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The vapor pressure of liquid He', as measured by Abraham, Osborne, and Weinstock, is found to fit the
following equation:

legyp(P /T ) =2.3126—1.1561/T —0.25254T —0.00667T +0.05266T —0.01210T

up to 2.5'K. The entropy curve of the liquid derived from this equation goes smoothly to zero at O'K,
and in fact lies very close to the theoretical curve for a Fermi-Dirac smoothed potential liquid below 1'K.
Hence the vapor pressure data furnish no evidence for the existence of a transition below 1'K.

' 'N a recent paper, ' Abraham, Osborne, and Weinstock
& ~ reported very accurate measurements of the vapor
pressure of pure liquid He' down to 1.025'K on the
Kistemaker scale. They represent their data by the
following equation, valid up to the critical point,

logrpp = 097796—/T+2. 5 logioT
+0.000302T'+1.91594. (1)

Equation (1), when extrapolated down to the absolute
zero, leads to a residual entropy of 0.218 with the
nuclear spin contribution of E ln2 neglected, or 0.918.
with the spin. This led Abraham et al. to suggest that
there exists a phase transition or speci6c heat anomaly
in liquid He' below 1'K, which removes the residual
entropy. Similar views were expressed by Singwi, who
suggested that near 1'K the Fermi-Dirac nature of the
liquid entropy is replaced by a Debye T'-law with
8~ O'K, in "a sort of X-transition. "

It shall be shown that it is possible to represent the
vapor pressure data of Abraham et al. by a smooth
function which has the right vapor pressure constant
including the nttclear spin, its the data about as well as
(1) from 1 to 2.5'K and leads to a vanishing entropy
at0 K.

The Gibbs potential for a nonideal gas is, up to the
second power of the second virial coefficient with higher
virial coeScients neglected,

G...;...(T, p) =G;...(T, p)+» (Bp) /2RT, -
where, for a gas of molecular weight 3.0162 and spin ~~,

G;a„~(T, P) =RT[lnP /T't' —ss ln3.0162—ln2 —2.976$
=RT[2.3026 log~pp~ /T't' —5.325j.

Hence,

G„,„;g,.)(T, P) =RT[2.3026 logrpP /T" —5.325j
+Bp—(Bp)'/2RT, (2)

which along the vapor pressure curve is equal to the
Gibbs potential of the liquid

G .(T)=G--.- LT, p(T)3. (3)

f Supported by the U. S. Once of Naval Research.
' Abraham, Osborne, and Weinstock, Phys. Rev. 80, 366 (1950).' K. S. Singwi, Phys. Rev. 87, 540 (1952).

The liquid entropy is expressed by

S);p(T)= —(riG/BT), =
dGu aid

—T+ Vuqd p/d T, (4)

where V~;~ is the molar volume of the liquid. At the
absolute zero 5&;~ should, by Nernst's theorem, be
equal to zero. Since near the absolute, zero the terms-

(d/dT)[Bp (Bp)'/2RT—) and V~;pdp/dT converge
rapidly to zero (possibly even with a horizontal tangent),
we have, for suSciently small temperatures,

Si;,(T—+0) = —(dGi;, /d T)r p 0, ——

which means simply that the expression

[2.3026 logrp(P~~/Tst') —5.325],

written in the form of a power series in T, should not
contain a constant term nor terms involving lower
powers than T '.

The expression,

logM(p /T't') = 2.3126—1.1561/T —0.25254T
—0.00667T'+0.05266T' —0.01210T4, (5)

has been found to satisfy the above requirement and to
fit the experimental vapor pressure data very well for
the range up to 2.5'K. Table I gives a comparison of
(1), (5) and the experimental data. Above 2.5'K higher
powers are necessary. However, there, deviations
resulting from the higher virial coe%cients would have
to be considered because of the nearness of the critical
point (3.35'K).

Substituting (5) in (2) and (4), we have

Sup =R[1.1630T+0.04608T —0.4850T +0.1393T4j
dldTLBp (Bp)—'/2RT j+V—u.dp/dT, (6)

whereas (1) would lead to'

Sg;p"ow ——R[0.9134—0.0027820'$
dldTLBp (Bp)s/—2RT3+Vi —dpldT (7)

A comparison of (6) and (7) is given in Fig. 1. For Vua
the measurements of Grilly, Hammel, and Sydoriak4

'Actually the entropy values computed by Abraham et al.
deviates above 1'K from our values recalculated on the above
basis by a small but not identi6able correction. This, however,
does not essentially change their general results.

