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in zinc-orthosilicate" contributing to the moment, are
lower than the experimentally determined values. These
discrepancies can be accounted for by assuming (1)
incomplete spin-pairing of pairs and clusters of manga-
nese ions, with resultant contributions to the magnetic
moment, or (2) that the distribution of manganese
activator ions in zinc-orthosilicate is not of a random
nature.

Interaction and Luminescence

If the decrease in luminescence emission intensity
with increasing manganese proportion were due only
to a decrease in the effective number of emitting
centers, then neither the temperature break-point nor
the lifetime of the excited state should be affected.

'2By isolateS is meant having no manganese ion in next-
adjacent available site; see H. W. Leverenz, reference 23, pp.
477-480. P. D. Johnson and F. E. Williams, J. Chem. Phys. 18,
323 (1950), assumed for ZnFs. Mn phosphors that only those
manganese ions which do not have other manganese ions at
nearest cation sites are capable of luminescing. See also H. W.
Leverenz and D. O. North, Phys. Rev. 85, 930 (1952).

However, the fact that both break-point and lifetime
are functions of the manganese proportion can be
explained by activator interactions which cause an
increase in the probability of radiationless transitions.
Figure 6 shows the relationship between emission
intensity and the Weiss constant, under electron
excitation, with high and low current density, for
manganese proportions from 1 to 10 percent. It is seen
that the decrease in emission intensity occurs for the
same range of Mn proportion as the increase in the
gneiss constant.

The effectiveness of the magnetic method for deter-
mining the ionization state and degree of interaction
of small amounts of paramagnetic impurities should

prove of value in studies of other systems, as well as
in trapping, and the eGect of luminescence poisons.

The authors wish to express their appreciation to
H. W. Leverenz of the RCA Laboratories for his interest
and encouragement, and to Dr. R. H. Bube for valuable
d&scusssons.
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It is shown how the use of tensor operators enables a simple calculation of the tensor forces in nuclear
configurations by the usual spectroscopic methods. The number of independent parameters necessary to
define the energy in the nuclear configuration l (or j") is found to be 21 (or 2j), whereas it is shown to be
only $4l/3g {or L2j+2/3g) in the l" (or+) configuration of equivalent nucleons. The energy matrix is given
by means of a closed formula for the case of d" and (d5&&)" configurations (of equivalent nucleons). It is found
that in the latter configuration the order of levels for a short-range potential (of the tensor forces) is the
same as for short-range central forces.

I.- INTRODUCTION

N a recent paper' it has been shown that the tensor
- - forces possess the pairing property, i.e., this inter-
action is diagonal with respect to the seniority e and the
term values of the configuration 1" (or j") of equivalent
nucleons dier from the corresponding states of the l"

(or j") configuration only by the term z(e —t&)Es. Es is
the energy of P 'S, which vanishes for tensor forces (or
j', J=0).The proof of this fact is based on an expansion

of the tensor force interaction between two nucleons

into a sum of Products of double tensors srCt&s& and
ssCs@& of the two nucleons, where s; is the spin vector
of the ith nucleon and C g'"& differ only by a constant
factor from the spherical harmonics of order k which

depend on the coordinates of the ith nucleon. This

*Now at the Palmer Physical Laboratory, Princeton University. ,
Princeton, New Jersey.' G. Racah and I. Talmi, Physica (to be published).

expansion will be used throughout this paper in order
to obtain further results on the tensor forces.

The matrix elements of the tensor force interaction
were calculated in the case of d' and p' by Marvin, ' who
took for the potential the special case of 1/r' (which
appears in the electromagnetic spin-spin interaction).
The results of his long and complicated calculations are
very simple, they contain only two independent
parameters in the case of d' (and only one for p'). Also,
these parameters can be easily expressed by the ordinary
Slater coefficients of the potential 1/r'. The decom-
position described above enables a simpler calculation
of the matrix elements of the tensor forces. We shall use
a general potential and see to what cause the simpli-
fication which occurs in Marvin's results is due. The
method used o6ers a natural definition of the radial
parameters for the tensor forces, with the help of which

2 H. H. Marvin, Phys. Rev. 71, 102 (1947).



1066 I GAL TAL M I

the number of the independent parameters in the l"
(or j") configuration will be found.

