
P H YSI CAL R EVI EW VOLUME 89, NUMBER 5 MARCH 1, 1953

Quantum Field Theory in the Light of Distribution Analysis
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It is shown that part of the divergences and ambiguities of the current quantum theory of fields can be
overcome by the consistent use of distribution analysis. Representing the singular functions of field theory
by distributions, nongauge invariant and nonequivalent terms will be eliminated from the 5-matrix in
renormalizable as well as in nonrenormalizable theories without any limiting process. Instead of divergent
quantities, there appear arbitrary normalization arid division constants. Feynman s cutoff as well as the
renormalization are automatically contained in a theory which gives a correct meaning to delta-functions.
Applications to closed loop processes are discussed in detail. It is not possible to attribute definite values to
the parameters of bare particles; for that, some modifications of the theory seem to be necessary.

INTRODUCTION

S is well known, the difhculties appearing in the~
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application of covariant formalisms to meson
problems are closely connected with the mathematical
defects of quantum Geld theory. Neither formal
limiting methods' nor realistic modihcations' of the
theory have given satisfactory results in a self-con-
sistent way. In such a situation an examination of the
mathematical foundations of Geld theoretical formalisms
seems to us to be necessary. In our opinion the diffi-

culties are partly due to our inability to handle the
singular propagation functions correctly. In fact, it is
impossible, in a strict sense, to treat delta-functions,
which are not elements of classical analysis, by the
methods of this analysis itself. Therefore, we are
obliged to look for a generalization of classical analysis
v hich contains Dirac functions as regular elements. In
such a correct formalism, all inconsistencies due to
mathematical defects of current field theory must
vanish. An analysis of the required kind exists in the
form of the so-called distribution analysis, introduced
recently into mathematics by Schwartz. ' Schwartz
deGnes distributions as certain linear functionals which

can be used to represent singular expressions. Such
functionals are suitable for a strict foundation of the
mathematical formalism of the field theory.

After a sketch of the conventional treatment of closed

loop processes in Part I, we give a survey of distribution
analysis in the following second part. In Secs. III and
IV the new aspects of the Geld theory resulting from
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the introduction of distributions are discussed. Some
formulas used extensively in the conventional for-
malism have to be modified. A so-called Pf symbol
(pseudofunction) is introduced which enables one to
consider singular functions at their singularities them-
selves. The Pf-symbol may be regarded as a generaliza-
tion of the notion of principal value, taking account of
the fact that we must deGne each singularity in a
theory containing elements with point structure like
Dirac functions. The Geld theory is shown to be con-
vergent. In some cases the Pf symbol introduces an
arbitrary Gnite "normalization constant" which is con-
nected with a lack of invariance of certain quantities
with respect to dilatation transformations of the
"support" of distributions.

Feynman's cuto6 and the renormalization factors are
direct consequences of this constant, which appears in
unobservable quantities only. The normalization con-
stant is to be found only in processes of low order simul-
taneously with so-called division constants in distribu-
tions, the support of which is the origin, arising from the
fact that delta-algebra contains divisors of zero. A
determination of these constants is possible only for
matrix elements which are subjected to general rules,
for instance, to gauge invariance. By the help of the
division constants, unphysical quantities will be elim-

inated from the 5-matrix. Such elimination processes
are due in a much more direct way to the normalization
constants contained in one expression together with

nongauge invariant or nonequivalent terms in the
S-matrix. The lack of dilatation invariance named above
is characteristic for particles with nonvanishing mass.
According to the existence of the normalization con-
stant there is no longer any distinction in principle
between renormalizable and nonrenormalizable theories;
in the latter the normalization constant yields an
indirect renorma1. ization eBect.

The regulator of Pauli and pillars' is shown to be
equivalent to the introduction of distributions with the

, origin as support, but such limiting processes are
thoroughly superfiuous. The discrepancy between the
classical quadratic divergence of the photon self-energy
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and the finite result of Wentzel4 originates from an
inadmissible integration by parts which has to be
modified. Self-energies and self-charges become Gnite
and are in agreement with the results of Schwinger and
Feynman' if we identify the normalization constant
included with the cut-oR factor of these authors. We
discuss further some meson processes. For instance, the
postulate of gauge invariance for the two-photon decay
of neutral z--mesons and the equivalence theorem for
the decay of a ~-meson into x-mesons will be fulfilled
correctly, giving transition elements in a unique way
also for nonrenormalizable models. The discrepancies
connected with the transition from the Sp-functions to
S and S&'l as well as the problem of normal dependent
terms can also be clarified. Various problems, for
instance, radiative corrections, may be treated by means
of the theory of distributions in a self-consistent way.
It should be pointed out that some results are aRected
by arbitrary functions whose physical meaning is
uncertain. Finally, some remarks are made on the nature
of normalization constants and the structure of ni-
variant propagation functions.

I. FORMALISM OF CLOSED LOOP PROCESSES

We start with an outline of the formalism of inter-
action of bosons through virtual fermions via closed
loop graphs, adopting Schwinger's' notation . with
S=c=1.The interaction energy of a system of n+1
bosons interacting via fermions is given in the inter-
action representation by

H=Q g~U;fF;r;P,
i=o

where U; represents the potential of the ith boson field
obeying the Proca equation (mass p~) and P means the
fermion spinor (mass ns). F; and r, mean the spin and
isotopic spin operators, respectively, 1'; corresponding
to scalar coupling, pseudoscalar coupling, etc. ; the gi
are coupling constants. Neglecting radiative correc-
tions, the S-matrix element describing the decay of a
boson U0 into e bosons via closed fermion loop reads

reveals the selection rules and S(i, k)=S(x;—xs). If
there are photon fields among the U;, the matrix
element M„ is subjected to the postulate of gauge
invariance. Further, the vector coupling of scalar
mesons vanishes in some cases by the divergence
theorem, and finally we often have equivalence between
pseudoscalar and pseudovector couplings of pseudo-
scalar mesons. These theorems, assured in coordinate
space, are generally destroyed in the results of the
actual calculation of matrix elements, so we cannot
decide which terms are physically significant. In order
to evaluate (1.1) the Fourier representations of S and
5"' are substituted, using the relation'

P (P'+np') II (P'+ns') —'
r=o. iver

( t+~ ) ( n

= II I
d ~ I

-3'"'I '+2 0'&' I (1 2)j ( '=o j
with

2'"P'=(&+a'+~)II(1-a.), ~.=(-2)"III*(1-a") ',
k=o i=o

ap ——0, a„+g——1, Q P;= 1, 6&"l(x) =d "3(x)/dx".
i=o

Then the transformation,

k,~0+);(p;), ),(p;) =P pg P p.,
t'ai e=t

is carried out, neglecting boundary values. Using the
spherical symmetry in the momentum variable k we
set k„k,—+~~8„,k'= D&k', . Finally we derive from

~+00

d k exp(ps' ) =ps' e(s)s

.with e(s) =s/~z~, the formula

OR„=) d'xpUp(xp)3E„(xp),
d4P(P)~ exp(is& )=i +'4s (n+1)!e(s)s &"+ & (1.3)

with
e( t+~

m„(x,)=G II( d'x;U;(x;) i Sp Q 8(0, 1)
J a-0

and 6nd

n r+~ p+I
d'ps Us(p p) «s

)&F)S(1,2). FsS&"(0, A+I) I'„S(n, 0)I'p, (1.1)
4(2pr)'~+s s-&

where c=0 or 1 in

G=cII g,
i=o

(np q
. p+~

y
~
P A;

~

n„" s++'(j+ I)! ~ dsp(z)s"
EI-p
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where A; is de6ned by

(n i "0

Spi P ('p(k+X;) — )r;„ i=/ A,"(u )';
'=o

N, =e/2, (++1)/2 if e even, odd. Us(ps) is the Fourier
transform of Us(xs). M„ is seen to be convergent if
e&3. By evaluating the spur in A; for respective sets of
mesons and expanding the integrand in powers of ps/m,
we obtain the transition probabilities of various proc-
esses. However, as is well known, the results are quite
ambiguous.

