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where Ff is the probability per unit time that the compound
nucleus lose its excitation by fission, and 1, is the probability
per unit time that the compound nucleus lose its excitation by
gamma-ray emission. If I', is a very slowly changing function of
the nuclear excitation energy in the region under consideration
(4.8 to 6.6 Mev), and if Ff is a highly dependent function of
nuclear excitation energy in the above energy range, one would
expect a correlation of the ratio o~/o; with neutron binding
energies. Implicit in the above reasoning is that the critical
deformation energies Ef are roughly constant for the nuclides
considered. The difference between the neutron binding energy
and Ey would be a better quantity to plot on the abscissa.

The plot of logos(Z, A)/0;(Z, A) es the binding energy of a
neutron to (Z, A) for several nuclides is shown in Fig. 1. In
Table I are listed the cross-section and binding energy data.

From Fig. 1, it is readily seen that the logarithm of the ratio
af/0, decreases sharply with decreasing neutron binding energy.
With two of the three variables (of, cr„neutron binding energy)
known, the third can be predicted. Using our calculated neutron
binding energies, several interesting o-y/o; ratios can be predicted.
For example, 4'/a, should be about 0.1 or less for U"'. The
measured thermal neutron capture cross section of U"9 is 22
barns. 4 Therefore, the predicted thermal neutron fission cross
section of U239 is ~&2 barns. Likewise, it would be of interest to

TABLE I. Binding energy of a neutron to (Z, A) and the thermal neutron
capture and fission cross-sections of several nuclides.

Nuclide
(Z, A)

Th230
Th232
Pa231
U236
Np237
Pu 233

Pu239
Pu 241

Am241
Am242
Cm242

af(Z, A)'
barns

&0.001
&0.0002

- 0.01
545

0.019
20

664
1060

3
6000

&5

4'(Z, A)~
barns

45
7

290
100
170
455
361
400
884

2000
25

f(Z, A)

a (Z, A)

&2.2 X10 &

&2.8 X10 3

3.4 X10 3

5.45
1.1 X10 4

4.4X10 '
1.84
2.65
5X10 3

3
&2 X10 '

Neutron
binding

energy to
(Z, A)b

Mev

5.25
4.80
5.41
6.43
5.36
5.77
6.43
6.27
5.57
6.58
5.93

o See reference 4.
& See reference 3,
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FIG. 1.Log [4'(Z, A) joe(Z, A)] vs the binding energy of a neutron to (Z, A).

measure the thermal neutron capture cross sections of such
nuclides as Th"' and U"' since values4 are reported for their
thermal neutron fission cross sections.

It is also interesting to note that Cm~~ and Am~' show no
irregularity in Fig. 1 when the variable oy/o; is plotted es neutron
binding energy. When the neutron binding energies decrease to
values of about 5.4 Mev, the plot of log(oy/o;) vs neutron binding
energy shows an irregularity (see Fig. 1). The fission mechanism
may be considerably different at these energies, since the neutron
binding energy may not be suflicient to bring the excited nucleus
above the fission barrier.

Refinements, of course, can be made in Fig. 1 for the different
type nuclei. However, the present data do not justify separating
the odd compound nuclei from the even type.
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w E have investigated the low-lying energy levels of a con-
duction electron in a polar crystal, using the "intermediate

coupling" variational technique introduced by Tomonaga. ' This
problem is of considerable interest because of the strong inter-
action between the electron and the ionic polarization it produces
in its motion through the crystal. The electron may be pictured
as accompanied by a cloud of phonons (i.e., the associated waves
of ionic polarization), and the combined system (electron plus
associated phonon cloud) is known as a polaron. The strength of
the electron-lattice interaction furnishes a measure of the average
number of phonons in the cloud around the electron, and hence
of the effective mass of the polaron.