By means of the parameters dined, we give the
procedure for the calculation of the energy matrix in a
nuclear con6guration. This will enable us to write down
the results of Trees, ' who used Marvin's results to
calculate the terms of the d" configuration by means of
a closed formula.

Using the method of harmonic oscillator wave func-
tions, 4 we will give a method to calculate the radial
parameters in terms of simple integrals. By considering
these integrals, a discussion of the eGect of tensor forces
on the levels of the (&E1)" coniguration is given. It is
found that for short-range potentials the tensor forces
behave in a similar manner to that of short-range central
interactions.

IL DECOMPOSITION OF THE INTERACTION

It is well known that the tensor force interaction
between two nucleons is the scalar product of two
tensors of the second degree, one of which is a function
of the spins of the two nucleons and the other is a func-

— tion of their spatial coordinates. In order to express
this interaction by means of operators which operate on
the (spin and space) coordinates of a single nucleon, we
shall write it down as a sum of tensor products' of the
double tensors sici&s& and sCs2'&2. &The k and. k' of
tensors whose matrix elements diagonal with respect to
l& and l2 do not vanish must be even and satisfy
0&k&2l, 0&k'&2l .

The interaction of the tensor forces between nucleons
1 and 2,

dinates of the ith nucleon):

Lg(—'1) P+P'si pssp (2/3)1(1—P1P'I 112, —P+P')
pp

X(ri'C» p &'&+rs'Csp p&&2&) —p (—1)s 1'si psip&
pp qq

X5rirsV(112; q, —q', —q+q') V(112; —p, p', q
—q')

V(ris)
X (C &1&(,&1&+( &i&C,&1&)$ (2)

y12

Expansion of V(ris)/ris' in the usual way, namely,

V(ris) = Q fs(ri, rs)Ps(cos&s12)
yi2 k=o

= Q fs(ri, rs) 2 (—1)"Ci

gives after expressing products of spherical harmonics
as linear combinations of these functions:

(2/3) 1(2r+ 1)
Z (—1) '+"+"fs(ri, r2)si-pssp

krtn p p' L5(2k+1)jf
Xc'(2, —p+p', k, 2&2)(1—p1p'I 112, —p+p')

X (rl C1p—p' —m C2m +r2 C2p —p' —m Clm )

10r,r,fs(r, , r,) (—1) —'s, ,s...
kram p p'qqr

(2r+ 1)(2s+ 1)
XC ()C () c"(1qki&z)

3(2k+1)

sisV(ris) = (sl r12) (s2 ' r12) ——,'(si s2) V(r, s)
y12

ri~ «rip
yy Sj ' — S2' ——

3 Sy' S2
r, ) E r, )

rsvp (+"'
I »—

II » —I-s(»»)
r, ) ( r, )

( ri)
)

V(ris)
X

I
» —

I
—-'(»») (1)

Xc'(kr&ziq') V(112; q,
—q', —q+q')

XV(112; —p, p', q
—q'). (3)

With the help of II (52) this can be written as

2 (—1)'+&"+""fs(ri rs)(2/15)'(2r+1)
krm pp'

X (2'C2&k)'( —1)' Sl—pS2p'(rl Ci p —p' —m C2m

yr22Csp —p' —m&'&Cim&" &) (1 pip'
I
112 p+ p

X(r& p —p' —2&2, k, 2NIrk2, p —p')

(—1) +2' +"&'+&1&2rOrifs(sr 1r&2)

keek p p'qq'

X (-,'C,„sCi,s)1(2r+1)(2s+1)(—1) 2'si, ss,

can be written as follows, after introducing the tensors'
C;&2& = (42r/2k+1)1Y, '»' (where V;„&2& are the spherical
harmonics of order k which are functions of the eoor-

» R. E. Trees, Phys. Rev. 82, 683 (1931).
4 I. Talmi, Helv. Phys. Acta XXV, 185 (1952).
«G. Racah, Group Theory end Spectroscopy, Lecture notes,

Princeton, 1951 (unpublished).' G. Racah, Phys. Rev. 62, 438 (1942), which will be referred
to as II; the notation de6ned in it will be used throughout this
paper.

