave function
at nuclear surface.

The Doppler change of wavelength of the nucleonic wave func-
tion due to wall motion is the elementary mechanism of exchange
of energy between nucleonic excitation and collective oscillation.
Of this energy exchange no such analysis as that illustrated in the
diagram is permissible. To observe the phase modulation of the
immigrant wave requires freedom from subsequent reflections at
the walls. Only then would space and time enough be available to
analyze the frequency spectrum with sufficient precision to show
up side bands corresponding to exchange of one or more vibra-
tional quanta with the wall. For this purpose the time would have
to exceed several periods of collective oscillation. But in fact the
time for one traversal of the nucleus is many times shorter than
the vibrational period. Quite the opposite of a frequency analysis,
the proper way to describe the exchange of energy between par-
ticle and wall is as adiabatic readjustment of the proper function
of the particle to the configuration of the wall. As the boundary
changes, the wave function and energy alter, and the energy
change can quite properly be attributed to Doppler effect at a
moving wall. The important point is that the particle has no way
to remember that the wall motion is periodic. Thus follows the
inappropriateness of a description in terms of phase modulation.
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F16. 40. Schematic representation of neutron capture
6n the collective model.

The hatched-in potential trough gives an impression of the
relative location of the levels of zero kinetic energy inside and
outside and has otherwise nothing directly to do with the main
part of the diagram: A plot of potential energy surfaces for the
compound nucleus as a function of a typical one of the many
deformation parameters. The neutron enters and forms a virtual
state of the compound nucleus at 4. If the oscillational coordinate
passes B before the neutron has emerged from the virtual state,
then this particle is trapped, at least temporarily. The representa-
tive point of the system can then oscillate in principle over the
potential energy curve ABCFG, etc. However, the excitation is so
high that there can be no well-defined partition of energy between
vibration and nucleonic excitation. Otherwise stated, the system
jumps from one potential curve to another with a frequency large
compared to what would otherwise be the natural oscillation
period. Consequently the neutron very rapidly gives up its energy
to the rest of the system. The mechanism of transfer is idealized in
this discussion as acting entirely through the wall. This wall effect
can of course be visualized in terms of Doppler effect, as illustrated
in the previous figure.

The neutron is caught, so to speak, because the nodes in
its wave function were so oriented relative to the wall motion
that the particle lost energy by reflections from the retreating
boundaries.
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Fi16. 41. Nuclear oscillational surface frequencies
versus mass number.

Plotted as a function of mass number are the nuclear surface
oscillational frequencies, wn,= 2., and the associated zero-point
excitation values. The values shown follow from the classical
analysis of Fig. 1. At small mass numbers the excitation energies
rise sharply, but the concept of surface motion loses its validity
for low mass numbers. As noted in Fig. 1, the higher the nuclear
mass number, the higher the maximum mode of oscillation which
may be reasonably defined, but even at mass 240 the highest order
acceptable is less than 10.
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F16G. 42. Fission barrier shift associated with the
ground-state quadrupole moment.

This is a schematic representation of the difference in fission
threshold between the liquid drop picture and the collective model.
The same individualities in potential energy surfaces which are

- responsible for quadrupole moments also bring about anomalies in

fission barrier heights. The order of magnitude of these anomalies
can be estimated by comparing the liquid drop potential curve,
V=V(a), which near the minimum varies about as 50 Mev a2,
and at the maximum has a height of the order of 5 Mev at a value
of a of the order of 0.7, with another potential curve,

V*=V(a) —ca,
where the constant ¢ is a crude measure of the quadrupole pro-
ducing force. The minimum of V* will lie near ao=¢/100 Mev, and
the shift in the height of the maximum will be of the order
S Ef~cCotmax~100 Mevaoomax
~2 Mev
for typical quadrupole moments, ap~0.03. Of course the above

description is highly schematized; the actual potential energy
surface will run much less smoothly as a function of deformation.
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Fic. 43. Neutron fission cross section as a function of neutron
energy for five fissile elements. All data are taken from the com-
pilation of reference 29.

