
I'8 YBI CAL RLtVIEVV VOLU1VlR 89, NUMBER MARCH i, f953

8-Matrix and Causality Condition. I. Maxwell Field
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The genera1 aim is to obtain maximum information about the 5-matrix with a minimum of assumptions
concerning the interaction. This program is carried through for the scattering of the electromagnetic field
by'a fixed center. The center is assumed spherically symmetric and of finite size, so that the causality con-
dition can be applied. From this condition it follows rigorously that the S-matrix has a one-valued analytic
continuation, whose only singularities are poles in the lower half-plane, and whose behavior at infinity can
be specified. Particular consequences are: (i) the analytic properties of Wigner's function R; (ii) the integral
relation connecting real and imaginary parts of S; (iii) relations connecting the sum of the oscillator
strengths with the scattering cross section.

I. INTRODUCTION

HE 5-matrix was introduced by Heisenberg' as a
device to describe scattering processes without

any speci6c assumptions about the interaction. To
compute the 5-matrix in a particular case, of course, a
certain interaction has to be assumed. But some general
properties (e.g. , unitarity) could be formulated in terms
su%.ciently general to raise the hope that they were of
more universal character. For their derivation, how-
ever, a more or less specific model had to be used. ''
This is justifiable from a heuristic point of view, but an
attempt. to treat the 5-matrix without reference to
any particular kind of interaction seems none the less
desirable. The problem is then no longer: what mathe-
matical properties of 5 can be derived from the various
physical properties of the interaction& —but rather: how
are the mathematical properties of 5 related to actual
observations?

Since this question cannot be answered here in its
full generality, we shall restrict our investigations in
three respects. In the 6rst place, only the scattering of
an electromagnetic field by a fixed center is treated.
The Geld is classical, which is equivalent to saying that
only the one-photon part is taken into account. '
Secondly, the scattering center (which for brevity will

be called the "core") is assumed to be spherically sym-
metric, and also invariant with respect bo space re-
Rection. In terms of observations, this amounts to
assuming that not only mult, ipole waves of diferent
order l, but also the electric and the magnetic multi-
poles are scattered independently. Thirdly, it is sup-
posed that in all experiments the energy and the fre-
quency (energy per photon) are conserved, and that the
"causality condition" is satished. These properties are
not held to be self-evident, but without these restric-
tions the analysis would be very cumbersome.

The causality condition states that no scattered
wave can be observed until. the incident wave packet

' W. Heisenberg, Z. Physik 120, 513, 673 (1943).
2 C. Mufller, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

23, No. 1 (1945); 22, No. 19 (1946).
3 H. A. Kramers, "Quantentheorie des Elektrons und der

Strahlung, "Hand nnd Jahrbnch der. -Chem Physsh (Aka. demische
Verlagsgesellschaft, Leipzig, 1938), p. 439.

has reached the core. Obviously it can only be applied
when the core has a finite size, which will therefore
be postulated throughout this work. This condition
turns out to be a powerful aid, because it entails the
analytic character of the 5-matrix (as a function of the
frequency); On the basis of a similar condition, Toll
and Wheeler4 derived the Kramers-Kronig dispersion
formula' ' for the propagation of light in a medium.
It has also been used in electric circuit theory, ' and its
application to the 5-matrix was suggested by Kronig.

Schutzer and Tiomno' considered the scattering of a
Schrodinger particle by a core of 6nite size. In that
case, however, the Fourier decomposition of any solu-
tion of the Schrodinger equation contains only com-
ponents with positive E, so that it is impossible to con-
strUct a wave packet that is rigorously zero up to a
certain time. Hence, the causality condition has to be
formulated by means of wave packets that are arbi-
trarily small in the past, which would make the mathe-
matical treatment more involved. Complications of the
same kind arise for relativistic. particles, because the
values of E between —nt and +nt are lacking in the
Fourier decomposition. This is the reason why we here
treat the electromagnetic field only.

Many of the resulting formulas have been found
previously starting from more or less special models, '~"
usually for the scattering of nonrela|;ivistic particles by
nuclei. A rather more general approach was attempted
by Heisenberg" and by Hu, "based on the complete-

' J. S. Toll and J. A. Wheeler, unpublished; J. S. Toll, thesis,
Princeton, 1952.

5H. A. Kramers, Atti cong. intern. fisici, Corno, 1927, Vol.
2, p. 545.

6 R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).
7 B. Gross, Phys. Rev. 59, 748 (1941); R. Kronig, Nederland.

Tijdschr. Natuurk. 9, 402 (1942).
s R. Kronig, Physica 12, 543 (1946).