XCi, '"'C2 -2 "V(112;—p p' q
—q')

X V(112;q,
—q', q+q') V(irk; —q, q

—
2&2, r&2)—

X V(1sk; q', 2&z
—q', —2&2). (4)

The first sum has already the desired form of a tensor
product of sici'& and ssC2&"&; in order to bring the
second sum also to this form we transform the product
V(1rk; —q, q

—m, 2N) V(isk; q', r&2 —q', r&2) by m—eans
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of the 8' function according to the formula

Z,(-1)"V( f; --~-.)V(bdf; P-b.)
=g„(—1) +s &+'(2e+1)W( abed; ef)

X V(abc; &rP —e) V(cde; —y —be). (5)

We then sum the product of V(11e; q,
—q', —q+ q'), thus

obtained, and V(112; q, —q', —q+q') over q, q', and m
for 6xed q —»I and m —q', which yields b(2, e)/(2e+1),
so that we 6nally obtain

SisV(ru) =ps, (—1)'+'"+"'"fs(ri, rs)(2/15)'

X (2r+1) (-,'Cs„s)1{rg'([s&Xss]&'& [C& &"&XCs&"]&'&)

+ra'([s~X ss]&'& [Cs&' XC&&s&]&'&)}
—Q(—1)"+&" '&~'rqrsfs(r&, rs)(2r+1)(2s+1)

X (-,'C&„sC&,s)1W(11rs; 2k) ([a&Xss]&'&

~ {[Cy&~&XCs&&&]&s&+[Cs&r&XC/&&&]&s&}) (6)

In this expression of the interaction, the angular and
spin-dependent parts appear in a form which shows
their tensorial properties. For a definite configuration,
after the integration over r~ and r2, the elements of the
energy matrix are sums of matrix elements of deinite
products of tensors which can be found in every case
by the formulas of the tensor algebra and. the usual
methods of spectroscopy.

In particular, the matrix elements for the case of
two nucleons with orbital angular momenta l~ and l2

in LS coupling (the case of jj coupling will be treated
below) are given by the general formula'

(aSLJM
i SzsV(res) i

cr'5'L'J3f)

= (—1)s+~' ~(&rSLiiS&sV(r~s) ii
n'5'L') W(SLS'L', J2),

(&)
and by

(SLii [s&Ci&"& X ssCs&'&] &"'iiS'L')

=5 Z (SLII~ ~ '"'IIS"L")(5"L"ll~C "IIS'L')
8/I L,f I

XW(S15'1; S"2)W(LrL's; L"2), (8)

in addition to II (44) and Sec. 5 of II.

III. THE /" CONFIGURATION

We shall now calculate the interaction matrix of the
tensor forces in the l" conaguration. We introduce the
unit tensor operators by means of II (51):

(~ii~' "'ii~) =(-1)"(2~+1)(-:~.)1(~iig. "il~), (»
and the double tensor V&'s& =p;=," s;u;&s& which operate
on the coordinates of the whole group of the l nucleons.
The values of the radial integrals over r&' are equal in
this case to those over r2', as a result we obtain, by

summing over all the nucleon pairs ij,
g-~SLIIZ 5;,V(. ,) lit-~'5'L')

f
R& (r&)EP(rs) s(rr'+rs') fs(r&, rs)drqdrs

s. J J
X(2/15)'(2 +1)(2~+1)'(lC ~ )'(lC C. )'
x(t- 5Lii[V'" XV'"]' iii- '5'L')

~P(ri)I&.'P(rs)roars fs(ri, rs) «Ars

X (2r+ 1)(2s+ 1)(2l+ 1)s(s Cq„sC~,s)1

X (-', C„«C,«) 1W(11rs; 2k)

X(r- SLii[V& &XV& ]& Il~- 5'L, ). (10)

In the transition from (6) to (10), a term of the form

P(l"&rSLii[s,C'"&Xs,C &'&]&"&ii&l"cr'5'L')
i=1

was dropped out since the tensor [s&Xss]"& vanishes
because of the triangular conditions (such a term would
be linear in I)