II. PRINCIPLES OF DISTRIBUTION ANALYSIS

In order to generalize classical analysis in the sense
of Schwartz' let us consider the space D of all continuous
complex functions ie(x), de6ned on a linear vector space
which is represented by the real points x with coor-
dinates x&, , x„. For simplicity we take one coor-
dinate only, x=xi. The functions y(x) shall be differen-
tiable to any order and vanish with their derivatives
d p/Cx"=hei"&(x) identically beyond a compact, for
instance, 6nite, manifold in the space of the x:
y&"&(&~)—=0. We define the support of p(x) to be
the closed manifold of those points x for which

y(x) $0. On the space D of the functions p we consider
functionals T(p): To each rp of D a complex number

T(q) is attached, and, if y runs over D, the attached
system of complex numbers represents the functional
T(vp). These functionals shall be linear [i.e., T(eiq i+cs~)
=ciT(yi)+csT(ys) j and continuous [i.e., if q&,~ps
then T(q;)~T(cp, )j. Such functionals are called dis-
tributions. Now we attribute to each function f(x),
which is summable in the sense of Lebesgue, a special
distribution f(qr) de6ned by

p+QO

f(x)[~j=—f(q) = dxf(x) y(x) (2.1).

This Lebesgue integral does not change its value if
f(x) is changed, for instance, in a 6nite number of
points x. Then we identify f(x) with f(y): instead of
calculating with the function f(x) we operate with the
associated functional f(e). Hence ordinary functions
appear as special distributions. The support of the dis-
tribution T(y) is defined as the smallest manifold of
those points x beyond which T vanishes. Further, we
define a special distribution 8(y) by

It is clear that every distribution is differentiable to any
order:

D"[T(t )j=(—1)"T(9 '"') (2 4)

Instead of D"T we write often T&"&. T(q &")) is a linear
and continuous form in q &"), and therefore a distribu-
tion in te. Equation (2.3) will be established in Appendix
I. In particular, we have from (2.4)

~'"'(e) = (—1)"~(s '"') = (—1)"p'"'(0) (2 3)

Let us consider a distribution f(qr) associated with a
summable function f(x) whose ordinary function-
derivative df(x)/dx= [f'(x—)j is summable. The dis-
tribution-derivative Df(ie) of f(y) reads according to
(2.3) and (2.1):

By partial integration we obtain, on account of
e(~~)—=o,

Df(~) = [f'(x)7s (x)dx= [f'(x)1(s), (2 6)

1.e.)

This implies that, if f(x) and [f'(x)j are summable, the
distribution-derivative Df(q) =f& &(rp) of —a distribution

f(q) associated. with f(x) coincides with the distribution
which is attributed to the function-derivative [f'(x)]
of f(x), i.e., with [f'(x)1(q). If f(x) is summaMe, but
g(x) =[f&"& (x)j(n ~& 1) is not, the distribution-deriva-
tives D"f(p) of f(p) do exist according to (2.4). But
D"f(y) is not equal to g(q)=[f&"'(x)j(rp), since a
functional

Cxg(x)ie(x)

associated with a nonsummable function g(x) is not a
distribution. ~ For instance, we find for the distribution-
derivative of the distribution e(io) which is associated
with the (summable) function e(x) [e(x)=1 if x)0,
= —1 if x(0, not de6ned for x=0):

""(e)=—De(~) = —e(v")= — ~xe(x) s '(x)

=[V(x)1 -—[s(x)j0 =29(0)=2~(s) (27)

d(q) = q (0), 8,(e') = p(x). (2 2) Hence we write, for short,

This is not equal to J'dxb(x) q (x) with the usual delta
function de6nition, since the Lebesgue integral allows
a modification of the integrand 8(0)=0, which gives
the integral the value zero; B(e) is a distribution which
is not attached to a function. In the space of distribu-
tions we de6ne the "distribution-derivative" D[T(y))
by

(2.3)

et»(x) =2&(x), (2.8)

the argument x noting only the fact that e and 8 are
distributions "in x".On the other hand, the function-.
derivative [e'(x)) is equal to zero if xWO, but it does

~ This follows from the theory of Lebesgue-integrals: If
J'[f(x)idx is convergent, then J'f(x)dx is convergent and con-
verseiy. Hence, since J'

i g(x) i Cx is divergent, J'g(x)dx and, there-
fore, J'g(x)rp(x)dx do not exist.
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not exist for x=0; Le'(x)$ is not a summable function.
So we have, as stated above, e&'&(q) WPe'(x))(&p), the
right side of this inequality not being a distribution. We
demonstrated that, if f(x) is summable, the distribution

f(0p) defined by (2.1) exists, and also the distribution-
derivatives D"f(y) exist to any order Laccording to
(2.4)$, even if the function-derivatives Lf&"&(x)j are
nonsummable, i.e., even if the distributions Lf&"&(x)](&p)

do not exist. This case will be investigated in detail.
Let us define f~(x) by f~(x)= f(x) if x)0, =0 if

x&0, f~(x) being not explained for x=0. Then we

consider the summable function f+(x) = (I/ax~)+ (i.e.,
=0 if x&0, =1/nx~ if x)0, not defined for x=0) n
being a number with 0&o.&1. The distribution f+(0p)
exists, according to (2.1), together with its distribution-
derivatives D"f+(0p), which are defined by (—1)"f~(p&"&)

$Eq. (2.4)). At first we treat Df+(y) = f+(&p')—. This
is a distribution associated with the function f+ by
means of «0', and, therefore, d.efined according to (2.1)by

dxf+(x) 0p'(x) =
Wp

dxf(x) q'(x).

that is, —f~(p') is defined by

f—f+(&p') = lim dx(1/nx ) &00'(x).
e~o g

(2.9)

Since f+ is not defined for x=0, the integral on the
right hand of this equation has to be determined in the
usual manner by

lim dxf(x) 0p'(x);
e~o J

It is convenient to write symbolically

dx(x ~ ') y(x)—=Pf{(x ')+(&00)}

—= {Pf(x ')+) (& ) (2 12)

Hence the distribution-derivative Df+ of f+ (I——/nx )
is given by

(1/~x )+"&(&p)=—D{(1/~x )+(& ))
= —{Pf(x——')+) (y). (2.13)

The definition (2.11, 12) is a very suggestive one since
with the use of the Pf symbol the Eq. (2.13) is very
similar to Eq. (2.6); the latter holds if f+ and Lf+'$
both are summable. It is seen that

f+"'(& ) = (1/~x )+"'(~)=—D{(1/~x )+(& ))
is not equal to Lf~'$(&p)= —(x ~ ')~(y) as one would

expect by adopting. (2.6) without any care, since

(x ')+(&p) does not exist as a distribution. r Only
distributions are allowed to be considered if we want to
operate with singular quantities correctly. Hence the
distribution associated with (x ')+ is given by
Pf(x ')+(p) but not by (x ')+(&p). It should be
stated once more that the "Pf integral" is only an
abbreviation for a well-defined quantity. An interesting
remark about the notation Pf will be made in Appendix
II.

Now we compute the distribution-derivatives
D"f+(0p), which exist according to (2.4) since f~(0p)
does so. (Note that [f+&"&$(rp) does not exist!) For
the second derivatives we obtain by legitimate integra-
tions by parts,

As is well known from the theory of Lebesgue-integrals, D2{f+(q)) = f+(0p") = lim dx(1/nx~) &p"(x)
partial integration is allowed, which yields

—f~(cp') = lim ~ d )(x1/n )x'$ s&(x)+ (1/0&&e~) (p(e)~0 J

((1/ox )'j being the usual function-derivative —1/x~+'. .
Since cp(e) = p(0)+O(c), we may write

D{f+( )}=D(1/ * )+(& ) = f+(~')—

~ &X&

=lim (1+o.) dxx ~—'y(x)
a~o

'&p(~) —(I/~) ~ & '(~),

on account of p &

"&(& 00 )—=0. With y(e) = q&(0)+ e 0p'(0)

+O(e), q'(e) = q'(0)+O(e), we find easily

= —hm
&~0

dx(1/x +') &p(x) —(1/ne ) &p(0) 1. (2.10) ~ 00

(1+a) iD2{f (y)) =lim dxx 2&p(x)

This is by definition the explicit form of the distribution-
derivative of f~(&p) = (1/0xx )(&p), expressed in terms of

y. For ubbreeiutioe we write

lim dxx '&00(x) —(1/n) f &p(0), 0[J

&p(o)
'(o) ( )

(1++)e +' ne 1

The right side of this equation will be abbreviated as

~00 . 00

—=Pf dxx ~-'p(x) =Pf,J. dx(x—-')
&0 (x). (2.11)