The features common to these five cross-sectional curves are in
line with the discussion of reference 5. At low energies the prob-
ability of fission is inappreciable, until the total excitation of the
compound nucleus (neutron binding plus kinetic energy of external
neutron motion) approaches the height of the potential barrier
to fission, as shown in Figs. 3 and 4. For excitations somewhat less
than this value the cross sections show the precipitous rise char-
acteristic of barrier penetration (Fig. 44). Beyond this excitation
the cross section increases more slowly, being governed primarily
by the competition with neutron emission, as alternative mode for
the compound nucleus decay. For excitations several Mev in
excess of the barrier height (but less than the binding energy of two
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neutrons) the variation of fission cross section with energy is ex-
pected to be smooth. The fission cross section may be expected to
increase substantially when the excitation becomes sufficiently
high for fission still to occur after the compound system emits one
or more neutrons [ Bohr, reference 317.

A striking example of the possible effect of the internal state of
the nucleus upon the fission probability is afforded by the ob-
servations of Street, Ghiorso, and Thompson [Phys. Rev. 84, 135
(1952)] on the formation by neutron capture in Am?! of two
isomers of Am??2, of which one decays into the other with a 16-hr
half-life. They find that the ground-state form is susceptible to
fission by thermal neutrons with a 6000 barn cross section, while
the fission cross section is 2000 barns for the excited form. Whether
this difference comes in the probability of neutron capture
and emission, of de-excitation by radiation, or in the differing
effects of the different internal states on the fission barrier (Figs.
6 and 42) is apparently an open question.

In studies of the photofission of thorium and uranium, G. C.
Baldwin and G. S. Klaiber [Phys. Rev. 71, 3 (1947)] found the
cross sections to be peaked at 17 Mev with a 3-Mev half-width at
half-maximum. This result is one of a large number of similar
results, as noted by v. H. Steinwedel and J. H. D. Jensen [Z:
Naturforsch. 5a, 413 (1950)].
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F16. 44. Probability to cross fission barrier as a
function of energy.

The probability to cross the fission barrier as a function of
energy, is given by

P=1/(1+€>"0).

‘Here b is the energy deficit relative to the top of the barrier, divided

by a characteristic quantum energy, Ecurv, which is fixed by the
curvature of the top of the barrier and by the effective mass
associated with the fission mode of deformation. To visualize the
meaning of Equrv, imagine the sign of the potential energy to be
reversed, so that the barrier peak becomes a trough. Then the
system will behave like a harmonic oscillator in the neighborhood
of the critical point, with a natural circular frequence, wimag, and
a characteristic quantum energy, %wimasg. This latter quantity is
by definition equal to Ecurv. In a first approximation it is reason-
able to take Awimag to be equal to the characteristic quantum
energy, #ws, of the lowest mode of capillary oscillation of the sys-
tem about its normal nearly spherical equilibrium form, for the
following reason: The potential energy, expressed as a function of
deformation, will have for leading terms in its expansion

V(a)=Aa?—Ba®.

But this function has at its maximum the same second derivative
(except for sign) that it has at its minimum, and therefore the
same frequency, wimag=w2. We conclude that for uranium, where
e is estimated to be about 0.8 Mev, the characteristic curvature
energy of the barrier will also be of the order of 1 Mev, thus lead-
ing to the energy scale shown lin the diagram. Note that the
probability for crossing the barrier is but 0.5 when the available
energy first exceeds the critical energy, and only reaches a value
close to unity at considerable distance above the barrier. This
result is contrary to the predictions of the usual penetration
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formula, which would have given

P=exp| = @/ (2 a(Biop= 47"~ Eavatasn D

= EXp[:"'" 27I'(Etop— Ea.vailable)/hwimaz]
=exp(—27b).

The more complete penetration formula is most easily justified by
writing the wave equation for the fission mode in dimensionless
variables:

@2y /da+ (22— 2b)y=0.

The solution we desire represents a wave running to the right on
the right-hand side of the barrier, and on the left an incident wave
and a reflected wave. In terms of the parabolic cylinder function,

Yv=D_3 [ (1—10)x]
=[TG+d) I j; dt explint/2— (1—i)ai— /2~ (3—3b) Inf],
with the asymptotic behavior for large positive x:
=~274x"} exp[4a?/2— (ib/2) In2x2+iw/8— wb/4],
and for large negative x:
~27t|x|~% exp[4a2/2— (ib/2) In2x?
—3ir/8+37b/4] (reflected wave)
+@m)I(3+3b) 11274 | | % exp[ —ix?/2

+-(ib/2) In2x2+-4iw/8+7b/4] (incident wave).
Comparison of strengths of incident and transmitted waves gives
the cited penetration formula. It is valid so long as the relevant
portion of the potential curve—when plotted against a dy-

namically uniformized deformation variable—is close to an in-
verted harmonic oscillator curve.
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Fi16. 45. Relation of spontaneous fission half-life to (Z2/4).