Considering the equation analogous to (8),

(nSL ii [V&'"&X V &"&]&"&

ii
a'5'L')

=5 P (~SLil V&»ll~'S"L")(~"5"L"li
V&& IIl~S'L')

~fry/IL tr

XW(1S1S';S"2)W(rLsL'; L"2), (11)

we see that the energy matrix is given if the matrix
elements (l"nSLii V&"&iil"n'S'L') are calculated. To
evaluate them is a problem which is encountered in
the calculation of the energy of central interactions. In
the special case e= 2 they are simply

(PSLii V&'"&iiPS'L')

= —-'[(—1) + +(—1) '+ '](6)

X[(2S+1)(2S'+ 1)(2I+ 1)(2L'+ 1)]1

XW(-,'S-',S' -,'1}W(tL/L' lk). (12)

For higher n one should use the methods developed by
Racah' and others. "'The calculation may be facili-
tated by the fact that the tensors Vt."~& which should be
calculated have all 1+k odd. It follows from the tri-
angular conditions and. from the fact that the sym-
metry of a wave function of two nucleons is (—1)s+~
that, for odd 1+k,r

(PSLii V&'"&iiP '5) = (P 'Sii V&"&iiPSL)=0 (13)

for every 5 and L The group theoretical meaning of
this fact is that such tensors are representations of the
in6nitesimal elements of the group which leaves in-

' G. Racah, Phys. Rev. 63, 367 (1943).
s G. Racah, Phys. Rev. 76, 1352 (1949).' H. A. Jahn, Proc. Roy. Soc. (London) 201, 516 (1950)."B.H. Flowers, Proc. Roy. Soc. (London) 212, 248 (1952).
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variant the antisymmetric form —the wave function of
P 'S—i.e., the symplectic group in 2(2/+1) dimensions

Sp(4/+2). Therefore, the tensors V&'"& with odd 1+k
are diagonal with respect to the quantum numbers
which characterize these representations. In the special
case of equivalent nucleons (the /" configuration of
protons or neutrons only) the double tensors V "~) with
1+k odd are diagonal with respect to the seniority and
independent of Nr. For this case, it follows from (10)
that in LS coupling also the energy is diagonal with
respect to the seniority and independent of n, as was
found empirically by Trees' in the case of d".

It is natural to de6ne the sum of radial integrals
which multiplies a definite matrix

(/"nSI.
~~ fV&'"'X V&")]&»'~~/"(r'S'I. ') (14)

which depends only on the angular and spin-dependent
parts Of the wave functions, as the parameters by means
of which the energy can be expressed. These parameters
are the analogs for the case of tensor forces of the Slater
coeKcients in the case of central forces. As r and s must
be even and satisfy together with 2 the triangular con-
ditions, it follows that in the l" configuration there are
2/ possible matrices (14). In the general case the 2/

matrices (14) are independent and the number of
independent parameters'necessary to define the energy
is 2l. In the case of equivalent nucleons, however, the 21

matrices (14) are not independent. The proof of this
fact and the number of independent parameters in this
case can be found by the following group-theoretical
reasoning. The operator V&'~) with even k has the ten-
sorial properties of the wave function of P with L=k.
Such a state belongs to the representation (20) or (00)
of the rotation group in 2/+ 1 dimensions E(2/+1). The
operator fV&"&XV&"&]'"& corresponds in the above
manner to a D state (of /4) which belongs to a repre-
sentation of E(2/+ 1) contained in the products
(20)X(00) and (20)X(20). The erst product fwhich is
in fact (20)), contains only one such state. The other
product can be decomposed into (00)+(20)+ (22)+ (40)
of which to (00) belongs only an S state; there is only
one state (20)D (which is the state already mentioned)
and the other D states are (22)D and (40)D. But we
have to take into consideration only states which have
nonvanishing matrix elements between the states of
odd L, which are the only triplet states of the con-
figuration P of equivalent nucleons (as the tensor forces
vanish in this case either between two singlet states or
between a singlet and a triplet state). The states of
odd I. (for P) belong to the representation (11); there-
fore, the relevant D states belong to a representation of
R(2/+1) which is contained in the product (11)X (11);
this is either (20) or (22) but not (40). Therefore, the
number of independent matrices (14) is equal to the
number of states (20)D and (22)D. This number is
exactly the number of D states (of /') which belong to
the representation f22) of the unitary group in 2/+1
dimensions U(2/+ 1), as this representation breaks upon

fV(14)X V(14)](22)
5+22

fV&"'X V&10)](22)

