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The distribution of the momentum transferred to the pairs in pair production by photons has been
derived from the Bethe-Heitler cross section. The effect of screening is evaluated using a shielded Coulomb
potential for the nucleus. In the last part of the article the distribution of the angle of divergence of the
pair is obtained, and the most probable angle of divergence is given by ¢(E./k)-4mc?/k, where k and E,
are the energies of the photon and the positron and ¢(E,/k)~1 for 0.2<E,/k<0.5.

OME of the results of recent experiments' on the

recoil momentum ¢ of the nucleus in pair production

by photons seem to be in disagreement with theoretical

prediction.? Probably this disagreement is only due to

experimental difficulties. Anyway, further research is
needed to clarify the question.

In this paper a formula is given for the distribution of
the total momentum P=|p,+p-| transferred to the
electron pair. This formula, in comparison with the
distribution-function of the recoil momentum,? has
some advantages: (a) it is simpler; (b) it allows us to
take screening into account in a simple way; (c) it
gives information on the angle between the electron
and the positron.

From the experimental point of view, the determi-
nation of the total momentum P has the advantage of
being independent of the knowledge of the direction of
the incident photon. Thus it is possible to avoid
collimation errors and use all the available volume of
the detector. For the same reason it is possible to study
the distribution of the momentum transfer in the case
of pairs produced by cosmic-ray photons, for which
there is no collimation at all. The angle w between the
electron and the positron in pairs produced by cosmic-
ray photons has been used® to guess at the energy of
the pair and the energy k of the generating photon.
In the last part of this paper we obtain the distribution

of the angle w and derive from it a correlation between

o and the photon energy.

1. DISTRIBUTION OF THE TRANSFERRED
MOMENTUM

From the” Bethe-Heitler* differential cross section
(Born approximation), we obtain the cross section for
the distribution of the vector recoil momentum q of
the nucleus (units Z=¢=1), as follows:

2m* g(q)
do=ao— —d3q, 1)
=k ¢t
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where oo=2Z%?/137 is the unit cross section of Heitler,
k is the energy of the photon, m the electron mass, and
g(q) the expression:
g(@)=[142(m*— @)a+g (¢~ B —mD)x?
+28°¢* (24— m?) P+ Bt (mP— 2¢7)x*]- A
—[2+422m*— @) x+ (¢*— 2R2*— 2mg*—
+ 2R (?— 2m?) &
+ k2 2(41;:‘*—{—67rﬁ"q Mt L, (2)

4m*)x?

where
a71=(k-q)=kg cosb,, A=(1—4m?/Q?}
L=cosh™(Q/2m),  Q=(¥—P)}

0, is the angle between the directions of the recoil
momentum and the incident photon.

The integration of (1) over the angle 6, gives the
distribution of the recoil momentum ¢ as obtained by
Jost et al? The result agrees with a more general
distribution previously derived by us,® in which also
the energy transfer is taken into account.®

To obtain the distribution of the total momentum
P=|py+p-| of the pair, we replace in (1) d*q by
d&*P=P2P sinfdy and integrate over the angles.
Assuming that 6 is the angle between P and k, we have
=k P*—2kP cosl, x'=Fk*—FkP cosf; here ¢ varies
with 6, but in (2), when we perform the integration
over the angles, A and L remain constant. For this
reason the result is expre551ble with only elementary
functions and gives

do=4aq

3)

F
———PdP, @)
( k2 — P2)2
where 2m=1 and

= [Fl—i—g(Fl— A)] sech“l—Q—— (Fﬁ-—F;)— 5)
2k2 k

with Fy, Fs, F3 functions of Q only:
F1=(2+2/0°—1/Q0)L—(1+1/Q74,
Fy=3(16+21/Q0°—17/QY L—15(28+17/0%4, (6)
Fs=3(4—1/0)L—3(2+1/Q)A.
5 A. Borsellino, Nuovo cimento 4, 112 (1947), Eq. (42).
6 We take the opportunity to correct a misprint in the paper

of Jost et al., reference 2; the numerator of the last term in the
first line of Eq (43) ought to be 4Q*—1.
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F16. 1. Distribution of the transferred momentum P for photons
of energy £=2.57 and k=10 (units 2mc?%). In the abscissa: differ-
ences k—P in units 2mc; the distributions are both normalized
to 1, dividing the cross section da/dP by the total cross section.

As it must be, F is equal to zero at the extreme values,
0 and (k*—1)3, that P can reach. For small P, we have
F~P/k, and the cross section is very small and in-
creases as P?/k%. The most probable value of P is
reached near the maximum value Py of P, where the
cross section for high energy (£>>1) varies as

k*-In(2k) - (Py— P)%

The distribution of transferred momentum P is
represented in Fig. 1 for two photon energies: £=2.57
(2.618 Mev) and £=10. On the abscissa is plotted the
difference 2— P (in units of 2mc) and on the ordinate
the value of do/dP given by (4) and (5), divided by
the total cross section, to make the area under each
curve equal to one. We see that, with increasing energy,
the distribution becomes strongly peaked near P~£%,
i.e., when the pair receives nearly all the available
momentum.