(* ')+ (*)=—{ (* ')+}( )
—=Pf{(* ')+(&p)) (2 15)
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So we have is undetermined for x= 0. Since the distribution-

s{�(1/ ) ( )} (1+ ) pf{ (1/ +2) }( ) (2 16)
derivative D{f+(p) }defined by f~—(p') exists, we have

Taking into account (2.13), the left hand of (2.16) is
equal to —D{Pf(x n ')+(»)) }.Hence

D{Pf(x ') (~)}=—(1+ ) Pf(* ')+(») (217)

The distribution Pf(x n ')+(())) appears to be attributed
to the nonsummable function (x n ')+. By continuing
in this manner for the computation of f+( )(p), i.e.,
by successively integrating by parts the distribution

(—1)"lim dx(1/nx ) q (")(x)

By performing a legitimate partial integration, taking
account of q(e) = q(0)+O(e), we find

D{f+(»))}=»m dxx '»)(x)+log6'(p(0) . (2.23)

If we de6ne for abbreviation

and using Pf {(x—
')+((())}= lim dxx—'())(x)+loge. y(0)

0

we have
(2.24)

Pf(x ~)+(q)=lim
e~0

f
dxx y(x)

we come in a direct manner to the definition of the dis-
tribution Pf(x )+(»)) associated with (x )+, ei». ,

D{(loglxl)+((() }=Pf{(x ')+(») } (2 25)

The definition (2.24) is contained in (2.18) if we pre-
scribe that, if nz is an integer ~&1, say @1=AD, the term
)((=m —1 in (2.18), i.e., e'/0, is to be replaced by loge.
Hence, for e an integer, we define Pf(x ")+((() by

~(y) (0)~n+i —m ('

(2 18) Pf(x—")~(p)= Pf

p!()i+1—ts)
dx(x—")+q (x)

where m is not an integer ~&1 and [m—1j is the highest
integer which is ~&m —1. If m is an arbitrary number
with —p& &m& 1, the sum in (2.18) must be omitted;
i.e., the Pf symbol is superQuous, since in this case
(x )+(q) is a distribution associated with a summable
function according to (2.1). Distributions of the form
(2.18) will be called "pseudofunctions. "We can see by
generalizing Eq. (2.17) that, if m is an arbitrary
number, but not an integer ~& 1, the following relation
holds:

DPf(* -)~(9)=—~Pf(x " ')+(»), (2 19)

and, since Pf(x ")(y)=Pf(x )~(»))+Pf(x ") (p),

DPfx ~(p$= —m Pfx ' +"(p) (2.20)

i.e., the distribution-derivative of the pseudofunction
Pfx ~((() (m not being an integer &~1) is obtained by the
ordinary differentiation rule.

Now we study the case (1/x )+ when m is an integer
&~ 1, say nz=e. For that purpose we consider the sum-
mable function f+(x) = (log l

x
l )~, whose associated

distribution is given according to (2.1) by

~n+I —n (n—i) (0)
+ loge . (2.26)

y,+1—e (e—1)!

In the case n= 1, the 6rst sum on the right hand has to
be omitted according to (2.24). Pf(x ")~(p) is the dis-
tribution associated with (x ")+.To get the distribution
associated with the function (x ") we define the dis-
tribution T obtained from T by reQection in the origin
as T(p(x)) = T(»)(—x)). Then we easily find (for
instance, by considering the integral representations)
thatPf{(x ") (y)}=(—1)"Pf{(x ")~(y(—x))}.Hence
Pf(x ") (»)) follows from the definition of Pf(x ")+(y)
by substituting of y(x)-+(—1)"q (—x) and q (»(0)
-+(—1)n+&»)(»(0) on the right side of (2.26):

Pf(x ") (q)=Pf dx(x ")»(x)

f~((()= lim
~Op f

dxloglxl »(x). (2.21)

n—2

=lim
~

dxx-"y(x)+P( —1)"+n
e—+0 p=0

As is well known, the definition by a limiting process of
the integral involving loglxl is necessary since loglxl

+(n) (0)&n+i—n +(n—i) (0)X— loge, (2.27)
p!(p+ 1 n) (e——1)!
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e being an integer &~ 1. Since Pf(x ")(&p) =Pf(x ")+(y)
+Pf(x ") (y), we obtain from (2.26, 27)

Pf(x-') (q) =p.v. dxx 'y(x) =p.v. (x—
')(&p),

p.v. being Cauchy's principal value which appears as a
direct consequence of the Pf symbol. As we will see in
Sec. III, the rule given by (2.19) breaks down if m is
an integer &~ 1, Pf(x ~)+(qr) being defined according to
(2.26).

These results can be generalized to the case of more
than one variable. For instance, a quantity Pf(r ')(q)
can be obtained, s where r= (x'+y'+s')'. This will not
be explained here, but a result may be noted which
demonstrates the efficacy of the pseudofunction. In
order to satisfy the Poisson equation 64=0 by the
function C = 1/r the value r=0 has to be excluded —a
case which is physically important. But distribution-
analytically we have A(Pf(r ') }(y) =—h(q), a relation
which shows that a singularity will correctly be defined
by means of the Pf symbol.

Some further properties of the distributions will be
reported. For each distribution whose support is the
origin, an expansion of the form T(y)=Pc 8'"&(y)
exists, from which we conclude c„=O if T=O. With dis-
tributions defined on subspaces we can form direct
products, for instance, 8 .8„, and construct extensions
to the entire space. For example, we have (in two dimen-
sions) the general solution T(x, y) of the equation

y T=O as

this theorem is given by Schwartz. ' We confine our-
selves to its interpretation. It is seen that the general
solution T of (2.28) is the sum of a special solution of
this inhomogeneous equation, i.e., S/x, and of the
general solution To of the homogeneous equation
x TO=0, i.e., To=eh; the latter contains an arbitrary
constant c. Since. the division can be defined only by the
inversion of the multiplication, even in classical analysis,
it must be concluded from this theorem that arbitrary
constants together with distributions whose support is
the origin appear automatically whenever negative
powers of x are introduced, by division. At 6rst sight
this statement seems a little strange, but it is absolutely
correct. It should be pointed out that the first term of
the right hand of (2.29) is determined only by the
adoption of the Pf symbol. For instance, with S=x, the
solution of (2.28) is not T= 1 but T= 1+cd. The uncer-
tainty in c of this solution originates from the indeter-
minacy at the point x=0 of T in (2.28). In the same
way one obtains the general solution T of x"T=O as

n—1

T=S/x"+ g c„S&»(x),
ttt=o

the c„being arbitrary complex divi'sion constants. These
results may be generalized to more than one variable.

The "convolution" of two functions f(x) and g(x),
defined by

~+00

h(x) =f(x) s g(x) = dtf(x —t)g(t)

yields

T= Q T„(x)8~»(y), I(~)=
l

d»(x) v (*)= df deaf(f)g(n) ~(f+n)

with arbitrary distributions T„(x). The product of an
arbitrary distribution T with an indefinitely diGeren-
tiable function g(x) obeys the usual rules of multi-
plication and differentiation, and is defined as (Tg)(y)
= T(gq&). We have Df(Tg)(y)} =(g'T)(q)+g(DT(y)}.
For instance, we get x5(y)=5(xy)=(xp), 0=0 and

(gb') (9 ) = &'(g P) = —~((gP)'g) = (g(o) b' —g'(o) b)(P).
The problem of division is very important. Division is

defined by the inversion of multiplication, as is usual in
mathematics. But the division problem of distribution
analysis is distinguished from that of classical analysis
by the fact that 8-algebra contains divisors of zero. The
following theorem holds: If S is:an arbitrary distribu-
tion, there is an infinite set of distributions T satis-
fying the equation

x T=S (2.28)

and two distributions of the set are distinguished from
each other by an arbitrary multiple of b. In other words,
the general solution T of (2.28) is given by

T=S/x+cb, (2.29)

c being an arbitrary "division constant. " The proof of

L. Schwartz, reference 3, distributions I, p. 46.

fr(g.L~(—f+n)j}
Hence we define the convolution of two distributions
S,T by

(S * T).(~(x))=Sr(TEALS (t+n)3}=Tn{SrL~(f+n)j}
8 appears as the unit operator of the convolution:

(~' T).(~)= Tr(~.Lv 8'+n)l) = Trl:~0')3= T(v).