54

3+22
+ fV(&2) X (&2))(»)

(17)

"A. Gamba and M. Verde, Nnovo cimento IX, 544 (1952).

restriction to E(2/+1) as follows: f22)-+(22)+(20)
+(00) (and to (00) belong S states only). This latter
number is given in a recent paper of Gamba and Verde. "
Putting j= l, 7= 2 in their formula for m=4 we obtain
f4//3] (the largest integer smaller than 4//3). This is
the number of independent parameters necessary to
define the energy in the l" configuration of equivalent
nucleons.

It is therefore possible in this case to express the 2l
matrices (14) in terms of f4//3) of them; these might
be chosen for the sake of convenience to have the lowest
possible r and s. A given matrix (14) which is equal in
the case of P to a certain linear combination of the
f4//3] matrices is equal to the same combination also
in the case of /". In fact, in the case of P the following
relation exists:

fV(&")XV(&&)](22)—fsrur(~)Xs u (s))(22)

+f s2u2(~ Xsru (~ )(22) (15)

(as fs,u;&')Xs,u, &'))&") vanishes). In the case of /" the
analogous expression is

fV&& )XV(&~)]&22)=gfs,u, & )Xsu, &'&]&"&. (16)i'
Therefore, if the expression of

fs,u,'"&Xs,u, &'&)&"&+fs;u, &"'Xs,u, &'))&"'

as a definite linear combination is valid for any pair ij,
it is valid also for their sum (16).These facts facilitate
essentially the calculation as it is rather easy to con-
struct (14) for P by means of (11) and (12), and then
express all the matrices (14) in terms of f4//3) of them.
As a result, one has to calculate in the case of /" only
f4//3) matrices (14) (with lowest possible r and s).

IV. THE ENERGY MATRIX OF THE
CONFIGURATION d"

In order, to see an example how the procedure de-
scribed above is carried out, we give in detail the case
of (/" of equivalent nucleons. The matrices (14) which
enter the calculation are fV&») XV&")]&"), fV(")
XV(»))(») fV04)XV02))(22) and fVo4)XV(&4)]&~2). All
of them can be expressed in terms of f8/3) =2 of them,
say, fV&"&XV&' &)"') and fV("&XV("')&"&. After the
calculation of these four matrices for d', we find the
relations

j
fV((4) XV ()2)) (22) — fV(&2) X V(&(I))(»)

9
5——fV(») XV(»))(»)
9
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XLq 2+1(ri, r2)+ &Ok+3(rl r2)+. 7. (21b)

Therefore, the integrations in A and 8 are over

5
L(q'0(rl r2) 3O22(rl r2))

+21

(d-vSL[[g S,,V(...) [[d-vs'I. ')

=A (d"vSL[[[ V&"'X V&"&)
&

"&[[d"vS'L')

+B(d"vSL[[LV& "&XV&"&/&"&[[4"vS'L')

=A (S[[S[[S)W(isis'; S2)(d-.SL[[V&»& [[d-vs'L')

+B5 P (d"vSL[[V""[[d"vS"L")
gtrgll

X (d"vS"L"[[V&'"[[d"vS'L')

—3(3q2(rl, r2) —oO24(rl r2))j
50

(l q 2(ri, r2) —
2 q'4(ri, r2)),

3+21

respectively. The M' and M' of Marvin's paper' are
given in our notation by

Introducing these relations into (10) and inserting there 2rlr2 f2(rl, r2) = —,(2k+1)
the proper values of the k, r, and s, we can express the
energy matrix of the d" configuration (of equivalent
nucleons) by means of the closed formula