4 Grilly, Hammel, and Sydoriak, Phys. Rev. 75, 1103 (1949).
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have been used, and for 8 the computed values of
deSoer, Kranendonk, and Compaan. '

The entropy of an ideal Fermi-Dirac gas with spin ~,
molecular weight 3.0162 and molar volume 38 cm' is
included in Fig. 1 as S~ . It can be seen that for low
temperatures Si;~ is linear with temperature with slope
1.17R. This is very close to the value S~ n. (T—+0)
=1.01RT. This strongly suggests that liquid He' can
roughly be considered as a degenerate Fermi-Dirac gas
confined in the molar volume V&;~ (this is equivalent to
representing the liquid by the smoothed potential
model), with other excitations (Debye waves as well as
other interactions) entering at higher temperatures.
Lifshitz' by a similar argument obtained S&;~=0.76ET
—0.068ET' as a crude estimate.

1 5-.
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z
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I

TAaLE I. The vapor pressure of liquid He' between $.025 and
2.527'K. p: experimental data of Abraham, Osborne, and Wein-
stock. p1. vapor pressure from Eq. (5) proposed here; p2.. vapor
pressure from Eq. (1), proposed by Abraham, Osborne, and
Weinstock. Up to and including 2.382'K the difference between
the two interpolation formulas is nowhere greater than 0.4 percent.

0.5--

T('K) a p(mm}

1.025
1.026
1.038
1.042
1.058
1.121
1.182
1.183
1.298
1.363
1.513
1.644
1.785
1.935
2.046
2.162
2.257
2.382
2.517

9.71
9.81

10.41
10.46
11.29
14.74
18.79
18.68
28.00
34.16
52.59
72.78
99.65

135.0
165.1
201.1
234.2
282.7
342.4

pt(mm)

9.75
9.80

10.35
10.54
11.32
14.75
18.69
18.76
27.98
34.33
52.45
72.70
99.69

134.92
165.65
202.13
234.34
283.39
340.14

p2(mm)

9.75
9.79

10.34
10.53
11.30
14.72
18.65
18.72
27.95
34.31
52.51
72.81
99.74

134.72
165.12
201.74
234.39
283.02
343.32

p —pI(mm) p-pa(mm)

—0.04
+0.01
+0.06—0.08—0.03—0.01
+0.10—0.08
+0.02—0.17
+0.14
+0.08—0.04
+O.i—0.6—1.0

1 ~ 1—0.7
+2.3

—0.04
+0.02
+0.07—0.07—0.01
+0.02
+0.14—0.04
+0.05—0.15
+0.08—0.03—0.09
+0.3
~0.0—0.6—0.2—0.3—0.9

a On Kistemaker's scale.

It is clear from Fig. 1 that, in order that liquid He
conform to Nernst's theorem, it is not necessary to
assume a discontinuity at low temperatures in either
the entropy curve or the specific heat curve, but that
the entropy of liquid He' may be perfectly smooth and
continuous. The deviation from the S~ D curve is
probably not only due to the Debye specific heat contri-
bution but also to inadequacies of the present interpre-
tation which by necessity could not take proper account
of the contributions of the higher virial coe%cients of
the vapor in the calculation of Gi;~ along the vapor
pressure curve.

The change in curvature of Si;q might indicate
that there is a fiat minimum in the specific heat
curve C~= T(BS/BT)~=TfdS/d T+ (BU/BT) ~(dp/d T)),

'deBoer, van Kranendonk, and Compaan, Physica 16, 545
(1950).'E. M. Lifshitz, J. Exptl. Theor. Phys. (U.S.S.R.) 21, 659
(1951).
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F&G. 1. Entropy of liquid He'. The solid line (S&;~) represents
Eq. (6), derived from the vapor pressure equation proposed here.
S&;~ w represents Eq. (7), derived from the formula of Abraham
et al. S~ . is the entropy of a Fermi-Dirac smoothed potential
model liquid included for comparison. The various correction
terms employed in Eqs. (6) and (7) are plotted in the lower part
of the drawing.

' A. R. Miller, Nature 163, 283 (1949).' Sydoriak, Grilly, and Hammel, Phys. Rev. ?5, 303 (1949).'I. Pomeranchuk, J. Exptl. Theor. Phys. U.S.S.R. 20, 919
(1950l.

since (BU/BT) „ is negligible up to 1.5'K. Such a defect
was first discussed by Simon in connection with Miller's
interpretation' of the crude vapor pressure measure-
ments by Sydoriak, Grilly, and Hammel. ' From S&;~
as given in Fig. 1 one would estimate the trough to be
near 1.5'K. However, its existence can in no way be
considered as ascertained, since its magnitude is within
the estimated error. It is perhaps worth mentioning
that a similar change of curvature at a somewhat higher
temperature ( 2'K) is obtained for SF.n, if the
variation in the molar volume4 with rising temperatures
is being taken into account.