It is easily to be seen that 6'.+ T=DT. So we are led
to Dirac's original definition of b. In the space of the
so-called tempered distributions, Fourier transforms
will be defined by starting with the Parseval relation,

dyV(y)v(y) = dxU(x)u( —x),

or, symbolically written,

v.L~(y) j= U*l I(—*)j,
where V(y)=FU(x), s(y)=FN(x) and F implies the
ordinary Fourier transformation (F is its reciprocal).

9 L. Schwartz, reference 3, distributions I, p. 121.
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VVith I and v playing the role of p, the Parseval relation
defines the Fourier transform V of a distribution U
according to

(FU)(v) = V„[v(y)]=V [I(—x)]=(1/2v) V,[(Fv)]
= (1/2~) U.[v„(exp(-~xy))7.

For instance, we have

(Fb ')„(v„)=(1/27r)B '[F v]=(1/2')8, '[ „v(e xp( i—xy))]
= (—1/2+)d[v„(exp( —ixy))/dx], 0 ——(1/2v)iy(v„),

i.e., FP,'= (1/2n. )iy.

This outline of the theory of distributions will be suf-
hcient to cover the applications in the following
sections.

III. DISTRIBUTION-ANALYTICAL TREATMENT
OF CLOSED LOOP PROCESSES

The formalism sketched in the preceding section will

give the basis for the treatment of quantum-theoretical
problems. Without any restriction we confine ourselves
for simplicity to the discussion of processes of the
closed loop type. It should be pointed out that most
of the quantities appearing in the following have to be
considered as distributions, for instance, the self-charge
and the matrix element M, even if the symbol p is not
written explicitly.

We start with the proof of Eq. (1.2), which reads,
for m= 1,

Pfg(x) y-&+ &(y)x-i]

~+1
dab'(x(1+a)/2+y(1 —a)/2). (3.1)

—1

This equation does not hold, e.g. , for x=y as is easily
seen from the evaluation of the right-hand side. How-
ever, the case x=y is physically important. In order to
prove (3.1), the relation

[8(x)y '+8(y)x '7=[8(x)—8(y)](y—x) ' (3.2)

is used in the conventional formalism by representing
the right-hand side of this equation by Fourier integrals
in a well-known manner which yields the right-hand
side of (3.1). The relation (3.2) is no identity, and it is
necessary to verify it explicitly. Both sides of (3.2)
exist as distributions only by adopting the Pf symbol.
Since (y —x) appears in the denominator of the right-
hand side of (3.2), the left-hand side of this equation
can only be explained as the solution of an equation
like (2.28). The division of [8(x)—8(y)] by (y —x) is
defined only by the inversion of the multiplication.
Therefore, we must look for the general solution T of
the equation

[(y—x) T'(x, y) 7(v (*,X))= [~(x)—~(r)](v (x, y)) (3 3)

A special solution is found to be

S(x, y) =Pf[b(x)y '+b(y)x '],

since we have

[(y—x)s](p) =S[(y—x) v]

= Pf t )I dxdy[b(x)y '+ b(y)x '](y—x) q (x, y)

r I

dy&(O, y) — d*(*, O) = [~(x)—~(y)](~(x»)&.

But according to the theorem stated in Sec. lI [see
Eqs. (2.28, 29)], the general solution T is given by the
sum of the special solution S of the inhomogeneous Eq.
(3.3) and of the general solution So(x, y) of the homo-
geneous equation [(y—x)SO](q) =0; the latter is
So(x, y) = f(x)5(x—y), f(x) being an arbitrary function.
So we have, instead of (3.2),

PfP(x)y '+8(y)x ')
= [~( )—~(3)]Pf(3 —*) '+f(*)~(3 —*) (3 4)

The uncertainty in f(x) of the second term on the
right-hand side of (3.4) originates from the indeter-
minacy in the point x=y of the 6rst term on the right-
hand side. By multiplying Eq. (3.4) by (y—x) its cor-
rectness may be verifi. ed directly. Equations of this
kind, containing arbitrary constants or functions, are
important, for example, for 8+-functions and scattering
problems. " Hence Eq. (3.1) has to be supplied by
f(x)8(x—y). The same result is obtained by evaluating
the left side of (3.1) by a transformation of the variables
of the integrals represented [see Eqs. (42, 43) in the
paper of Pauli-Villars'] and symmetrization; by the
latter process an arbitrary function is induced again.
By genera}izing this result a term of the form

P T;(xo, , xp i, xi+i, , x„)8(x;—xp), (3.5)

with x;=k,2+eP, has to be added to the right-hand side
of (1.2), the T, being arbitrary distributions with
respect to the variables x~ (l'v 0i) and arbitrary functions
with respect to x,. Carrying out the transformations of
Sec. II, we find that the matrix elements obtained
contain arbitrary distributions which modify observable
effects in a quite uncertain way.

For the further analysis of the matrix elements M„,
the derivatives of Pf(x ")~ are needed. As we have
shown in Sec. II, the distributions associated with the
nonsummablefunctions(x ")+aregivenbyPf(x ")~(y),
Eqs. (2.26, 27). There it was stated that their dis-
tribution-derivatives cannot be equal to distributions
associated with the respective function-derivatives.
According to (2.21) the distribution f+(y) = (log t

x ~) ~(p)
exists together with its distribution-derivatives, the
first of which is given by (2.22). The eth derivative

See P. A. M. Dirac, Die I'rinsipien der Quantenmeehunik
(Teubner, Leipzig, 1930},6rst edition, Chap. j.0.
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D"f+(q&) is defined according to (2.4) by

D"(f+(())=(—1)"(ioglxl)+(( (")(x))

In the same manner as above, we obtain the formula
(n &~2)

= (—1)"lim dx logl xl y(")(x). (3.6)
e-+0 J = (—1)" '(e—1)!lim dxx —"p(x)

f
e~o J

To rewrite the right-hand side of this equation in a form
~a+~—~, (~—j)((j&

which contains ()) explicitly, we perform a legitimate +p [ (n)(0)/ ~]
successive integration by parts:

D"(f+(~))

dxx p (x)+log6 ' p (6)

a—1

+2 (1/p)&'" "(p), (3 1o)

l= (—1)"—' lim (e—1)! dxx —"())(x)
a~0

n—1

+()(" "(~) log~ —Z() —1)!~ "v(" " "(~)

since y(")(&~)—=0. Taking into account'

() (~) =Z(~"/~!) ~ '"'(0)+o(~),

and evaluating the resulting double sum, we obtain

D"[f+(()]
= (—1)"—)(e—1)!lim dxx —"q (x)', 0 J

n—2 ~n+1—n ~ (n,—1)(0)
+2 (p'"'(0)/p!) + lou

p+1—I (e—1)!

—Z(1/))&(" "(()) (37)

According to (2.26), the erst term of the right side of
(3.7) is identical with (—1)" '(n —1)!:Pf[(x ")+((())].
Thus (e&2)

n—1—2 (1/) )~'" "((o) (3.8)

which will be proved in Appendix III. Hence

D""[f+(v)]=(-1)"I!PfL(x " ')~(v)]

~Z (1/ )~'"'((() (3 11)
pc=1

But, from (2.4) and (3.8, 10), we get

D""[f+(())]=D{D"[f+(~)]}= (—1)" '(I—1)!

~D{pf(g ")+(~)}~2 (1/l )~'"'(P) (3 12)

By equating (3.11) and (3.12), the important result

D{pfL(g ")+(~)]}
= —~ PfL(* " ')+(~)]~[(—1)"/~ ]&'"'(~) (3 13)

is obtained. This rule holds if n is an integer &~0; if
m=0, the Pf symbol is superfluous. The appearance of
8(") on the right side of (3.13), resulting from the
rigorous definition of (x ")~ for x=0 by the Pf symbol,
is very reasonable. Omitting for convenience the symbol
(() in the following, we conclude from (3.13) since
Pf(x—")=Pf(x-")++Pf(x ") that

D{Pf[(x ")(p)]}= —)) Pf[(x " i)(p)]. (3.14)

Further, we obtain from (3.13) since

we find

dx loglxl () (x),

This equation can also be proved by induction (see
Appendix III). On the other hand, starting with

Pf(x ")+—Pf(x—") =e(x) Pf(x—"),

D{e(x) Pf(x—')(y)}
= —Lpf(g ')+—Pf(* ')-](( )—2&'(() )
= —~(x) Pf(* ')(()—2~'(()).