2 91
+-2rir2f1(rl r2) 2rlr2f3(rl r2)

3 441

5——2rlr2f3(ri, r2) R2'(rl)R2'(r2)drldr2, (19a)
99

+21" "
2

32rlr, fl(r, , r2) ——2rlr2 f3(rl, r2)
9

5
+ 2rlr2f3(rl r2) R2 (rl)R2 (r2)«ldr2. (19b)

99

These are the general expressions in which no reference
to a special form of the potential or of the wave func-
tions was done. In general, there exist between the
q22(rl, r2) defined by V(r12) =+2=o" q'2(ri, r2) P2(cos&o12)
and. the f2(rl, r2), defined above, the relations

qk(rl r2) (rl+r2)fk(rl r2)

k k+1
2rlr2f2 1(rl, r2) — 2rlr2f2+1(rl, r2). (20)

2k —1 2k+3

There are special cases, however, in which it is possible
to express (rl'+r2') f2(rl, r2) and 2rlr2 f2(rl, r2) in terms
of the o22(rl, r2). For the potential V(r12) =1/r12' it is
easily found that

(rl +r2)fk(rl r2)

=-', (2k+3) q 2(rl, r2)+-', (2k+ 1)

XLq 2+2(ri, r2)+ q 2p4(rl, r2)+ $, (21a)

XW(1S1S';S"2)W(2L2L', L"2). (18)

In this formula A and 8 are the radial integrals

5
(rl'+r2 —)fo(rl r2)

+21~ &

1
rl r2 2 rl r2 ry r2 4 ry, r2

7 21

Putting these values in (18), one obtains the results of
Trees. '

If the wave functions of the harmonic oscillator are
used, it is always possible to express the radial param-
eters defined above (in this case the A and. B) as linear
combinations of the integrals' Il of the function V(r12)
The easiest way to do it is to express the 2r,r2fz(rl, r2)
with the help of (20) as (linear) functions of q&2(rl, r2)
and (rl'+r2') f2(r, , r2). These latter functions are the
coeKcients of I'4(cos&o12) in the expansion

V(r) 1 4R'+r' 1 2R'
(rl'+r2') =- V(r) =-V(r)+ V(r)

r2 2 r2 2 r2

00

=P(rl'+r2') f2(rl, r2)Pjg(cos&o»). (24)
I&'=0

The radial integrals over these coeKcients can be
evaluated by the method of Sec. 5 of reference 4; the
only diGerence is the appearance of the function
—'(4R'+r')V(r)/r' instead of V(r). The integral Io of
V(r)/r' as well as Io of V(r), which appear in the course
of the calculation must disappear in the results. For the
case of d" the results are

A = —(5/12+21)(», —20I,+21I3),
B= oV'(7/3) (»1 »2). - (25)

1 f

M = —— Lyo(rl, r2) —
3 P2(ri, r2) )

24 J
XR2 (rl)R2 (r2)drldr2,

(22)
1 t

M ' LOO22(ri r2) 2q4(rl, r2)]
24 J

XR2 (ri)R2 (r2)drldr2 ~

Therefore, we obtain in this case,

14
yS —-'u') =40g21[ I&do IrI, [, ——

+21 ( 3 )
(23)

400 19600
8= — M'= — M

+21 +21
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V. TRANSITION TO jj COUPLING

In the jj coupling scheme it is not convenient to work
with the double tensors s,u;~k) as these are no more
irreducible. %e shall decompose such double tensors
into a sum of tensors t;&~)~ of degree E, irreducible
with respect to j;. This decomposition is given by

t, q&Ik&K= Ls;xu;&k')q&K' =Q p,s,,u, ,&k&(1pkIl I ikEQ).
(26)

It can be shown that from this definition it follows that
t;&'k'~ has nonvanishing matrix elements between states
with the same j;only if (—1)K= (—1)1+k; this restricts
the values of E, appearing in the calculation of a given
configuration, to k+1 and k —1.Using the relation

(L'f &~i)X'f &e))&~i.
I U &kiiX U &kk)g&~))

=Pk(—1)"I+km(21&+1)W(1&IkIK2k2) kl&)

X (LTI&~»X UI&k»]&»
I T,&"»X U, &k»]&k&) (2&)

P' P g„„,(t &Ik)K. t &Ik')K)
kk'X

(28)

Here the coeS.cients Akk are sums of definite radial
integrals, easily determined from (6) by means of (27).