W. Schutzer and J. Tiomno, Phys. Rev. 83, 249 (1951).
G. Breit and E. Wigner, Phys. Rev. 49, 519 (1936); P. L.

Kapur and R. Peierls, Proc. Roy. Soc. (London) A166, 277 (1938);
A. J. F. Siegert, Phys. Rev. 56, 750 (1939); E. P. Wigner and
L. Eisenbud, Phys. Rev. 72, 29 (1947);M. Moshinski, Phys. Rev.
81, 347 and 84, 525 {1951);J. Humblet, Mem. Soc. Roy. Scient.
Liege 12, fasc. 4 (1952).

"H. A. Bethe and G. Placzek, Phys. Rev. 51, 450 (1937).
's Feshbach, Peaslee, and Weisskopf, Phys. Rev. 71, 145 (1947).
"W. Heisenberg, Z. Naturforsch. 1, 608 (1946)."N. Hu, Phys. Rev. 74, 131 (1948).
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ness of the solutions of the wave equation (which is
related to the causality condition). However, since they
used the asymptotic expression instead of the wave
function itself, this may lead to incorrect results, as
exempljL6ed by the existence of redundant zeros."

II. DEFINITION OF THE S-MATRIX

The S-matrix i.s defined, in general terms, as the
matrix that transforms the wave function describing
the ingoing held into the wave function of the outgoing
field. For a more specific definition the free-field. equa™
tions have to be used, and a particular set of field
quantities has to be chosen in which to express the
transformation. In the present section this is brieQy
done for the Maxwell field, and the well-known proper-
ties (9) of S are derived.

The electromagnetic field outside the scattering
center may be described by the complex vector field
F= E+iH, obeying the equations (we put throughout
c=1)

BF/Bt = i curlF, d—ivF= 0.

The solutions are conveniently expressed in terms of a
complex Debye potential"" N(r, t):

F(r, t) = (curl+ic&)) curl ru(r, t), (1)

(6—c&)2)st =O. (2)

On introducing polar coordinates r= (r, i7, )t)) = (r, Q)
the asymptotic part of any solution of (2) is a super-
position of multipole waves

2F& (Q) r+"
t

e'""
N(r, Q, t) Q GABE (k)

L2l(i+1)]*~ „ l ikr

e
—ikr

—(—1)'A ( (k) e '"'dk. (3)
ikr

The first term consists of outgoing waves, the second
of ingoing waves. The sign in front of A~„(k) has been
chosen such that absence of scattering is characterized
by A&~(k)=B& (k). The asymptotic expression of the
field F can be derived from (3) by means of (1); one
finds P„=O, and

4 $8 i 8')t
Fs+iF,=-Z

~

—+
r &~ Ec&0 sin08p)

(—1)'Yg„(Q) t.+"
A,„(k)e—'"&"+'&dk

L21(l+1)j'* ~ „
4 (c& i 8)

Ft& iF„=-
r & &ae sing as )

Fg (Q) t+"
X B) (k)e)s&~'&dk.

L2l(l+ 1)3'"-
"8.T. Ma, Phys. Rev, 71, 195 (1947); J. Meixner) Z. Natur-

forsch. 3a, 75 (1948)."P.Debye, Ann. Physik 30, 57 (1909)."J.Meixner, Z. Naturforsch 3a, 507 (1948),

From this there follows for the total energy entering a
sphere with large radius r

p+00 1 ts&+00

dt r'dQ
I F&+iF.I'= P 1

A (~(k) i'dk.
16x ~~ ~ (5)

and a similar expression with B& (k) for the outgoing
energy.

Let it be supposed that these energy amounts are
finite. It then follows from the square integrability of
Fs+iF„and Fs iF„ t—hat a Fourier expansion (4) is
possible. On the other hand, there is no physical
justification for imposing square integrability on n; the
expansion (3) should therefore be considered as a
formal abbreviation for the corresponding expansion
(4) of F. Hence we shall only deal with incident wave
packets of finite energy; they correspond to square
integrable A& (k). The square integrability of B& (k)
then follows from the conservation of energy.

The coefficients A& (k) and B& (k) are connected by
a relation expressing the scattering properties of the
core. The following properties will be postulated
throughout.

(a) Superposition

The connection is linear in the following restricted
sense: to an ingoing wave A&~(k) =A~~&'&(k)+Ag~isi(k)
corresponds the outgoing wave B& (k) =B~~o&(k)
+B~ i2&(k); and to cA~~(k) corresponds cB&~(k) if c is
a real constant. From this it follows that

~+00

B&„(k)= Q (S'(k; l, m~ k', l', m')A&.„.(k')

+S"(k; l) m| k') l') m')A& .*(k'))dk,

where S' and S" are integral kernels that are not more
singular than 3(k—k').