By this plot of spontaneous fission half-life against (Z2/4) G. T.
Seaborg [Phys. Rev. 85, 157 (1952)] has demonstrated the neat
connection between spontaneous fission rates and the character-
istic parameter (Fig. 2, and Table I) to measure fissionability in
the liquid drop model. The linear relation shown holds not only
for the labeled nuclei but also for the nucleus cosmium (Figs. 2, 51)
for which (Z2/4)=~47 and which undergoes spontaneous fission
in a time of the order of the period of the lowest order vibration
for such a nuclide as U2?#® (Fig. 1), Small deviations from the linear
relation appear, in line with the expectations (Figs. 6, 26, 42) on
the variation of ground-state quadrupole moments, and conse-
quent effects on the fission barrier (Fig. 3). The analogy with the
case of alpha-decay (Fig. 30) is evident. Not included on the plot
is U%5, which undergoes spontaneous fission at a rate lower than
that of U8, despite the higher Z2/A4 [reference 31a].
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F1G. 46. U2 fragment mass distribution for thermal
and 14-Mev neutrons.

Shown are the fragment mass distributions for U2 bombarded
by thermal neutrons [Plutonium Project, Revs. Modern Phys.
18, 539 (1946)] and (by the solid points) with 14-Mev neutrons
[R. W. Spence, Atomic Energy Commission Unclassified Docu-
ment BNL-C-9, 1949 (unpublished), Brookhaven Chemistry
Conference No. 3]. Evidence that the trend toward symmetrical
fission with excitation is completed is afforded by the mass dis-
tributions of the heavy elements struck by very high energy
particles [P. R. O’Connor and G. T. Seaborg, Phys. Rev. 74, 1259
(1948); R. H. Goeckermann and I. Perlman, Phys. Rev. 73, 1127
(1948)].

A simple hydrodynamic explanation of the mass asymmetry,
and its variation with energy, is proposed in Figs. 50 and 51.

Specially interesting is the observation (reference 38) that in
Cm?2, with its half-life for spontaneous fission of 7.2)X 106 years,
spontaneous fission events are sufficiently frequent to enable a
study of the distribution in kinetic energy of the fragments. The
pattern obtained indicates the same sort of mass distribution as
is found for thermal neutron induced fission.
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F16. 47. Fine structure in fission mass yield.

This compilation by Glendenin, Steinberg, Inghram, and Hess
[Phys. Rev. 84, 860 (1951)] of spectrometric measurements on
the fission mass yield, plotted with the heavy and light fragment
yields folded over one another to produce a common curve,
demonstrates a sharp deviation in a limited mass region of the

ields from the smooth variation known from earlier work
lutonium Project, Revs. Modern Phys. 18, 539 (1946)]. The
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masses involved in this deviation are consistent with the hy-
pothesis that it follows from the effects of nuclear shells on fission,
contrary to the dominant asymmetry of the smooth curve itself.
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F16. 48. Characteristic circular frequencies, w, of the lowest
modes of oscillation of an incompressible uniformly charged liquid
droplet of mass AM and surface tension O as a function of the
fission instability parameter x for the spherical form (smooth
lines) and for the symmetrical critical form of unstable equilibrium
(dashed lines; estimates obtained by calculating limiting slope in
neighborhood of ¥=1; i.e., for nuclei differing from the spherical
by only a very slight ellipsoidal deformation).

The five independent degenerate modes of vibration of the
sphere of order #=2 are describable in terms of radial extensions
proportional to the five harmonics Ps(cos8), Ps®(cosf)[cos¢ or
sing ], Ps®(cosf)[cos2¢ or sin2¢], but these vibrations can also
be visualized in terms of revolution of a hump of material over
the surface of the sphere (three degrees of freedom) and two types
of pure vibration. It is assumed here that the system has no angu-
lar momentum, although allowance for rotation would produce a
number of complicated and interesting subdivisions of the curves
shown here. The two vibration frequencies are distinct for the
critical form of unstable equilibrium. The first mode of deviation
from the saddle point moves in the direction of decreasing poten-
tial energy, either an extension leading to fission or a contraction
towards the normal spherical form. The second moves uphill from
the saddle point. In it the cross sections of the figure cut normal
to the symmetry axis undergo ellipsoidal oscillations about the
normal circular form without the length of the dumbbell under-
going change.