Generally the following relation holds:

(3»)

D[f (q)]= f (p')= —liI11J —dxloglxlp (x)

=hm dxx '(()(x)—loge ())(0) =Pf(x—') (y). (3.9)
en —+0 J

Dm[Pf(x n) ]—( 1)m—
g (I+g) Pf(g (m+n))—
r=0

(—1)n m —1

(I+.) )
—)h(m+n —1)(g) (3 16)

(e-1)! =o
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which will be proved in Appendix IV. Hence we get

D (e(x) Pfx "—)= (—1)"g (n+r)e(x) Pfx—&"+ &

r=o

2(—1)"~—i
(n+y) 1$(tn+n I)(x) (3 17)

(n-1)! .=0

Now we are prepared for a criticism of the formula
(1.3), which is used extensively in field theory. By
investigating the solutions of the Laplace equation. "
Schwartz has shown that the following formula holds
(C being Euler's constant):

F[~(z) Pfz ')(~(x))

if n is not an integer, or of F(z) —1/z if n is an integer.
F(0) is invariant with respect to variable transforma-
tionsif n&1, but if n=1 wehave F(0)—+F(0)—y(0) log!I

by the dilatation transformation x—+)x. This lack of
dilatation invariance originates from the compactness
of the support of the y's, and seems to be characteristic
for particles with a finite nonvanishing rest mass [see
Eqs. (4.5, 6)].This problem may be investigated on the
basis of the theory of diGerential forms of distributions;
the latter lies beyond the object of this paper.

By differentiating (3.20) with respect to x taking
account of F(DU(x)) =izF(U(x)), one can deduce the
relations (n being an integer &~1)

Pfx "(z)=(1/»"(n 1)—!)

=—Pf t dze(z)z —' exp(izx) (z) X dze(z)z"-' exp(izx) (z), (3.21)

p
+00

= —2[logl xl+C+log(2z))(z), (3.18) Pf~' d» "exp(—i»)(y)

or, reciprocally written,

F(logl*l)—= (1/2~)J" d*loglxl exp( izx)

= ——,'e(z) Pf(z ') —['C+ log(2z. )]b(z).

However, the integral in (3.18) is not invariant with
respect to the transformation s~)s, i.e., it shows a
lack of dilatation invariance. The correct formulas are

Pf ~ dze(z)z —' exp(izx) (qr)

=—2[log l xl+C+log(2z X))(y), (3.19)

F(loglxl)(z)=[ —z~(z) Pf(z ')
—(C+log(2vrX)) 8(z)](q), (3.20)

where 'A is an arbitrary 6nite constant connected with
the dilatation transformation named above. This
constant may be called a "normalization constant. " In
the sense of classical analysis, the integral on the left-
hand side of (3.19) is a divergent one, but it is con-
vergent in the sense of distribution analysis as a result
of a strict definition of z(z) Pf(z ') for z=0. As stated
by Schwartz, the pseudofunction

Pf, dxy(x)x —"

=( " "()/ "( —1) )( ).

Further, we find, using (3.17, 20), that

F(x(log! xl —1))= (Fx) * (F(logl xl —1))
=ib'(z) + F(loglxl —1)=id[F(loglxl —1)]/dz

=—',ic(z) Pf(z—') —i[C+log (2z.X') ]8'(z).

Hence (X' being a normalization constant),

Pf)t dze(z)z
—' exp(izx)

= —2ixf log l xl —1+C+log(27rX')). (3.22)

Finally, it can be shown by investigating Fresnel's
integrals that the formula

Pf d'k exp(izk')(q) =iz-'e(z) Pf(z ')(z) (3.23)

holds. By differentiating (3.23) with respect to z ac-
cording to (3.17) [noting that the result of differenti-
ation of the left-hand side of (3.23) reads effectively

~
+QO

Pf ' d'k(ik')" exp(izk')(q)

according to (2.20)], we easily obtain the important
relation

can be interpreted as the analytical continuation F(0) Pf d'k(k')" exp(izk')
of an ordinary integral 10

F(z) = ~~ dxz(x)x' —"
0 I

"L.Schwartz, reference 3, distributions II, p. 114.

'iz"+'(n +1)!e( )zPf(z " ')

n+1
/2z2i& ~ g (1/p)b&&+&&(z) (3.24)
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From this the formula (13) is shown to be incorrect,
except for m=1.

Now we can compute the S-matrix element M„LEq.
(1.1)] correctly. Neglecting temporarily the arbitrary
distributions resulting from (3.5), the performance of
the k-integration according to (3.24) yields the term

n+1
&i( )= 2 " "LE (I/ )]~&"+"(),

+=2

which must be added to the integrand of the g-integral
of (1.4), say «(s)sn ' '—&c(s)s" ' '+h(s). From this it
follows that some matrix elements, for instance the
transition element of the decay of a scalar v-meson into
two pseudoscalar or-mesons, will be modified Lsee Eq.
(4.10)]. Such additive quantities appear only for
elements with j=e0 and e ~& 3. By the substitution of
the Fourier representations of the S-functions a dis-
tribution-analytical division problem is induced, i.en)

by Pf(J&2+m2) ', which is apparently eliminated by the
integral representation of Pf(k2+m2) ' by (1.2). This
division problem appears again in the form of negative
powers of z in performing the k-integration according to
(3.24) by which, as we have demonstrated in the pre-
ceding section, a distribution of the form

N

P c,&"&g&'&(s),
j=0

(S= 1, 0, 0 for e= 1, 2, 3, respectively, c,'"&=0 if I)~4,
c,'"&=arbitrary constants), with the origin as support
is produced in the integrand of the s-integral. There is
no counterpart of this division problem in classical
analysis. This result may also be proved explicitly by
verifying carefully each step of the calculation Las with
Eqs. (3.1—4)]. After some calculations we find, instead
of (1.4), for M :

no n ( P+
M-( )=(G/4(2 )'"")2 II l

d'p. f/. (p.)
&=0 &'o=& (~

X da& lA; i&x"+ +'&(j+1)!exp( ixpp)—

and for e&~2,

M „(x)= ((—1)"G/2(2or) 4n+')

( p+~ &o+i

xIIl d'p&v&(pj) da&. In.
&=i &J

[
no

Xexp( —ixpo) p A~(k+1)!(n—k —2)!

) 0+1—n

XI mm+p p), '
l

0

n

XB loglm'+Q P,);2l+C+D
0

+log(2orX) —c„ i&"'/2 . (3.27)

Here 8=1 if @=2, 3; 8=0 for n&3; D= —if v=2,
D= —

6 if m=3, D=O for n&3, and A are given as in
(1.4). These matrix elements, however, are seen to be
convergent, and contain arbitrary division constants
c1(", c„1&"'and normalization constants ), 'A' if n &~3.

8j„(x)=Mi(x) = —4e' d'x E (x—x)A -'(x)

where E„„is given by

K„„(xo—xi) =Sp Q S"&(0, 1)ynS(1, 0)y, . (4.1)

Introducing a new normalization constant )"by logX'
= log!&+ 2 logX", and using (3.26), the Fourier transform
K„„(p) of E„,(x) is found to be

IV. T%0- AND THREE-FIELD PROBLEMS

In this section the formalism explained above will be
applied to special interaction problems. First we study
the self-energy of the photon. The current 8j„ induced
in the vacuum is obtained from M1 and U1=A;"',
Fp= y„) F1=y„) as

Xpf
n+'+

ds exp isl m'+g po'A&,
'

li o)= ~+1
&"(p) = l:—'.(2~)'] daf (1 a') (p.p ~"p')—

—1

Xfs" ' '(e)s+—c—'o&&„&&ib(s)+5;,„,LR(—1)"',
Xp(~,+2 )I(/~ —

o 1)!]+c—,&-&]

X t&&no n+i&(s) —
(3 25)

from which it follows that

XLlog l (1—a') (p'/4)+m' l+C+log(2xX)+ci]

+8„„L(1—a')(p'/4)+m'](1 —logX"+c2)), (4.2)

where c1 and c2 are arbitrary division constants. This
expression, i.e., bj„, is not gauge-invariant. The gauge-
invariant result,

M i(x) = (G/4(2m. )") dai f 2A &l
m' —(1—ai') /4] lt"(p) = (p'b. —p.p.)Lk(2x)'] «((1—a')/4)

X Dog l

m' —(1—ai') /4l+C+log(2orlh. ')