(h) Spherical Symmetry

On a rotation about the origin, A& (k) and A&, *(k)
transform like 7~, i.e., diagonal in / and irreducible
in m. Hence

S'(k; l, m
i

k'
) l') m') = 5» 3~„Sg'(k

(
k'),

S"(k; l, m~ k', l', m') =5» 5, Sl (kt k').

(c) Conservation of Frequency

The frequency of the outgoing wave is equal to that
of the ingoing wave:

S&'(k~ k') =-', ii(k —k')Sgi'&(k)+-', 3(k+k')Sg&'&(k),

S&"(k~ k') =-,'3(k—k')S)is&(k)+-,'3(k+k')S&"'(k).

(d) Invari ance for Space Reflection

This implies that if F(r, t) is a possible scattering
state, so is

F(r, t) =F*(—r, t).
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By substituting in (4) one finds

Ag„(k)=(—1)'Ag *(—k), Bg (k)=(—1)gag, *(—k).

In order that 2 and B satisfy the same relation as A
and 8, it is necessary that

5g& &(—k)=st& &*(k) for j=1, 2, 3, 4.

The relation between 2 and 8 is now determined by
four complex functions Sg"'(k) of k)0 for each l&~1.
For our purpose to find more information about these
functions, it is su%cient to consider one particular l
and to take m=0. One may then drop these subscripts
and write this relation iri the forrg. of a square matrix
for each positive value of k

'B(k)
'

'5&'& 5&" 5&'& S&'& A (k)
g(—k) 5&s& 5&i&@ 5&4&a 5&s&+ A( k)
Qa(k) s 5&3&a 5&4&a 5&1}@ 5&2&a Aa(k)

' ( )
Jga( —k) 5&4& 5&s& 5&s& 5&i& A@( k)

This matrix can be reduced by splitting up the four-
component vectors A and 8 according to

(A (k), A (—k), Aa(k), A*(—k))
(Ae(k) Aee(k) . Aea(k) Ae(k))

+(A~(k), —A-'(k), A-*(k), —A-(k)).

The wave packets with superscript ' are characterized
by A(—k) =A*(k), so that the corresponding I is real.
Hence, they represent superpositions of electric 2'-pole
waves, while A and 8 are magnetic 2'-pole waves.
Substitution in (6) yields

8'(k) = -'(5 &"+S"&)A '(k)+-'(S&'&+ 5&")A'*(k) (7a)

8 (k) =-', (5&"—5"')A (k)+ 'g(5&'& —5&s&}A~*(k), (7b)

where k ranges from —oo to + eo.

(e) Conservation of Energy

Finally, we postulate that no energy is exchanged
between the radiation and the core, which according
to (5) is expressed by

/ Ag„(k) /'dk.

In general this means that the relation between A and
8 is unitary, from which for the specific relation Pa) it
can be inferred that either S&'&+5& & or S& &+5&'& must
vanish. In the latter case

a (k)=s (k)A (k), Is (k)l =-',
is& &+5«&l =1.

One is inclined to reject the other case for the reason
that there is no continuous transition to the case of no
scattering possible. A better reason, however, will be
given in the next section: it does not satisfy the cau-
sality condition.

The same argument applies to (7b), so that one may
write for each particular electric or magnetic multipole

wave
B(k) =S(k)A(k), (—~ &k&+ ~) (8)

5(—k)=sa(k), S(k)S*(k)=1. (9)

It is su%cient to treat the scattering of electric multi-
pole waves only. For the incident wave packet A(k)
may then be chosen any square integrable function
that satisfies

A(—k) =A~(k).

IIL THE CAUSALI'ZY CONDITION

(10)

For the following it is essential to assume that the
core has a 6nite size; in other words, that there is a
sphere of radius &g (0&egg&co) outside of which the
free-6eld equations are valid. Let there be an incident
wave packet that is known to be rigorously zero at
some large distance r~ for all time t&t~. Outgoing waves
cannot be produced until this packet has reached the
core; that is, not until t=tg+(rg —&g). Hence, the out-
going 6eld at the large distance r2 must be zero until
t=ti+(ri —&g)+(rs —u). This imposes a restriction on
the S-matrix, which will be called the "causality con-
dition" (see reference 9). lt is based only on the assump-
tions that free wave packets do not propagate faster
than light, and that they can be decomposed into in-
going and outgoing waves whose interaction is localized
in the core. YVe proceed to investigate to what property
of S it corresponds.