Of the subcomponents of the vibration of third order we con-
sider for the forms of unstable equilibrium only that particular
one which is of lowest frequency, is axially symmetric, and is the
better described by the harmonic Ps(cosf) the more closely =
approaches 1. This vibration represents a coursing of fluid to and
fro through the neck of the dumbbell—an asymmetry oscillation.
Its frequency becomes the less the smaller is x, and vanishes for
some value of &=1xi;, not yet known, perhaps near x=0.65. For
lower values of & the symmetric saddle point configuration still
exists, but two new and unsymmetric saddle point configurations
come into existence which are lower in energy. If x for uranium
is significantly greater than werit, as may well be the case, then
the asymmetric saddle points should neither exist nor have any-
thing to do with the observed asymmetry of fission for uranium.
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W. J. Swiatecki [Phys. Rev. 83, 178 (1951)] in a brief note .

has given reasons for believing that the compressibility and
polarizability of nuclear matter will favor the development of the
. asymmetric saddle points; i.e., depress the lowest component of
ws, in the present manner of describing the situation. However, it
is not clear that this interesting effect is great enough to make the
saddle point of uranium asymmetric.
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F16. 49. Contour map of barrier against fission in the idealized
limit of a fission criticality parameter close to x*=1.

Only a small deformation is required to carry the system to the
saddle point for passage over the barrier. The only deformations
considered in the diagram are of ellipsoidal character, as there is
no, instability in distortions described by spherical harmonics of
higher order. The ellipsoidal deformations are measured in terms
of polar variables in the diagram: a “deformation magnitude” o
(radius) and a “shape parameter” v (angle), as defined in Fig. 13.
There are three saddle points in the diagram because a prolate
extension along any one of the three principal axes of the ellipsoid
will result in fission. The present idealized picture is based entirely
on the simple liquid drop model. No account is taken of any
intrinsic quadrupole moment nor of any angular momentum of
the nucleus. The deformation energy in the lowest relevant order
of approximation is

V(e, v) =47R20{[2(1—x—3) /5Ja2—[(124+203) /105 Ja? cos3v}
=B[(4?/2)— (u*/18) cos3y]=Bf(u, v). -

Here 4mR?0=14 Mev A% is the normal surface tension energy
and #x and z the parameters defined earlier, whose sum, x*, is the
relevant criticality parameter. In the alternative way of writing
deformation energy on the second line, B is a constant with the
units of energy, in terms of which the height of the top of the
barrier is 6. The contour diagram gives the dimensionless quantity
f=V/B as a function of v and the multiple, %, of a:

u=(18x+302)a/7(1—x—2).

D. L. HILL AND J. A. WHEELER
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F16. 50. A qualitative classical hydrodynamical interpretation
of the asymmetry of nuclear fission.

The critical form of unstable equilibrium for a nucleus in the
vicinity of uranium is so much like an elongated cylinder (Fig. 2)
that we are invited to consider the stability of a long jet of in-
compressible uniformly electrified fluid endowed with a surface
tension. Were the charge density zero, the jet would be unstable
against small disturbances with wavelength greater than the jet’s
circumference, as is well known. Such disturbances are the first
step in reassembly of ‘the fluid into separated spheres of the same
mass but smaller surface. The size of the eventual spheres is the
greater the longer the wavelength. The presence of even a small
volume electrification makes reassembly of the fluid into very large
spheres energetically unfavorable. Consequently, the charge
stabilizes the jet against disturbances of long wavelength, just as
the surface tension works against deformations of short wave-
length. The intermediate zone of wave numbers, %, of instability
becomes the narrower the larger the charge density. Total sta-
bility occurs when

_ 2(charge per unit length)?
"~ w(radius) (surface tension)

> Yeriv=1.125.
This condition is satisfied for U2?% by the critical Metropolis-
Frankel forms for the fissionability parameter x=4rRy3p.2/300
=(()1.74. The radius R of the cylindrical part of the figure is 0.64R,;
an

y=2mR%2/0=2wX0.74X (30/47) (R/R0)3=2.92.