The reduction in the electron energy as a consequence of its
interaction with the lattice was first computed semi-classically by
Pekar, ' and by Markham and Seitz, ' using an adiabatic approxi-
mation. Frohlich, Pelzer, and Zienau calculated this energy and
the effective mass of the polaron in a quantum-mechanical treat-
ment which is appropriate provided the electron-lattice inter-
action is sufljciently weak. Pekar' has also given a quantum
treatment of these aspects, using the adiabatic approximation.
However, in most cases of interest the interaction is so strong that
the method of Frohlich et al. breaks down, and yet the kinetic
energy of the electron is only comparable to that of the vibrational
quantum. so that the adiabatic approximation is not applicable.
Under these circumstances, Tomonaga's variational technique
furnishes a promising method of attack.

We adopt the Hamiltonian and notation of Frohlich, Pelzer,
and Zienau, and we work in the Fock representation, in which
the Schrodinger function P of our system is described by a set of
Schrodinger functions corresponding respectively to states of
electron and no phonons, electron and one phonon, electron and
two phonons, etc. Let (k&, k&, ~ ~, k„,r,/P) be the probability
amplitude of finding the electron at a position r, and n phonons
of momenta k& ~ k, respectively in the phonon field. Tomonaga's
method consists of assuming a trial function of the form

(kq, km, ~ ~, k„,r,/P)=c, f(k~)f(km) f(k„)y~(r,), (1)

where f(k) and x (r,) are normalized functions in the k and r,
spaces, respectively; t, 2 thus represents the probability of finding
n phonons and one electron in the system. If we further require
that f be an eigenfunction of the total momentum of the system
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P, the form of x„is automatically fixed. It is

(2)

On varying the energy with respect to f(k) and c, the best form
of f(k) and a difference equation for c„canbe obtained. ' Our
choice (1) of (kl, k2, ~ ., k„,r,/p) refiects our assumption of no
correlation between the emission of successive phonons, so that
the form of f is the same for all the phonons. Yet, as in any
application of Ritz's variational principle, the value of E thus
determined will be better than the form of P chosen.

We confine our attention here to the low-lying energy levels
of the system, such that the total system momentum P satisfies
(P2/2m) &Ace, where m is the effective mass of the electron (as a
consequence of its interaction with the periodic lattice field),
and co the frequency of the optical vibrational mode of the lattice
oscillation. Under these circumstances, the difference equation
can be solved analytically, and the best form of f(k) turns out
to be

f(k) =F{k(k'+2m~/k) —L12kP cosD/(0. +6)kj} ' (3)

where E is a normalization constant, 8 is the angle between k
and P, and a is the coupling constant of the lattice-electron inter-
action.

where n is the index of refraction and e the dielectric constant of
the crystal. The average number of phonons in the cloud around
the electron turns out to be approximately n/2. The corresponding
energy of the ground state of the system with a total momentum
P is

E= —ex&~+ (P2/2m) (1+ca/6) '+ ~ +0(P2/2mkco) 2+ ~ (4)

relative to the energy of a free electron at the bottom of the
crystal conduction band,

Thus, for the slow electrons we here considered, the interaction
introduces two effects: (1) all electronic energy levels are reduced
by akM, and (2) the motion of the polaron is that of a free particle
with an effective mass m, gf=m(1+a/6). In the limit of weak
coupling a« 1, our result reduces to that of Frohlich et al. , and
for larger values of n, our result always corresponds to a lower
energy. For a typical polar crystal, NaCl, (a=5.2, co=4.8X10"
sec '), we find Eo= —akron= —0.16 ev, and m„.pl=1.9 m. In this
case Frohlich et al. .. and also Pekar, obtain Eo——0.09 ev. Thus,
the Tomonaga scheme provides a better determination of the
lowest energy of the system. For NaCl, Pekar' and Landau and
Pekar found m, fr=432. However, as might be inferred from
Pekar s much higher value of Eo, this high effective mass is due
to the lack of applicability of the adiabatic approximation.
A detailed calculation confirms this point.

The interaction of a fast electron with both the acoustic and
polarization waves is now under investigation. A detailed account
of the above work will be submitted for publication soon.
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