To avoid irrelevant complications, it is convenient to
take first. a point-core, so that a can be taken zero.
Then the causality condition states that, if the ingoing
wave packet vanishes for t( —r, the outgoing wave
packet must vanish for t&+r According. to (3) or (4),
the vanishing of the insgoing wave for r+t&0 is tanta-
mount to A(k) being the Fourier transform of a
function that is zero for negative values of its argument.
From this it can be concluded that A(k) can be con-
tinued as a regular analytic function in the upper half
of the complex k-plane, as is more- precisely stated in
the following mathematical theorem ""

Necessary and sufhcient for a square integrable func-
tion A (k) (—oo &k&+ ~ ) to be the Fourier transform
of a function that vanishes for negative values is the
existence of an analytic function A(k+iy) of k+iy=X
for y)0, such that (i) A(k+iy)~A(k) if y—+0, for
almost all values of k; (ii) A(X) is regular for y)0;
(iii) J' +"~A(k+iy) ~sdk&M for y&0, M i~dependent
of p. This theorem plays a central role in the present
work. When we say in the following proof that a func-
tion of k is regular in the upper half-plane, we mean
that it has the property described in the theorem. The
abbreviations I+, I, Io will be used to denote the upper
half-plane, the lower half-plane, and the real axis.

' R. E. A. C. Paley and N. Wiener, Founer Transforms in the
Complex Domain (American Mathematical Society, New York,
1934), p. 8."E.C. Titchmarsh, INtroduetiogg to the Theory of Igolrser In
tegrols (Clarendon Press, Oxford, 1937), Chapter V.
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The requirement of the causality condition that the
outgoing wave must vanish for t&r is tantamount to
B(k) being the Fourier transform of a function that is
zero for negative values of its argument, according to
(4). Since B(k) is square integrable, it can be concluded.
that B(k) must be regular in I+. Hence, the causality
condition entails the following property of S:whenever
A (k) is square integrable and regular in I+, and satisfies
(10), the same is true for S(k)A(k). This enables us to
extend the definition of S to I+ by putting

B(l~)=5()i)A()). . (X=k+iv, y&0) (11)
Since A(X) and B(X) are analytic and regular in I~, so
is S()i); it cannot have poles at the zeros of A(X),
because (11) must hold true for any A (X) regular in I+.
When y goes to zero, then A('h)~A(k), B(X)~B(k)
for almost all k, and consequently 5(X)~5(k) because
of (8).

The definition of S can be extended to I by putting

5(k+iy) = LS(k—iy))* '. (y&0)
This is a one-valued analytic function with no other
singularities than poles corresponding to the zeros in
I~. For y~ it tends to 5(k), owing to (9). Thus, S(X)
is defined in I+ and in I and has the boundary value
S(k) on Is, it then follows from the Schwarz reflection
principle" that SP.) is analytic in the whole plane but
for the poles in I .

It may be possible to prove directly that 5(li) is
bounded in I+ by applying condition (iii) of the theorem
to B(X). However, it is simpler to use an additional
theorem, "which states that any function A(X) with
the properties (i), (ii), (iii) satisfies

which would be regular in I+. Consequently, 5('A) would
be regular in I~ with a zero at ip T.his cannot be true
for all P&0.

The properties of the function S may be summarized
as follows. S(X) is a meromorphsc function, Vohich maps
the reel axis onto the unit circle, the upper half pl-ane into
the interior and the lower half pla-ne into the exterior; the
imaginary axis is mapped onto the real axis. We now
proceed to derive from these properties a product ex-
pansion for S(lt).

Let the zero's of 5(X) be denoted by A„=IC„+iI'„
(I'„&0),so that the poles are A.„*.If the following prod-
uct over all zeros,

(14)

is convergent, it is easily seen to share all the properties
mentioned above for 5(X). Dividing 5(lt) by (14) we
are left with another function with the same properties,
which moreover has neither zeros nor poles. It must
have the form &e ""with a ~& 0 (see below), so that

Because of (9) the zeros A„must be symmetrical with
respect to the imaginary axis. If A.„denotes a zero in
the first quadrant (K &0, I'„&0), then —A„* is a zero
in the second quadrant, and A.„*and —A„are poles. In
addition there may be unpaired zeros on the imaginary
axis; they will be denoted by iL (L &0), with corre-
sponding poles iL Then —(15) m. ay be written

1 r
+"A(k')

A(X) = dk'. (li in I+)
2~i~ „u'—X

(12)
(li —A„)(X+A„*) iL —)~

5(l)=~e-" "II II . (16)
s (X—A„*)(X+A„)m iL +X

Choosing A (k) = i(k+iP) ' with P&0, and writing this
equation (12) for the corresponding B(X)= iS(X)(X

+ip) ', one finds

5(li) 1 ~+" 5(k') dk'
. (v, p&0) (»)

X+iP 2rri & (k' —X)(k'+iP)

Since the right-hand side is bounded for ~'A~ —+~, S
cannot become infinite more strongly than

~
X ~. It then

follows from Phragmen-Lindelof's theorem" that actu-
ally S must be bounded, and even

~
5(X)

~
& 1 for X in I+.