How can a repulsive force produce such stability? Only by virtue
of the ends of the cylinder being at infinity. Consider instead a
cylinder of finite length. The capillary force will round off the
ends, but be unable to withstand the repulsion of the long column
of electric charge. A sizeable drop will break off the end—the
elementary act of fission, and of a fission which is very asymmetric
indeed. How asymmetric? Let L represent the distance from the
end at which the cylinder starts to neck in, and let € represent the
diminution in radius at this point. Out of the neck into the in-
cipient drop has been squeezed a volume of fluid of the order
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e2rRL, thus carrying the drop forward and diminishing the elec-
tric energy of the system by an amount ~2n2eL2R?p,2, which goes
into kinetic energy ~pm(e2L?/R%)wR2L. Consequently, e/R, the
fractional necking off, goes in the beginning as (¢/fcrit)?, where

tcritN(me/Rpez) 3,

The shortest growth constant and fastest necking-in is found for
a neck length L of the same order as the radius, for the character
of the expression for ferit changes for smaller L. We conclude that
successive fragments from this machine-gun type of fission will
all have roughly the same size.

The following picture suggests itself for the division of a nucleus
like U238, when the available excitation is only little in excess of
the threshold requirement. On arrival at the fission barrier the
system has so little energy of movement that the nucleus remains
for an appreciable time in a form not very different from the
elongated shape of unstable equilibrium. This configuration re-
sembles that of a cylinder of electrified fluid. In a crude approxima-
tion we may say that, in so far as the behavior of one end of the
cylinder is concerned, the other end might as well be indefinitely
far away. At each end we will expect the machine-gun type of
fission to start. At which end necking-in first starts will be an
accident. Once started at one end, however, this type of deforma-
tion will grow so rapidly that it will ordinarily soon get far ahead
of anything that is happening at the other end, and a fragment
will come off with length roughly comparable to its diameter
(“light fission fragment”).

* Moreover, the separation of the two ends is really not large.
Between them there is a significant interaction. The start of
necking-in near one end will increase the curvature and hence the
tgutness of the surface near the other end. The effect will inhibit
the necking-in which would otherwise have started near the other
end, but a little later. Thus there comes about a division into a
large and a small fragment. This suggested mechanism for the
origin of fission asymmetry is a straightforward application of the
most elementary notions of surface tension, electrostatics, and
hydrodynamics.
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F1G. 51. Results of dynamical analysis of nuclear fission carried
out [D. L. Hill, Phys. Rev. 78, 330 (1950); 79, 197 (1950); Ph.D.
dissertation, Princeton University, Princeton, New Jersey (un-
published) ] on the basis of simple liquid drop model.

These International Business Machine Corporation—endowed
electronic computations started with a configuration near the
point of unstable equilibrium and followed out the motion by way
of the classical hydrodynamic equations for an incompressible
fluid with surface tension and uniform volume density of electri-
fication. From the preceding figure the working hypothesis sug-
gests itself that inevitable small asymmetries in the form of the
nucleus in the transition state become magnified in the subsequent
course of the motion, and lead to a necking-off of the elongated
figure near one end or the other in the great majority of the cases.
The hydrodynamic phenomena were described by classical me-
chanics. However, the size and origin of the small initial asym-
metries were considered to be connected with the quantal zero-
point amplitudes of the various modes of capillary oscillation.