—2+co&'&/2] —A oglog l
m' —(1—a&2) /4

l

+C+log(2orX)+ci&'&]) Ui(x), (3.26)

lPf dse(s)s ' expisl (1—a') (p'/4)+m']+c,

(4.3)
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(c= —cl/2), is obtained either by suitable choice of c2

(e.g., neglecting the lack of dilatation invariance by
using Eq. (3.18), i.e., X=V=X"=1, the choice c2= —1
is sufficient) or, letting c& be zero, by the choice logX" = 1.
This conclusion is shown to be unique Lprovided that
arbitrary distributions (3.5) are neglected], for ex-
panding the left hand of p„E„„(p)=0 in powers of m,
expressions of the form nb(s)+Pi'(s) must vanish Lsee
Eq. (4.7a)] yielding c4=P=O (see Sec. II). Therefore,
the vanishing of the self-energy of interacting photons
is guaranteed exactly, but, according to the arbitrary
normalization constant X and the division constant c
we cannot conclude that the unobservable (finite)
mass of the bare photon is de6nite. With

E..(p) =(p.p. b..p')E-(p'),

log
~

m2+ (1—44') (p'/4)
~

—jogm2 g L(g2 1)/4m2]n(p2)n/44!

has to be evaluated. This integral is not equal to

—2 t dsb(s) Pf(s ') exp(isx)

I

obtained by ordinary integration by parts, as usually
stated, corresponding to the quadratic divergence of the
photon self-energy if—as it is done in the ordinary
formalism —the Pf symbol is omitted. Instead of this
we find, by differentiating c(s) exp(isx) Pf(s ') accord-
ing to (3.17),

e(s)dLexp(isx) Pf(z ')]/ds
=dLe(s) exp(isx) Pf(s ')]/ds+2b'(z) exp(isx).

The 6rst term on the right-hand side of this equation
vanishes when integrated over s. From the second
expression a 6nite self-energy is obtained. But we have

2b'(s) exp(izx) =
t
—2b(z) Pf(s ')+cb(z)] exp(isx)

we find from (4.3), making use of (3.19), that

where

E„=(1/e!) dgL(g2 1)/4m2]++1

logX*= 6+log(2irX) —c/2.

E(P') = (1/48lr') log(m'X*)+(m/4lr)' g E„(P')"
n=1

(4 4)

(4.4a)

Lsince from sb'(s)=0, b(s)+sb'(s)=0 it follows that
b'(s) = b(s) Pf(s ')+cb(s) according to (2.28, 29)] where
the first term in the bracket corresponds to the quad-
ratic divergence if the Pf symbol is omitted, i.e., if no
use is made of distribution analysis. This explains the
discrepancies between the classical quadratic diver-
gence of the photon self-energy, the finite result of,
Wentzel, ' and the vanishing observable mass.

The connection of the normalization constant 3 with
Feynman's cut-oG factor may be exhibited as follows:
By going over from b(x„2) to f(x„2) in Feynman's
formalism, a convergence factor

g(k2) (~2 g 2)/(k2 g 2)

The observable quantities are in agreement with those
of Schwinger. ' The renormalization of charge reads

be=4e'E(0)=(a/34r) log(m9. *),n=e'/44r=1/137, (45)

which is convergent but indeterminate in the normaliza-
tion and division constants.

Generally it is seen from (3.25—27) that, according
to their common origin, the normalization constants
appear simultaneously with the division constants.
Since both constants are arbitrary, one of them may be
omitted in the results. Thus it can be concluded from
the distribution-analytical formulation of field theory
that an arbitrary constant corresponds to each quantity
which is divergent in the conventional theory Lsee, for
instance, Eq. (4.5)]. Some consequences of this fact
will be drawn in what follows.

To analyze the problem of a finite nonvanishing self-

energy of the photon we consider for simplicity Eqs.
(43) and (44) of the paper, of Pauli-Villars. ' Here the
integral

dse(z)dLexp(izx) Pf(z ')]/ds

is introduced into the integrand of integrals over the
momentum k of virtual particles, like

~ +00

d4k(k2 ~2)
—l~ d4k(k2 ~2)—lg(k2)

~Xo2

d'k I dL(k' L) ', —

Xo—+~, which yields a term log(XO'p '). On the other
hand, (k' —p') ' is shown to be equivalent to —b'(k' —p')
when integrated on k. But by distribution analysis we
obtain

+00 ~+00
d4kb'(k' —p')~Pf dze(z)S '

. Xexp(isy')~log(Xp '),

with the normalization constant X, by omitting a
division constant. So we can conclude that the nor-
malization constant (and the division constants) ap-
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pearing by application of distribution analysis may be
interpreted as a cut-o6 factor, although its mathematical
meaning is quite different from an actual cutoff. We see
again that the division constant is equivalent to the
normalization constant.

Distribution-analytically, the eKcacy of the regu-
lator of Pauli-Villars appears in a new light. As can be
shown by considering (3.25) for various processes, the
ambiguous terms to be eliminated from the S-matrix
generally have the form [C&B(s)+CsB'(z)$ exp(izm') in
the integrand of the z-integral of (3.25). By introducing
the regulator R(s)= fd&rp(&t) exp(is&r) into the field-
theoretical formalism we get, therefore,

[C,B(s)+CsB'(s)$R(s)
= [CiR(0)—CsR'(0) jB(s)+CsR(0) 5'(s),

which yields the regularization conditions R(0)=R'(0)
=0. On the other hand, by the distribution calculus
there appears an expression [cth(s)+eel&'(z)g exp(ism')
in (3.25) which is able to eliminate the ambiguous
terms by the choice of c;=—C;. From that we conclude
that only such terms have to be subjected to the regu-
lator whose the "m-factors" are induced by exp(ism')
coming from Pf(k'+m') ' in S, without any con-
sideration of the powers of m contained in the traces.
This explains the various regularization alternatives, "
but such doubtful limiting methods are not necessary
in the new formalism which is mathematically correct
as well as more powerful, even in nonrenormalizable
theories.

The discrepancies contained in the relations between
SF-functions and S- and St'&-functions are removed in
the same way. For instance, by calculating the self-
energy of the electron in Dyson's formalism, the real
part of the one-electron-zero-photon term of the second-
order S-matrix, which is not equal to zero in the ordi-
nary formalism, disappears in distribution calculus by
suitable choice of division constants (provided arbitrary
distributions are put to be identical zero).

Further, an evaluation of 6"&(x) by a distribution-
analytical modification of Schwinger's computation'
shows thai

BA "&(x)/Bx,= —x,[e. ' Pff '+(m/2pr)' Pff' '

+reg. in (f'= —x,')]

vanishes identically on the light con" as a consequence
of the Pf symbol —yielding correctly in this manner the
continuity relation BE„.(x)/Bx„=0. A strict definition of
Pf(k'+m') ' will not be given here. Some diKculties
appear with regard to the properties of symmetry and
reality of 8 and S&'&, leading to a lack of invariance with
respect to reQection in the origin of the light cone,
corresponding to the dipole properties of the latter.

"S. Tomonaga et ul. , Prog. Theoret. Phys. 4, 41'7 (1949);
S. Ozaki et a/. , Prog. Theoret. Phys. 4, 524 (1949); 5, 25, 165
(1950); P. T. Matthews, reference 1; J. Steinberger, reference 1.

To compute the self-energies of the electron and
nucleon the same method can be used as for the self-
energy of the photon. The essential part of the self-
energy of an electron reads:

+1 +00

da[iyp(1 —a)/2+2m] Pf ds[e(s)s '+cB(s) j

)&exp[isp'(1+ a)'/4].

Joining the division constant c with the normalization
constant [see Eq. (3.19)$—which is always possibl-
to get a new constant )&,p (for instance, neglecting the
normalization constant, i.e., putting ) = i, and using c
alone), we find, according to (3.19),

5m= (3 mcr/2 s)[l og('A p/ m) +sp5 . (4.6)

Examining the calculations of Geheniau-Villars, " the
values of the anomalous magnetic moments of the
electron and nucleon are shown to remain unchanged
provided arbitrary distributions, which appear here as
in (3.5), are neglected. But i't should be pointed out
that there is in general no reason for neglecting such
arbitrary quantities, especially in the case of the
nucleon moment. By the same methods the self-stress
of the electron is found to be

~+»
(Ttt)p= [e'm/8(2s. )'j da(3 —a) (4—c)/2.