Incidentally, it can now be shown why the alternative
possibility mentioned in Sec. II under (e) does not
comply with the causality condition. Suppose it did;
then the wave packet A(k)=i(k+iP) ' would corre-
spond to an outgoing wave packet

B(k)=S(k)A(—k) =iS(k)(iP —k)
—',

'o E. C. Titchmarsh, The Theory of Fanotsoms (Clarendon Press,
Oxford, 1939), second edition,

The case of an extended core can be treated in a
similar way. One 6nds the same properties for 5(X),
except the boundedness in I+. If the core can be en-
closed in a sphere with radius u, it is found that now
e" kS(li) must be bounded in. I+. This leads to the
same expression (16), but with the weaker restriction
for a

(17)

The constant u is only defined as an upper limit for the
radius of the core and has to be guessed from some
rough model. The constant n is uniquely defined, but
can only be determined by actual calculation based on
a specific model, or else by experiment. It plays the
part of an effective radius, because on a large sphere of
radius r no scattered waves are observed until a time
t=2(r —n) after the incident wave front entered the
sphere. However, it is impossible to conclude from the
causality condition that negative 0. cannot occur.

In order to justify (16) with (17) it has to be shown
that both infinite products are convergent, and that the
remaining factor is necessarily of the form +e—""with
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r IZ,=Z,+Z— (18)

follows from the fact that e"'"S(X) is regular and
bounded in I+. Hence, the first product in (16) is con-

vergent, uniformly in any finite closed region not con-
taining a pole, so that it is a meromorphic function
with poles A„*and —A„.Similarly from the convergence
of the last term in (18) it follows that the second
product in (16) is convergent and represents a mero-

morphic function with poles —iL .
Now consider the function f&(X), defined by

(X—A„)(X+i1„*) iv zL —X

f~() ) =~""S(~) II, II .=i (X—A„')() +h.„) i zL +X

This function is again regular and bounded in I+ and
has modulus j. on Io, hence, by Phragmen-Lindelof's
theorem ~f~P) ~

&~1 in I+. As the products are con-
vergent for E-+~, the limit f()I,) = limfiv(X) exists, and
it can easily be seen that it has the same properties.
Moreover, it has no zeros or poles, and can therefore
be written f=e"+'", where zz+zv is an entire function.
Its real part I is negative in I+ and positive in I, so
that on Io

0)~Bu/By= Bs/Bk—(y= 0. )

Hence s(k)'increases monotonely with k and assumes

any real value not more than once. Consequently,
I+i@ assumes each purely imaginary value at most
once, and must therefore be a linear function:

I+zu =2intX+ nz,.

and obviously n&~&0, n2 ——0 or x. This completes the
proof that S(X) has the form (16) (with n=a —nt).

It should be noted that only the absolute convergence
of the products in (16) could be proved, while the con-
vergence of (14) may depend on the order in which the
A.„are.numbered. (When in the following we use, never-
theless, (15), it is only meant to be a short writing
for (16). Also it is not possible to conclude anything
about the order of S(X) as a meromorphic func-

tion. The reason is that there is no other information
about the density of the zeros and poles than the
convergence of the Carleman sum (18), which does not
prevent them from clustering about the real axis. It is
remarkable that this sum is also physically important:
jt ig the sum of &he oscillator strengths, as will be shown

rr(~c. The criterion for the first product to be (abso-
lutely) convergent is the convergence of the sum

() —A„)(X+ A„*) F—1 =4()~(g
() -A„*)()+A„) ~()~-A„')y,+A„) (

Since ~A I~co (the zeros cannot have an accumula-
tion point), this depends on the convergence of QF„/

~
A„~ '. Now, by Carleman's theorem, 's the convergence

of

in the next section, At this point its relation with scat-
tering data may be established by taking the logarithmic
derivative of S(X) at X=O:

S'(0)/S(0) =2'{--+ZF,/IA, I ). (»)

k—A„k—E„—iI'„
S(k)=

k —A„* k E„+zF—„
(20)

which leads to the ordinary one-level formula,

2' F 2

o (k) =—(2l+1)
k' (k—E„)'+F„'

(21)

When the condition (i) is not satisfied, the maximum
of 0- is shifted away from E, and the line is distorted,
so that the width is no longer precisely defined. This
can readily be demonstrated in the case of two over-
lapping lines, Ar and A& say, if the other factors in (16)
may again be omitted. One finds

{F,(k—E,)—F,(k—E,)}z
o (k) =—(2l+1) . (22)

k' {(k—Ei)'+ Fiz) {(k—Es)'+ Fzz)