The above discussion does of course not exclude the
possibility of a transition in liquid He', but it shows
that the present vapor pressure data do not give any
support for the assumption of such a transition. Direct
measurements of the specific heat of liquid He' and of
the vapor pressure just below 1'K. would be most
significant.

Pomeranchuk' argued that the melting pressure
curve for solid He' must have a negative slope if there
is appreciable nuclear spin alignment in the liquid but
not in the solid, that is, if S„l;~)Si;~, since he expects
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ordering of the spins resulting from magnetic spin
interaction alone to occur at about 10 7 degree K.
However measurements by Weinstock, Abraham, and
Osborne' give a positive slope of the melting pressure
curve down to 0.5 K.

The structure or density of solid He' is not yet known.
It is quite possible that solid He' is diferent from other
solids regarding the alignment of the nuclear spin.
Solid He' might be so very loosely packed that, for
similar reasons as in the liquid state, a spin alignment
occurs in the solid state at a much higher temperature
than assumed by Pomeranchuk, and that, at a 6nite
temperature, S„i;d&Eln2.

Another possibility would be that, as liquid He' is
compressed towards the solidi6cation line, it may
gradually or discontinuously be squeezed into a struc-
ture almost as localized as in the solid state, and lose

"Weinstock, Abraham, and Osborne, Phys. Rev. 85, 158
{1952).

the characteristics of a smoothed potential liquid. In
this case the spins would become disorganized under
compression before solidification. This would mean that
the thermal expansion coefficient of the liquid under
sufficient pressure would become negative, since
(ayyaT), = (AS)—ap), .

Vileinstock, Abraham, and Osborne" proposed to ex-
trapolate the vapor pressure data in such a way as to
give Sl;~&E ln2, T&~0.5'K. In view of our interpreta-
tion (Si;p—+0 when T—p0), this possibility is in no way
demanded by the experimental data and appears to us
less likely than either of the two alternatives mentioned
above.

An experiment to decide directly the degree of nuclear
spin alignment in liquid as well as in solid He' by meas-
uring the intensity of the nuclear resonance adsorption
is being conducted at this University.

"Weinstock, Abraham, and Osborne, Phys. Rev. 89, 787
(1953).
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An analysis of Bohm s theory, emphasizing the role of probability in it, is presented.

''N two recent articles' David Bohm has suggested
~ - a "deterministic" interpretation of quantum me-
chanics based on the introduction of "hidden" variables.
It is the purpose of this note to analyze his interpreta-
tion and especially the role of probability in it, by
examining the complete mathematical formulation of
the theory. We are led to the conclusion that if Eq. (10)
below must be postulated, then the suggested inter-
petation is not an ordinary statistical mechanics of a
deterministic theory, which is the kind of interpretation
many physicists have hoped for and which some have
thought this to be. On the other hand, if Eq. (10) can be
deduced from the other postulates of the theory, as
Bohm attempts to prove in his latest' paper, then the
theory is essentially an ordinary statistical mechanics
of a deterministic theory.

I. DETERMINISTIC MECHANICS OF
A SINGLE PARTICLE

In order to present our analysis, we shall first give a
precise formulation of Sohm's theory for a single par-
ticle in an external potential V(x). Bohm postulates
that the particle of mass m has a position x(t) at time t,
and thus also a velocity x(t) These quantitie. s x(t) and

' David Bohm, Phys. Rev. 85, 166, 180 (1952); 89, 458 (1953).

x(t) are the so-called "hidden" variables. In addition to
x(t) and x(t), there is a "quantum mechanical field"
P(x, t). The quantities P(x, t) and x(t) satisfy the fol-
lowing equations:

P+V (m 'PVS)=0,

5' V'E'
8+ (VS)'+ V(x)—2' 2m Pk

x= VS/~.

(4)P(x, 0) =Pp(x),

S(x, 0) =Sp(x),

x(0) =xp. (6)
An alternative formulation, not employing S, is possible but

does not alter the main discussion to be given below.
~ It is interesting to notice that the function S0(x) must be given

for all x in order to determine a single trajectory. In contradis-
tinction to this, in classical mechanics a trajectory is uniquely

In these equations S(x, t) is a modified Hamilton-Jacobi
function which is not assigned a physical interpretation, '
and 5 is Planck's constant.

The above equations must be supplemented by the
following initial conditions in order to determine a
unique solution