With increasing excitation of the compound nucleus, there will
be an increase in the irregularities in the nuclear surface at the
moment of passage over the fission barrier, over and above the
effect of the zero-point oscillations. These irregularities will in-
creasingly affect the location of the point at which necking-in
commences. A sufficiently great displacement of the normal point
of necking-in will lead to symmetric fission. The relative prob-
ability of symmetric fission will therefore be expected to rise with
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increasing excitation energy. Two cases were considered: “cos-
mium,” that unrealizable nucleus for which the fission criticality
parameter x=(Z2/A4)/(Z*/A)eit=1; and a droplet for which
x=0.74, estimated to come close to simulating the case of U2%®,
‘Axial symmetry was assumed in all the calculations. Cosmium was
started off in the first calculation with a very small deformation of
the second order, which remained symmetric as it grew (=20
signifies a time of 20X6.66X 10723 sec). In the second calculation
on cosmium a deformation of order three was superposed on the
symmetric deformation, with such a magnitude as to correspond
to the zero-point energy estimated for the asymmetric mode. In
this case the small initial asymmetry multiplied itself in the course
of time in such a way as to suggest an eventual division into two
fragments of rather different size. This growth of asymmetry
arises from the dynamics of the fission process. In this case there
cannot be any question of asymmetry in the saddle point configura-
tion, for that is the spherical form itself. In the third case, x=0.74,
a small initial asymmetry superposed on the initial symmetrical
Metropolis-Frankel saddle point configuration again multiplies
itself in such a way as to appear to favor division into quite
unequal parts. The calculations were broken off in all cases well
before neck-off because the mesh was not fine enough to treat the
narrowing part of the neck accurately. The results cannot be con-
sidered to prove, but are at least consistent with, the view that
fission asymmetry is a classical hydrodynamic effect.

PRESENT STATE
Defined by coordinates
and velocities of 11 sur-
face points ij pj.

NEW STATE

Calculate curvature of

surface and hence value
there of fluid pressure
term, P.

From present position and
velocity get new position,

Calculate electrical
potential energy term, V,
as a single integral for
each surface point,

From present accelerations
and velocity get new
velocity,

Evaluate the normal deriv-
ative of H on the surface
to get the acceleration of
the surface.

Take sum of V and P,

multiply by standard solid
harmonic Bj, and integrate
over surface. j=1,2.,.8.

1 Solve YMjp by = f

for the eight b, and thus
have the acceleration
potential H = an By,

Calculate the 64 matrix
elements Mjn =/B]'Bn ds.

F16. 52. Schematic flow sheet of hydrodynamic calculations
illustrated in the preceding figure.

The motion is taken to be irrotational flow of incompressible
fluid, so that the velocity can be expressed as u= —grad¢, where

D. L. HILL AND ]J.

A. WHEELER

V2¢=0, 1,=—3d¢/n gives the normal component of the velocity
of the fluid surface, and the time rate of change of the velocity

potential is
d¢/0t=3%(grade)?*+V+P=H.

The quantity H— %(grade)? is the acceleration potential; P is the
pressure divided by the density, taking values at the surface
determined only by the local curvature «,

Pouri= (OK/Pm) = (O/Pm) {P_1|:1+ (dp/dg)zj‘i
— (@p/dz?)[1+(dp/dz)* T3},

where O is specific surface energy and pn is mass density; and V is
the electrical potential energy of a unit mass element, expressible
in cylindrical polar coordinates z and p as

Vi= (Pez/Pm)fdfz/hz

o2 Lpat-p1t (21— 25)dps/dz]K — 2p1D
_.Z(Pa /Pm)f {dZm: [(P1+P2)2+ (51—22)2]} 3

where K (%) and D(k)=[K(k)— E(k)]/%? are defined in terms of
complete elliptic integrals of the argument &,

k2=4p10s/[ (p1+ p2)*+ (21— 22)2],

and p, is the electrical charge density. The actual system with its
infinitude of degrees of freedom is replaced by a system with a
limited number of degrees of freedom: the location of eleven tracer
points which are considered to define the surface. The locations
of the two points at the two poles of the figure are specified by
coordinates zo and z10. The nine other points have z coordinates,
2;, equally spaced between zo and ;0. Eleven independent position
coordinates zo, p1, p2, ** *, P9, 210, and eleven corresponding velocity
coordinates thus give the state of the system at one time. At the
next instant the new positions follow purely kinematically from
the old positions and velocities; while the new velocities follow
equally simply as soon as the old accelerations have been found
from the acceleration potential:

du/dt=—grad(H—u?/2).

The quantity H has zero Laplacian in the interior, and on the
surface a value which is known from the old state of the system.
In the calculations the term #2/2 is neglected, both when it ap-
pears in the boundary conditions for H and when it is subsequently
subtracted from H, as the 170-Mev kinetic energy of fission is
small compared with perhaps 540-Mev surface energy and 780-
Mev electrostatic energy of the relevant nuclei. In the computa-
tions H was represented as a sum,

H(s, 0= 3 bu)Bals, 1),
n=1

of eight solid harmonics, with the b, chosen at the time interval in
question so as to minimize the departure of H from its proper
boundary value:

f (H—V — P)surtace?dS=minimum.