From this expression the energy of a state with a
definite J (the energy matrix is diagonal with respect
to the total angular momentum J) can be found by use
of the formulas of tensor algebra and the usual methods
of spectroscopy.

The equation which 'should be used is II (33):

1
(aJMI(T .TkK)ln'JM)= Q (—1)

2J+1 ~"&"

x(~JIIT. Il~"J")(~"J"If» ll~'J).

In order to calculate the energy levels in the case of
two nucleons with /&j& and 12j2, respectively, we have
to use II (44) and"

(-'ljllt'"" ll-:l~)=(3&2)'(»+1)(2E+1):

X L(2l+2) W(ll ji; l+-'„-',)W(-;ljk; l+ 1„l)

XW(1jkj; l+-', , E)+2lW(l-,'j 1; l——,', —',)

XW(-,'ljk; l '„ l)W(1jkj;—l—--'„E)$. (30)

In the case of the j" configuration we introduce the
tensors T&Ik&K=+; I"t;&'kiK w=hich operate on the coor-
dinates of the whole group of the j nucleons. Kith the
help of these tensors, the interaction (28), summed over
all pairs ij of interacting nucleons, can be brought into

~ This formula in a more general form as well as all the impor-
tant formulas of the tensor algebra is presented in a paper which
will be published by U. Fano and G. Racah.

we find for the interaction (6) between two nucleons
the expression

the form

P' . Q g, Q(t &lk)K. t.&lk')K)

i(j kk~K i&j'

n

,
I

(T&lk)K. T&lk')K) P(t &Iki.K. t.&lk')K)g
kk'X i=1

, (f&IkiK. T&lk')K)
kk'X

n
„,(t &lk)K. t &Ik'iK) (31)

2 kk'K

On the calculation of (j"&kJIIT&Ik&KII j"o.'J') it should be
said what was said before on (l"nSLII V&1k&lll"cx'5'L').

Only if n= 2 we have a simple expression

(j JIIT k Kll j J)=( 1) L(—1) +(—1) 'g

XL(2J+1)(2J'+1)3:WVJjJ'; ~E)(~lit."" llj) (32)

in which (jlltI&Ik&KII j) is given by Eq. (30).
In the j" configuration, tensors TK with E odd

I as
a're the tensors which appear in (31)) are representa-
tions of the in6nitesimal operators of the group of
transformations which leave invariant the wave func-
tion of j~, J=O; this group is the symplectic group in
2j+1 dimensions —Sp(2j+1).The tensors considered
are therefore diagonal with respect to the quantum
numbers which characterize these representations. In
particular, in the case of the j"con6guration of equiva-
lent nucleons tensors TK with E odd are diagonal with
respect to the seniority' "and independent of n. The
energy in this case, however, has also a term linear in e,
which is equal to 21(N —II)EO, where Eo is the energy of
the state j~, J=O.

The Akk introduced in (28) can be defined as the
radial parameters in the jj coupling scheme. In the
nuclear con6guration j" the number of independent
parameters is equal to the number of matrices
(T&'k&K T&Ik'&K) with different E, which is 2j. In th'e

j"con6guration of equivalent nucleons, these matrices
are not independent and the actual number of param-
eters in this case is the number of independent matrices
(T&IkiK T&Ik'&K) (matrices T&Ik&K with the same E but
different k are proportional). This number is obtained
from an analogous argument to that adapted in the l"
configuration. The tensors TK with odd E are now to be
considered, instead of V&1k' with even k, but the repre-
sentation of Sp(2j+1) to which these tensors (regarded
as states of g) belong is (20). Similarly, the antisym-
metric wave functions of g have even J (instead of the
odd L values we had to consider before), but these
belong now to the representation (11) of Sp(2j+1).
We have to look for states with J=0 (instead of the D
states) which belong to a representation, contained in
(20)X(20) as well as, in (11)X(11); this can be either
(00) or (22) (to (20) does not belong a J=O state). The
representation L22) of U(2j+1) (for j4) breaks upon
restriction to Sp(2j+1) into (00)+(11)+(22)of which