—»

This is equal to zero, as demanded by the theory of
relativity, if we choose c=4. Therefore, to obtain a
vanishing self-stress no admixture of vector 6elds is
necessary. '4

Some meson processes may now be discussed. The
decay of a boson into a fermion and the processes
z —+&«+ v, pr—+e+ v via the nucleon field are described by
M». The divergence theorem, including gauge-inva-

riance, is shown to be fulfilled formally by the types of
coupling (Pp, I'i) = (e, t&), (t, t), (tt, pt) and the equivalence
theorem by Mv, = (pt&, ps), M„„=(pt&, pt&). Evaluating
the traces we find from (3.26), including cp&'& and cro&

into ), )&,
' temporarily, with logX'=logX+sr, that

+»

R'(p) = —(4pr)
—' I da Sp(((1—a')/4)

X [P.Pp+-', B.pP'](v. Pn pP )

+-,'m'(y;I'ry;1'p+21'rl'p)

——,'imP ([y, I' t] I'p)

&& Dog Im'+((I —a')/4) P'I

+C+log(2prX))), (4.7)
"J.Ghheniau and F. Villars, Helv. Phys. Acta 25, 178 (1950).
«F. Rohrlich, Phys. Rev. 77, 557 (1950);F. Villars, Phys. Rev.

79, 122 (1950).
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where

E(x)=ALE(P)]=sp g S&r&(0, 1)r, tp(1, 0)r„

p+QO

x= xp —xi, Mi(x,)=G
J

d'xiii(xi)E(x).

p„$c,'B(s)+ (c2' 1)8'(s)]+2m—
t crb(s)+ c28'(s)]=0,

(4.7a)

yielding c&=c2=cj'=0, c2'=1 according to Sec. II.
This leads to 3f„,~=M„,~=0, giving the equivalent

elements 3f„, and M„, in a unique way.

From this convergent formula, for instance, the
equivalent elements 3f~, and M~, are calculated, and
it is shown that the specified relation logX'=logh+2
between ) and X' is the necessary and suKcient one for
all processes which are subjected to the postulates of
gauge invariance, equivalence, and to the divergence
theorem. %hen there are no general prescriptions of
this kind. , it is not possible to get results which are free
of arbitrary constants. In addition, even in the case
where there are general .rules, no assertion is made
about the meaning of the arbitrary distributions (3.5)
to be added to 3E„.%e have seen that the normalization
constant is contained only in quantities which are not
observable Lsee (4.5, 6)), i.e., in renormalization
factors. Therefore we can say that a distribution-
analytical treatment of field theory leads directly to a
renormalization. On the other hand, the normalization
constant was shown to appear at the same place as the
cut-oG factor of the conventional theory. Therefore,
we no longer have in principle any distinction between
renormalizable and nonrenormalizable formalisms.
Having "normalized" the matrix elements by X and c
so as to satisfy the general rules, those quantities which

are not dilatation invariant, i.e., which contain a nor-
malization constant and therefore do not correspond
to observable sects, may be neglected in the results;
they may be included in observable masses and coupling

constants.
The efBcacy of the division constants —which are

closely connected with the normalization constants —in

eliminating unphysical terms may be demonstrated for

M„, and M~, . Computing these elements from (3.25),
both expressions can be split up into two parts,
M„.'+Mr/ and M„„'+M~/, respectively, in such a

way that only M„,~ and M„,~ contain arbitrary con-

stants, say c&, c2 and c&', c&', respectively. The equiva-

lence theorem is then shown to be valid for M„, and

M~„', so that the relation ipM„„p+2mM„p =0 has to
be demanded. Effectively this implies that

The calculation of the transitions" pr~tt+ t, prie+ v

via the nucleon 6eld is easily performed by means of
MI with I'0= I'~ ——i. Both elements are finit" in

contrast to those obtained by the ordinary formalism—containing arbitrary normalization and division con-
stants, a suitable choice of which may give well

10 ' sec in agreement with experiments. The
ratio r „+./r, +„, however, is found to be in ac-
cordance with experiment ((10 ') only if one assumes
a dependence of the ratio of masses of the decay
products on the arbitrary constants (e.g. , X).

In the frame of interaction of three fields described

by 3I2, we discuss in particular the decay of a r-meson
into two m-mesons and the decay of neutral m-mesons

into two photons, "General theorems, although formally
fulfilled in coordinate space—even by using distribution
analysis —are mostly destroyed by calculating the
matrix elements in momentum space according to the
ordinary formalism. Distribution-analytically from

(3.27) with n=2 the characteristic form E of

M2(xp) G d x~ x2U 1(xi) ~2(x2)E(xp) xi) x2)
J J

reads

E=(1/2"pr") t t da&da2(1 —a&) t I d'p, d'p,
J J

2

X (2A (2222++ p X')+2B .ic—
2—4Dt log(2222++ p;X 2j —

—2,+6+log(22rX)]}

XexpLi P p;(xp x')] (4.8)

where A, 8, and D are products of spur terms with

momentum variables whose explicit form will not be
given here; c is a division constant, and X the nor-

malization constant. 'Considering the decay x—&2y

(1'p=1 1'y=p 1'2=y„) of a scalar pr-meson with scalar

coupling, the term 8= —4mb„„represents a nongauge
invariant term which will be eliminated in a unique
manner by choosing c= —2iB, with the result
M2=(G/2mpr2)Ii„, 2(F„.=it„A„rf,A„); this re—sult was

obtained by Steinberger and Fukuda-Miyamoto" by the

15 L. I. Schiff, Phys. Rev. 76, 303, 1266 (1949); J. Steinberger,
reference 1.

"Leighton, Wanlass, and Alford, Phys. Rev. 83, 843 (1951);J.
Steinberger, reference 1; H. Fukuda et ul. , reference 1; S. Ozaki
et at. , reference 1; A. G. Carlson et at. , Phil. Mag. 41, 701 (1950l.
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use of regulators. The decay of a scalar v.-meson with
scalar coupling into a vector x-meson and a scalar
x-meson with vector coupling, which is a nonrenor-
malizable problem and is described by the element
analogous to m

—&2&, is subjected to the divergence
theorem, yielding the same relation between -c and. 8
as above in order to fulfill the theorem in a unique way.
As an example of equivalence, we studied the process
x—+2& of a pseudoscalar m.-meson and the decay of a
pseudoscalar 7-meson into two vector x-mesons with
vector coupling, using the same methods as described
under two-field processes. For instance, the transition
v~2vr is represented by

M„,(r)- (—G/48m'm') (p,'+pi2+ p2'4)

&&(~-U.)(~zU.)~"-z, (4.9)

(Ii, mass of r, p; mass of ~;) and this holds for

(—1/2m) B„M„,which is nonrenormalizable. Finally, we
6nd for the decay of a scalar 7-meson with scalar
coupling into two pseudoscalar x-mesons with pseudo-
scalar coupling (with F0——1, Pi ——y5, F2—-yq, pi ——p2 ——p~)

M- —(G/(2z)') {m
—'[p,'+-'p. ']

—(m/4)[32{log(m'2z X)+C+—',}+c—167}UiU2. (4.10)

This transition element is divergent in the conventional
formalism. According to the theory of distributions it
contains arbitrary constants (c, X).The term —16 in the
second bracket comes from Eq. (3.24); it cannot be
obtained. by the conventional incorrect formula (1.3).

However, the meaning of the arbitrary distributions
which were neglected above throughout, is by no means
clarified. An evaluation of the respective terms shows

that the additive quantities resulting from (3.5) are
distinguished from the elements written in the text
only by extending the boundaries of the a;-integrals to

and, replacing dz by dzf(z, u;) in the z-integral,

f(z, a;) being an arbitrary distribution.
Numerous examples can be added to show how to

treat other questions in field theory by means of dis-

tribution analysis in an unambiguous and self-con-

sistent manner. For example, the calculation of radia-
tive corrections can be made by these methods. It. is

believed that a careful investigation by means of the

theory of distributions leads to consistent results in

many cases where the conventional methods fail. It is
no longer necessary to adopt such doubtful prescriptions
as to attach the value zero to certain divergent integrals,
as is done, for instance, in the calculation of radiative
corrections to the stress tensor of the electron. "We are
not obliged to go outside the framework of current
field theory by introducing unrealistic auxiliary 6elds
so as to compensate undesirable eBects. But it should

' S. Sorowitz and %. Kohn, Phys. Rev. 86, 985 (1952).

be pointed out that it is not legitimate to consider only
the last steps of a calculation by distribution methods.
The distribution analysis has to be performed from the
beginning, verifying carefully each step of the com-
putation.