This cross section reaches its maximum value 2zr(2l

+1)/k' at the two points

k=-,'(E,yE,)~-,'{(E,—E,')+4F,F,)'*,

and vanishes at k= (I'iEs+FsEr)/(Er+Es). Hence, it
has two peaks, whose mutual distance is never less than
{4FrFz)'*. This is even true if the frequencies coincide,
in which case

2zr I'i+Fs FP
o (k) =—(2l+1)

k' I'i—Fs (k—Ei)'+Ftz
F2

(k—E,)z+F,'
"o(k) is the total outgoing energy current in the electric (or

magnetic) 2'-pole wave, when an incident plane w'ave of fre-
quency k and unit intensity is scattered. The additional factor,
Las compared with N. F. Mott and H. S. W. Massey, Theory of
Atomic Collisions (Clarendon Press, Oxford, 1933), p. 24) is re-
lated to the twofold polarization of the electromagnetic 6eld
Lsee N. G. van Kampen, Kgl. Danske Videnskab. Selskab, Mat. -
fys. Medd. 26, No, 15 (1951),Appendix Bg.

IV. PHYSICAL INTERPRETATION

The cross section for scattering can be derived from
(16) by means of"

o(k) = (sr/2k')(2l+1) i1—S(k) j'.
It may be expected that each zero A„with the corre-
sponding pole A„* will produce a resonance level. This
is easily verified under the following conditions: (i) the
distances F„ from the real axis are small compared to
the mutual distances of the zero's; (ii) nE„&(2zr for
the zero considered, i.e., the resonance wavelength is
much larger than the effective radius; (iii) in (16) the
+ sign has to be taken, i.e., S(0)=1. One may then
write in the neighborhood of E„
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S (1%)~( 1)i e—2iax

lti+4 e

(e=dielectric coristant, p, =permeability, a=radius of
the sphere). However, it is due to the macroscopic
treatment, and it is a fair guess that no exponential
factor occurs in the scattering by a finite number of
elementary particles.

The alternative minus sign in (16) cannot be ruled
out on the basis of our conditions for S. It would mean
that k=0 happens to be the center of a resonance line,
for example when there is just one zero il.~ on the real
axis.

In order to describe emission, we choose the special
wave packet

~(k) = 5(k—~ *)(k+~ )S(k)e'."j-'
&(k) = C(k —~-')(k+~-) '"S '. (23)

Clearly A. (k) is square integrable, regular in the lower
half-plane, and is of the type e' ~ at infinity; conse-
quently the ingoing field vanishes for t) r+cx. The-
outgoing Beld vanishes for t&r—0,, so that on a large
sphere with radius r the total field vanishes for —r+o.
&t(r —e. It follows that at t=0 there cannot be any
6eld in this sphere, except for the region inside the core.

Thus, the total scattering owing to both coinciding
levels shows up as a broad line, from which a sharper
line is subtracted in the middle. (For the special case of
equal widths (I'i ——I'2), a slightly different expression
for o follows from (22); but physically the multiple
zeros of S(X) may be treated as limiting cases of nearly
coinciding levels. )

A similar eGect is caused by any zero-pole pair suK-
ciently remote from the real axis. Such a pair gives
rise to a broad resonance line, which forms a background
for the narrow lines in the same region. The line form of
both together is (22); it follows from this formula that
the narrow line causes a sharp minimum and an ad-
joining sharp maximum in the slowly varying back-
ground. "The eGect of the zeros iL can be described
in the same way.

The exponential factor does not aGect the scattering
as long as 2+k is suKciently small, or near to a multiple
of 2m. For lines for which 20.E„is not near to a multiple
of 2m, but for which 20.1'„ is small, it will again act as
a background, with which the resonance scattering
interferes. This factor- is responsible for what Bethe
and Placzek" called "potential scattering in the nar-
rower sense" (while potential scattering in the more

'

general sense includes all scat.tering that is not due to
the resonance lines in the region under consideration).
An example that the exponential factor may actually
occur in the electromagnetic ca.se is furnished by
Debye's calculation of the scattering by a dielectric
sphere;" here S(X) is asymptotically in I+

Hence, (23) determines a superposition of stationary
scattering states that contains no radiation at t= 0, and
only outgoing radiation at t&0: that is an emission
state. The ingoing fie1d at 1&0 serves to produce the
desired situation at 1=0.

The radiation field for t&r—0. can be computed by
inserting (23) in (4) and doing the integration in the
complex plane:

2 2v(21+1) &

pg SPY I'ii(cos8)
E„r l(l+1)

&(er &" ' & sinE„(r —t—n). (24)

This is the familiar expression for a damped wave, but
it should be noted that no approximations have been
used in the calculation. Thus, the real parts of the
zeros of S(X) are the exact emission frequencies, and the
imaginary parts are the corresponding line widths, even
when the lines overlap.