ENERGY MATRI X OF THE TENSOR FORCES

State
(dg/2)'

Energy State
(«I2)'

Energy

TABLE I. Energies of the (d«s)s and (d«s)s configurations. further reduction is necessary. Transformation of (18)
with the help of (2/) yields the final formula:

((df) "JMI P v;;I (d;)"JM)
1——I3
5

1J 4 —II
5

3 18 3I=9/2 —Is——Is+—Is
5 35 25 5 A

((d )nJII(T(io)i. Tfir)i)ll(d )nJ)
2J+1 +157 7I=5/2 Iz

—2 Is—+ Is-
5 5

1 4 23
—II——h+—I3
5 5 25

J=2
7 7

+&—-((~:)"Jll(~'"" ~'"")ll(d:)"J)
10 33 12 9

I=3/2 —I&——Is+—Is
5 7 5

7 7J=0 —II—2IP+—I3
5 5

,8 7+'—-((df) "Jll(~""'~""s)
II (df)"J)

35 3to (11) does not belong any term with J=0. As a result
we obtain the required number by use of the formula
given in reference 11 in the case m =4, J=0; this number
is found to be [(2j+2)/3j.

It is therefore possible to express the 2j matrices
(Tx Tx) in terms of [(2j+2)/3j of them. Also in this
case we can 6nd these expressions in the case of j~ and
these hold also in the case of j", although the reason
given for this fact in the case of l" is no more valid.
Instead of it we have the situation that if

6 7 6 7
+n —.A— +8 ——. (—35)

25 3 35 3

(j'I (Tx Tx)
I
j') =2&' a&"(j 'I (Tx' Tx')

Ij ) (33)

in the case of j" there exists the relation

(j"1(Tx Tx)
I
j")=Ex «(i "I (Tx'.~x')

I
j")

+n(e —2)[Ex.ax.(j"
I (t,x' t,x')

I
j-)

—(j"l(tix tix)l j")j (34)

The second term on the right-hand side must vanish as
it is the same for all the states and vanishes for e=0 (for
which the products (Tx Tx) with odd E vanish), which
proves the statement. It may be noted that because of
(15) we can.apply the transformation (2"/) directly on
{10)in which the matrices {14)are expressed by means
of [4//3g of them, a fact which facilitates the calculation.

VL THE LEVELS OF THE (dsis)" CONFIGURATION

We can now write immediately down the energy
matrix of the (ds~s)" configuration. In this case [4 2/3]
=2, and also [(2 5/2+2)/3j=2, so that there are 2
independent parameters and starting from (18) no

As there are at most 6 equivalent nucleons in a d&~2

state, the relevant configurations are (d.fs)' [which is
equivalent to (ds~s)'$ and (dsls) s. We obtain the energies
of these configurations by inserting in (35) the values
of A and 8 from (25), and we write them down multi-
plied by 12 [in accordance with the usual definition
Sip—3(sri ris)(srs r»)/ries —(sri srs) g; the results are given
in Table I.

In the short-range approximation, 4 I2 and I~ can be
neglected in comparison to Ii (it has no sense to use
here the limit of a h-function as then also I, vanishes).
On the other hand, in the long-range limit, I~ =I2= I3.We

. can now see what are the energy values of the tensor
forces in the (dsfs)' and (ds~s)s configurations. If the
potential V(riq) is negative (or positive and multiplied
by P„w ihch gives the same results in this case) the
order of levels resulting from the tensor forces is J=O
(ground level), J= 2, J=4 in (d.~2)' in the short-range
approximation and up to the long-range limit (for
reasonable form of the potential); in (dsls)s the order
will be J=5/2 (ground level), J=3/2, J=9/2. We
see that the results for tensor forces are essentially those
for short-range (attractive) ordinary forces, in spite of
their very diEerent appearance.

The author would like to express his sincere thanks
to Professor G. Racah for many suggestions and dis-
cussions.