From this requirement follows an 8 X8 system of linear equations
for the coefficients b,(f):

ZM. inbn=f i
where

M= f B;B,dS and f;= f B;(V+P)dS

can be found from the state of the system at the old times. Thus
the whole cycle of calculations is advanced to the new time.
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Fic. 53. Fission asymmetry as function of initial excitation.

The fission yield of Ag!!! relative to the yield of Ba!4? provides
a measure of the asymmetry of the mass division, for experience
indicates (Fig. 46) that the entire yield curve varies in an approxi-
mately uniform way with excitation energy. The yields here
plotted as a function of the excitation in the original nucleus
are obtained (references 36 and 37) from the bombardment of
several different fissile elements by several different projectiles.
Moreover, for the high excitations indicated, the excited compound
nucleus will usually emit several neutrons before splitting. Never-
theless, we note that the mass division which finally occurs shows
an over-all trend toward increasing symmetry with increasing
excitation of the initial nucleus.
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F16. 54. U fission neutron spectrum.

Recently published papers [Bonner, Ferrell, and Rinehart,
Phys. Rev. 87,1032 (1952); D. L. Hill, Phys. Rev. 87, 1034 (1952);
B. E. Watt, Phys. Rev. 87, 1037 (1952)] dealing with the low,
medium, and high energy neutrons emitted in the fission of U,
enable us to draw qualitative conclusions on the manner in which
they are released. The three measurements fit nicely together to
yield a total distribution-in-energy consistent with the hypothesis
that the neutrons are emitted from the excited fragments with
distributions-in-energy characteristic of nuclear evaporation [J.
M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John

1145

Wiley and Sons, Inc,, New York, 1952), while the fragments
are in rapid motion. The broad spread in excitation of the
fission fragments gives a further spread in the number and energy
of the neutrons emitted in different fission acts. Finally, the neu-
trons are emitted, in this hypothesis, at a spread of angles relative
to the parent fragment motion which we know according to the
work of Brunton, Hanna, and Thompson [Can. J. Research 28A,
190 (1950); 28A, 498 (1950)] to have a spread of kinetic energies
of at least 20 Mev for a typical mass division. The resultant energy
spectrum observed in the laboratory is thus averaged many times
over different sorts of energy spreading effects.

The curve shown is taken from D. L. Hill [Phys. Rev. 87, 1034
(1952)7, being deduced from the range spectrum of recoil protons
detected with an assembly of proportional counters. The maxi-
mum near 0.8 Mev is corroborated by Bonner, Ferrell, and Rine-
hart [Phys. Rev. 87, 1032 (1952)7]; the high energy side of the
spectrum falls off exponentially with a 1.6-Mev relaxation energy,
in agreement with Watt’s result [Phys. Rev. 87, 1037 (1952)].

The fission neutron intensity observed is compatible with the
announced value (U. S. Atomic Energy Commission release) of
2.5 neutrons per thermal neutron induced fission of UZ%.
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F16. 55. U?® o-particle spectrum, coincident with fission.

Of the many different modes of ternary fission listed in Table
111, by far the most intensively studied are the long-range alpha
particles coincident with fission. Reproduced here is a measure-
ment (reference 54) of the energy distribution of these particles.
The close match of this distribution to a Gaussian curve over the
high intensity region is indicated by the dashed line.

1 \ T T T T T
o EEEEREY
o | i
w \

20 T
0 N
[

|

l
[ e S ﬂ}

o | L4 18 22 26
ENERGY IN MEV-—>

F16. 56. U2 fission proton energy distribution.

This curve shows the energy distribution of the protons listed
in Table III as being emitted in a rare mode of ternary fission.
Although they are somewhat too numerous to be readily explained
as arising by (#, p) or (fragment, p) reactions, the energy distribu-
tion indicates that they are not associated with the fission mech-
anism in a manner similar to the particles of the preceding figure.
For particles which have penetrated through a potential barrier,
one expects a peak at the right side of the graph rather than a
monotonic fall. It is unreasonable to believe that these “fission”
protons have anything directly to do with the act of fission.