The connection of I' with the usual oscillator
strengths f„can be established by comparing (24) with
the resu1I; of perturbation theory. Omitting fourth and
higher orders of e, one finds for the transition proba-
bility of the nth excited state of the core to the ground
state, 2I' = (2e'K„'/3m)f„Hence, .

(e'/3m)g f„=QI'„/E„2,

which to this approximation is indeed the sum occurring
in (18). Hence, an analog of the well-known sum rule
exists for any scattering center complying with our
general conditions; its actual value cannot be pre-
dicted, but it follows from the causality condition that
it must be finite.

If A„ is a zero of S(X) with multiplicity m, it is possible
to construct m diGerent emission states by putting

A (k)=t(k —A *) (k+3. ) S(k)e'""j—'

(ti=1, 2, ~, m)

The corresponding emission fields have the form (24)
with additional factors (r t—n). In actua—l physical
situations it is, of course, not possible to obtain each:
of these line shapes separately. However, one may
choose mutually orthogonal combinations of these m
emission fields. They will be emitted independently,
provided the excitation of the core is due to a random
perturbation. " The energy distribution over -the fre-
quencies is then the sum of the energy distributions in
the chosen orthogonal combinations —which is inde-
pendent of the particu1ar choice.

To summarize: the S matrix is -a product of factors,
.each referring to one level In emission. the levels show up
separately, but in the formula for the scattering cross
section they all interfere in a complicated way, unless the
levels are far apart

"V. Weisskopf, Z. Physik SS, 451 (1933).
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V. RELATED ZUNCTIONS

The fact that 5(X) has modulus 1 on the real axis
suggests the use of a phase shift g(X), defined by

S()I) os& s o )

The analytic function ri(X), however, is not one-valued,
but has logarithmic branch points at A.„and A.„*.The
imaginary part of rl(X) vanishes on Is, and if n= 0, it is
positive in I+ and negative in I . Hence, the derivative
ri'(k) on Is is positive. This property makes a unique
determination of q from the relation

o (k) = (2s/k')(2&+1)sin'g(k)

possible, when &r(k) is known in a certain frequency
range. In the case of an extended core this is still
possible, unless u is too big.

Another property of q(k), well known for nonrela-
tivistic particles, "has to be mentioned. Suppose that
o, =o and that the number of zeros and poles is finite,
so that 2'(X} tends to a multiple of s. for ~X ~~~. Let
there be Jt'/ zeros A and M zeros il,„.Consider the
closed contour consisting of Io and an in6nite semi-

circle in I+. Since p does not vary along this semi-

circle and ri( —k) = —ri(k), one has

g( ~ )—ri(0) =m (2X+3II). (25)

The following'generalization of (25) for the case of an

infinite number of zeros can be proved: If ri(k) tends to
infinity as k&, then p is the order of the meromorphic

function 5(X); if r)(k) is bounded, the order of 5()) is

zero.
signer'4 studied the mathematical properties of a

matrix E, which is related to the S-matrix. by

e"'"5(k)—1
ikR= = i tanLri(k)+ak].

s"'sS(k)+1

Actually he was concerned with the case of nonrela-

tivistic particles and regarded R as a function of E=k'.

It then foBowed from the theory of the compound

nucleus that E(E) is a meromorphic function with poles

only on the real axis, and maps both I+ and I into
themselves. Ke shall show that these properties follow

from the causality condition, even though in the

present case E has no physical meaning.
In the 6rst place Et() )—=XE(X') shares all the proper-

ties of signer's "E.-functions". Indeed, it is one-valued

analytic, with poles where e" "5()b,)= —1; this equation

can only be satished on Io, because the left-hand side is

in absolute value less than j. in I+, greater than 1 in

I . Further, on drawing the vectors e" "5('A)&1 in the

complex plane, it is seen that the argument of Rr(X)
is between 0 and s. for

~

e" "5(X)
~
& 1, and between —s~¹Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 25, No. 9 (1949). There is a difference in sign, because
Levinson deals with bound states of the scattered particle, rather
than with resonance levels.

s4 E. P. Wigner, Ann. Math. SB, 36 (1951).

From this one finds a similar series for E(E)

E,(X)—E,(—X) r„=p+P
2X Z' —E

which proves that it is an E.-function.
Finally we mention the Mittag-LefRer series for

5(X) itself:

5(X)= e "~"(co+Q c./(A„~ —X)}, (26)

because it leads to the usual expression for the cross
section

o(k) =

The last two terms represent the potential scattering,
but the rather arbitrary constant u is here replaced by
the well-de6ned, though unknown, e. If the lines are

far apart, then the E„are resonance frequencies, and

the widths are given by c„=2iF„.If the lines overlap,

however, the connection of the quantities describing

scattering with those describing emission is more in-

volved. For a finite number of zeros and poles (26) is

certainly valid (with cs——1), but for an infinite number

it may be divergent.