A very important question is the degree of uncertainty
of the results obtained only from the distribution cal-
culus-without new physical assumptions. The situation
arising from the appearance of arbitrary constants and
functions in the result is quite analogous to that of the
theory of linear and partial diBerential equations. In
both cases the arbitrary parameters serve for the adap-
tation of the result to initial and boundary conditions.
Since there are many processes for which no general

rules, such as gauge invariance, are known in order to
determinate the arbitrary constants, we have to con-

clude that the fundamental physical assumptions of the
field theory are incomplete. In order to determine these
arbitrary parameters, especially in meson theory, addi-
tive quantities in the interaction Hamiltonian seem to
be necessary.

Corresponding to the arbitrary constants, it is not
possible to attribute definite values to the parameters
of bare particles. The determination of normalization

constants by the general rules, for instance by the

gauge invariance of a theory with interaction, will

exclude the possibility of the simultaneous existence of
a theory which is gauge invariant without interaction.
The uncertainty of some effects induced by the arbi-
trariness of normalization constants seems to be a con-

sequence of the idealized localizability of field quan-
tities in space-time, that is, of the 6niteness of the
ma'sses of particles, which is manifested by a lack of
dilatation invariance.

The main problems to be investigated in the future

may concern the local and causal structure of invariant

propagation functions, which now have to be con-

sidered as distributions under the aspect of the Pf
symbol. Then the field operators must be replaced by
distributions in order to conserve the sense of the com-

mutation relations as distribution equations.
In conclusion, the author should like to express his

hearty thanks to Professor Moliere (now in Rio de

Janeiro) for his kind advice and encouragement
throughout this work. He is also indebted to Professor
L. Schwartz (Nancy) for his stimulating discussions.

mpmmorx

I. In order to get the definition (2.3) let us consid. er a
displacement operator r+q acting on y(x) according to
~~gy(x) = q(xWh), and define r~~T(y) = T(spry). Then
it is natural to define

D[T(q)] by lim[r &T(p) —T(p)]/h.
k-+0



ioi8 KERNER GUTTINGER

Since distributions are linear and continuous, we have

D[T(~))=1m[ —.T( )—T( )3/k
h-+0

= lim[T(r p, (o)—T((o)j/k= limT(rs q
—qo)/k

5-+0

=T[hm(r. q
—q)/kj= T(—q '(*))= —T(s '),

Is-+0

in accordance with (2.3).
IQ I.et us consider in the frame of classical analysis

the divergent integral

dx(1/x +')g(x)

This definition is a very arti6cial one, but is useful for
Cauchy's problem, especially for the study of the con-
nection of the solutions of the Poisson and wave
equations. By choosing g(x) = p(x) we see immediately
that the distribution-derivative Df+(qp) of f+(qo) coin-

cides with the finite part of the divergent integral

p+ 00

p.f. ) dx[f, '(x)j ( (x).

But this coincidence is quite an accidental one.
III. In order to prove Eq. (3.10) we note that it is

true for n= 2 since, by integration by parts,

0(a(1, with a continuous function g(x) whose func-
tion-derivative is continuous. As is known from the
theory of partial diBerential equations, especially from
Cauchy's problem, Hadamard' has introduced the
notion "finite part of a divergent integral" as follows:
Choose a constant c in such a way that the quantity

= —lim
e-+0

dx((t (x)/x')

—[(o(x)/e+9'(x) logej.

D'(f (y)) =f ((o")= lim! dx log! x! (o"(x) !,
a-+O

lim, dx(1/xo+') g(x)+ c/as }
z~o J g

exists. This expression can be written in the form

= lim ) dx((o(x)/x') —(o(0)/e

—(o'(0) loge —
(t

' (0),

=——PfL(* ')-((t)1—
(t '(o)

+g(0) )" dx/x +'+c/as
g'

= —PfL(* ')-(v) j+~'(( )

= lim
z~0

z

dx[(g(x) —g(0))/x +')+ (g(0)+c)/as

We suppose that (3.10) is true for some fixed n, say
n=k) 2. Then we have, according to (2.4),

D""[f-(()3

Since the function-derivative [g (x)j is continuous, i.e.,
!g(x)—g(0)! &M!x!, the integral in the latter ex-

pression is convergent. Therefore, if c is chosen as
c= —g(0), the quantity lim, of . } is a convergent

one, and will be explained as the finite part (f.p.) of the
divergent integral

dx(1/xo+') g(x) .
~o

= —D"[f-((t ')j

=(—1)"(k—1) PfL(x ")-(~')jr(1/t)~'"-"((t')

= (—1)"(k—1)!lim dx[qo'(x)/x']
q-+0

f.p.
~ 00

dx(1/x +')g(x)
40

= lim
'

dx(1/x +')g(x) —g(0)/as
z~0

z

~(o+1)(0)co+1 e~ (s)(0)—
+2 (—1)"" loge

tt!(tt+1 —k) (k —1)!

"J.Hadamard, Lectures on Cauchy's Problem in Linear Partial
Digerntiat Eqttatiorts (Yale University Press, Net Haven, 1923).

—2(1/t)~" "(q')
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A:—1 &&o)(())eo—&

+(1/&)2(—1)"" '
)&k=1 (t —1)!(t—&)

D"+' PfL(& ")~(&o)L=DLD"Pf(* ")+(&t)3

&o&'&(0)

loge +P(1/t )5&'&(&o),
kI

Iv. Equation (3.16) 1s true for rN= 1) rt arbitrary,
j+( ) &( ')/~' according to (3.13). Assuming (3.16) to be true for

m=k&1 we have

( 1)k
= (—1)"&' »m d*Cv (*)/*"'j+ — s (0)

~ o ke'

~L(—1)"/(rt —1)!j2 (1/&+ o) 6& "+"'(&t)
v=, 0

0

+(—1)" (1/(0+I)!)rI (rt+o)
v~0

+2 (1/t )5"'(&t),

= —(—1)'+'k!PfL(x ' ')(&o)1+ Q (1/tt)5&s&(&o)
1

i.e., (3.10) is true for every rt, q.e.d. Eq. (3.8) can be
proved in the same manner.

+(1/(tt —1)!)2 (1/I+o) 5"'"'(v)
v=0

=(—1)"+'II(rt+ v) PfE(~-"-'-')~(e)j
v=O

~L(—1)"/( —1)!j2 (1/rt+ ~)~"+"'(&o)'

v 0

i.e., (3.16) is true for aH rt, rrt.
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The Range Correction for Electron, Pick-Up
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The extension of positive particle ranges caused by pick-up of electrons at low velocities has been studied
in Ilford C2 emulsion. Ranges of Li' and 88 nuclei were measured in emulsion and compared with tracks
of helium and hydrogen isotopes of the same velocity. The empirical range-energy relation adduced for light
nuclei is: Z'R/M= F(2'/M)+0. 12Z', for P)1.04Z/137.

I. INTRODUCTION
" T has recently' been found possible to collect and

analyze physically the products formed when the
high energy beam of the 184-inch cyclotron is employed
to disintegrate atomic nuclei. A reliable analysis of the
products of atomic number greater than two was,
however, dificult because the range-energy relations in
nuclear track emulsion for multiply charged fragments
were uncertain. In the preliminary work in which
protons bombarded carbon, no "hammer" tracks in-
dicative of the presence of I.i' and 8 were found. %'ith
further searching on these plates, a few such tracks
have now been found, and hammer tracks are also seen
in fair abundance on plates exposed to the disintegration

~ Walter H. Sarkas and J. Kent Sowker, Phys. Rev. 87, 207
(1952).

products of various light elements bombarded with
alpha-particles or deuterons. In the present experiment
about one splinter in two hundred was Li', and about
one in 5000 was 8'.

The unmistakable appearance of the tracks which
they produce make Li' and 8' extremely useful isotopes
to employ in studying the range-energy relations for
multiply charged ions. At low velocities a positive par-
ticle tends to be neutralized by electrons, thus reducing
its rate of energy loss. It is the purpose of this experi-
ment to utilize the tracks of Li' and 3' to evaluate the
range correction arising from this eGect.

II. IDENTIFICATION AND MEASUREMENT
OF TRACKS

Tracks are identi6ed by plotting the range, E, eersls
the radius of curvature, p, for each track. The tracks of