Instead of the P-distribution, it is easier to study the
equivalent distribution of Q, which is given by:

do=404(F/Q)dQ, EG)

where Q varies now between 1 and k.

This quantity Q has a simple invariant meaning: it
is the energy of the pair in the center-of-mass system
of the electron and the positron:

The most probable values of Q are now close to 1
and, since F increases as slowly as InQ, the distribution,
after the maximum, drops down as 1/(Q3. Therefore, if
the energy is large enough, we are interested essentially
in values for which Q<. In this case, formula (5) gets
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simplified as follows:

F=F;In(2k)—F*, ®)
with
Fz* = F2+F1 ll’lQ. (9)

From (8) one sees that the distribution of Q is not very
sensitive to the energy of the photon. In Fig. 2 the
distribution of Q is given for the same energies as in
Fig. 1 and for £=25.

2. EFFECT OF SCREENING

Until now, we have not taken into account the
screening of the field of the nucleus due to the atomic
electrons. To evaluate this effect, we use a shielded
Coulomb potential V(r)=Zer™ exp(—aor) to represent
the potential of the atom, and we choose” the parameter
ao=mcZ*(108%)™1, in such a way that the total cross
section for very high energies agrees with the values
deducible from the Fermi-Thomas atom.

With this potential we must only replace in (1) the
denominator ¢* by (¢*4¢0*)?, where go=%a,. The calcu-
lations are elementary as before. The screening is
effective for £>>1, therefore we need consider only the
case Q<k. The distribution of the Q values is again
given by 7), where F is now

2k

F=F, In——————F
(1+4#0°/Q*)?

2*: (10)

(¢}

Fic. 2. Q distributions for the same photon energies % as in
Fig. 1 and for 2=25 (no screening) ; the curves (Pb) are calculated
for lead and photon energies £=100 (partial screening) and k= «
(complete screening). All the distributions are normalized to 1.

7H. A. Bethe, Proc. Cambridge Phil. Soc. 30, 524 (1934).



MOMENTUM TRANSFER AND ANGLE OF DIVERGENCE

which, for 2kg<<1 (no screening), coincides with (8).
In the opposite case of complete screening, we obtain
a distribution independent of energy:

(11)
The differential cross section (7), with F given by (10),
also yields, when integrated, correct values of the total
cross section at intermediate energies (partial screen-
ing) ; therefore it is probable that (10) gives correct Q
distributions at these energies. In Fig. 2, the distri-

bution of Q for lead is given, at =100 and for complete
screening (k= ).

F=F, In(2160%Z~%) — F»*.

3. DISTRIBUTION OF THE ANGLE OF
DIVERGENCE o

The quantity Q depends on the angle w between the
electron and the positron, and on the ratio in which the
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Fi1c. 3. Distribution of the angle of divergence » between the
two members of a pair for photon energies £=50 (51 Mev); 102%;
10%; o (complete screening) and atomic number Z=>50. On the
abscissa: ratio w/wo, where wo="~kmc?/(E.E_); on the ordinate:
cross section do/dx in unit oo=2%2/137. The curves are given
for equipartition (¢=E,/k=%); otherwise the ordinates must be
multiplied by 4a(1—a).

energy of the photon is divided between the two elec-
trons.

If the energy is large enough (E,, E_>mc?), we may
write for Q:

@P=EE_(0l+o?)=[4e(1-0) 1+ ¥ wd), (12)
where a is the ratio E,/k, and w, is the characteristic
angle:

wo=FEmc/(E E_). (13)
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F16. 4. ¢z(a) versus a=E,/k.

If one puts x=w/wo, oneobtains for the cross section (7)
do=160a(1—a)Fxdx/(1+x2)?, (14)

which for a fixed value of a gives the distribution of the
angle w. In the region where the factor x/(1442%)? has
a maximum (x=1/v3), the function F is still rapidly
increasing and this shifts the value at which the maxi-
mum of thedistribution lies towards greater values of x.

Figure 3 represents the distribution of the angle w,
according to (14), for different photon energies and
atomic number Z=>50, in the case of equipartition
(a=3).

The angle w, at which the angular distribution has
its maximum can be written in the form:

wp= (4mc*/B) - $2(a), (15)
where ¢z(a) is a function of ¢ and also depends on the
energy k and the atomic number Z. In Fig, 4 the values
of ¢z(a) for k=100 Mev and k= « (complete screening)
for two different values of Z are given. It is evident
from this that the dependence on % and Z is very small.
For complete screening the curve for Z=21 practically
coincides with that for Z=50. For equipartition, we
have ¢z~1.

Formula (15) may be of use in guessing at the energy
of the pair from the observed value of the angle w.
Bradt ef al.® equated w to twice the rms angle between
the electron and the incident photon, as calculated by
Stearns.® As a result of the contributions of the angles
beyond the maximum of the distribution, this rms
angle is greater by a factor of In(k/mc?) than the most
probable value given by (15).

Thus it seems more reasonable to the author to
equate w to w, Following the other method, the
deduced photon energy turns out to be smaller by a
factor of In(k/mc?) than the value obtained using the
method proposed here. '

8 M. Stearns, Phys. Rev. 76, 836 (1949).