VI. INTEGRAL RELATIONS

So far the conclusions from the causality condition

have been stated in terms of analytic functions, but

they can be translated into relations between functions

of real k only. That will give us integral equations con-

necting the various physical quantities. Such relations

are treated. in the theory of Hilbert transforms;" they
have been used in dispersion theory4' and in the

theory of electric circuits. '
Let P) n; then e"&"5(X)~0for ~)I

~

~~, 0&argX(s'.
Applying Cauchy's integral to a closed curve, consisting

of the real axis and a semi-circle with infinite radius,

one finds
1 p+" e"~"'5(k'}dk'

e"~"5(X)= 0& ) (27)k-)
It should be noted that this formula expresses 5())—
for complex X—explicitly in 5(k), and therefore allows

us in principle to compute the actual values of 5())
from experimental data. It has been remarked before"

"N. G. van Kampen, Phil Mag. 42, 851 (1951).

and 0 for
~

e"'"5(X)
~
& 1; which shows that Et(X) maps

both half-planes into themselves.
It is curious that from this fact it follows that R(E)

as a function of E=X'—is also an "E-function". Since
Ei(X) is an E-function, it can be expanded in a Mittag-
Le8.er series "

(
Ri(X) =pX+g+P i

——i. (p, r„)0)
Ez„—) z„J
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that this should be required when using the analytic
continuation. It can only be fulfilled if there is a certain
a priori information about the regularity and the be-
havior at infinity, such as supplied by the causality
condition.

Let in (27) the imaginary part of X=k+iy. tend to
zero. The zero of the denominator approaches the real
axis and contributes a half residue; the formula becomes

The above relations can be used to write the sum
rule (19) in a new form. One finds first from (19)

0 (0)= ,'~(-2l+1)
I
5'(0)

I

'
=2 (2l+1){—+g I'„/IA. „I )',

provided 5(0) = 1. It then follows from (30) for the case
of a point-core (ix&0) that

I 0(k)dk=m&L(t+-', )0.(0)$&
0

1 r +" e"&"'5(k')
~2iPkS(k) dk',

k' —k
(28)

=fr (2t+1){—cxyp I'„/I A„I ). (31)

Without restriction to a point-core one finds
where it is understood that the principal value has to
be taken at k'= k. The validity of this equation for all

P) n is not only a necessary, but also a suScient con-
dition for the scattering to be causal outside of a sphere
with radius o..

For a point-core the exponential factor in (28) cannot
be dispensed with, but there is an alternative formula
in which it does not occur. Since 5(X) is bounded in

I+, one may apply Cauchy's integral to 5(X)/X, pro-
vided the pole at ) =0 is taken into account

A new sum rule can be derived by integrating

J'{1—5(X)e""")B,

along the same closed contour. There is no pole, but
the contribution of the large semi-circle is no longer

(29) zero. If the number of 'zero's is finite, then for
I
)

I

—+~5(li) 1 r+" 5(k')dk' S(0)
+

2mi~ „k'(k' —X) 2X e" ESP) = g(1—A„/X)(1—A„*/X) ' —1 —(2i/X)g I'„
(principal value at k'=0). This is an alternative for

and the integration yields
(27); by taking X real one finds in place of (28):

k r
+" 5(k')

5(k) —S(0)=—
~

~i~ . k'(k' —k)

(principal value at k'=0 and at k'=k). Separating real which for n=0 takes the simple orm

and imaginary parts

1 ~+" 515(k') 2k t" ~(k')
dS(k) = ——

~
dk'= —— dk'

m " k'(k' —k) m. "o k"—k'

2k' t" 85(k')
RS(k) =S(0)+ dk'.

0 k'(k" —k')

(3o)

These relations have been mentioned in a paper by
Jost, Luttinger, and Slotnick26 and have been used by
Rohrlich and Gluckstern" for the calculation of forward
Delbriick scattering. To justify its application, how-
ever, the causality condign. ion has to be postulated.

"Jost, Luttinger, and Slotnick, Phys. Rev. 80, 189 (j.950).
'7 F. Rohrlich and R. L. Gluckstern, Phys. Rev. 86, 1 (1952).

Actually they deal with inelastic scattering, which we hope to
treat in another paper.

k2 (k)dk= 2(2i+1)g r,.
Jo

(32)

For non-overlapping lines this equation is a trivial
consequence of (21). If there are infinitely many lines,

(32) may become meaningless, in contrast to (31).
Both (31) and (32) lead to the same average cross sec-
tion over a region large enough to contain many lines,
but small compared to the frequency, viz. ,

(r(k) = (7r/k)'(2t+1) I'(k)
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