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The Theory of Hydrogen Three*t
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The binding energy of the triton has been calculated by the variational method. The forces between the
particles are assumed to be charge independent and to be composed of central and tensor parts, the radial
dependence of each being given by Yukawa wells. The binding energy calculation is employed to determine
the range of the tensor component; the other constants are fixed by the low energy two-body data. The
effective triplet range, the percentage D state in the triton, and the Coulomb energy of Hee are then pre-
dicted. The first two of these are in satisfactory agreement with experiment; the third is in error by twenty-
five percent. The final "best" potential contains only four constants, the ranges and depths of the central
and tensor potentials. The triplet and singlet central forces are equal.

I. INTRODUCTION
' 'T is now well known that the low energy two-body
~ ~ data are not sensitive to the shape of the two-body
nuclear potential. For this information it is more
pro6table to turn to high energy two-body scattering
experiments and to the nuclear three-body system upon
which our attention is focused here. This sensitivity
of the three-body problem was recently discussed by
Svartholm, ' who employed several different central
force potentials. We interpret his results as follows: If
the range and depth of the internucleon potential are
adjusted to the low energy two-body data, the calcu-
lated binding energy of H' will be greater for those wells
which are deeper at small interparticle distances. Thus
the Yukawa potential involving a (1/r) singularity
yields a larger binding energy than the Gaussian. This
is in agreement with the calculation of Thomas, ' who
showed that the calculated binding energy of H' is
ininite for a zero-range potential,

Svartholm also found that the calculated binding
energy considerably exceeded the experimental value.
We may take this as indirect evidence for the existence
of noncentral forces (evidence of course not so cogent
as is the existence of the quadrupole moment of the
deuteron); for, as Ingliss pointed out, such a force
reduces the ratio of the theoretical H' binding energy
to the binding energy of the deuteron.

In the present paper a variational calculation of the
binding energy of H' and He' is made. The inter-
nucleon potential V1~ between particles 1 and 2 is taken
to be

V12= —Vs([1—sg+sg221 e2]f(r/r, )+yS12f(r/r2)), (1)

where

S12 r12 [3(&1'r12)(&2'r12)] 221'&2

f(x) = e '/x, r, 2
——r—,—r„

* Supported in part by the joint program of the ONR and AEC.
t A preliminary report was published as a Letter to the Editor,

Phys. Rev. 81, 142 (1951).
f Now at the RAND Corporation, Santa Monica, California.
~ N. Svartholm, thesis, Lund (H. Ohlssons Boktryckeri, 1945).
2 L. H. Thomas, Phys. Rev. 47, 903 (1935).
3 D. R. Inglis, Phys. Rev. 55, 988 (1939).

and Vo, y, g, r„and rg are constants. We assume charge
independence of nuclear forces—which is consistent4
with the use of the Yukawa potential as far as low
energy two-body data are concerned. Ideally the con-
stants in potential (1) are fixed by the deuteron binding
energy e, the deuteron quadrupole moment Q, the
singlet scattering length, the singlet effective range,
and the triplet effective range p1. The singlet effective
range is taken from p —p scattering data. The relation
between these experimental results and the constants
in our potential has been considered for the triplet
state by Feshbach and Schwinger. ' The calculations of
Hoisington, Share, and Breits and of Jackson and Blattr
were employed in the determination of r, and Vp(1 —2g),
the only constants in the singlet potential; the numerical
values are r, =1.184&t,'10 "cm, Vs(1 —2g) =46.48 Mev.
At the time that these calculations were performed, the
triplet effective range was not a very useful parameter.
For a given tensor range r2, e and Q determine Vs and

p quite closely. However, r& itself is insensitive to p1,
so that p1 must be known very accurately before rg is
determined. As we shall see, the theoretical binding
energy of H' is much more sensitive to r&, therefore, we
employed it to determine r& and then predicted p1. We
obtain a rather close agreement with the most recent
experimental values; hence we may conclude that po-
tential (1) provides a good description of the nuclear
two-body potential in the low energy domain.

Our results have a certain irreducible inaccuracy
arising from, first, the possible existence of three-body
forces' and, second, the inaccuracy of potential (1) in
the high energy domain. ' No corrections were made for
these effects. If at some future time the two-body force
is completely understood, the theory of H' will then be
useful in the investigation of three-body forces.

We have also neglected exchange effects; however,
' J. Schwinger, Phys. Rev. 78, 135 (1950).
2 H. Feshbach and J. Schwinger, Phys. Rev. 84, 194 (1951).' Hoisington, Share, and Breit, Phys. Rev. 56, 884 (1939).' J. D. Jackson and J. M. Blatt, Revs. Modern Phys. 22, 77

(1950).
8 H. Primakoff and T. Holstein, Phys. Rev. 55, 1218 (1939).
2 R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950)

&

R. S. Christian and H. P. Noyes, Phys. Rev. 79, 85 (1950).
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both Svartholm' and Hu and Hsu" have found that
these have very little eGect.

Other calculations which have been made with tensor
forces include those of Gerjuoy and Schwinger, "Fesh-
bach and Rarita, "and Clapp. "These authors employed
the Rarita-Schwinger potential, "which is, however, no
longer in agreement with experiment. Hu and Hsu"
have made calculations employing a potential of form
(1), but primarily with r.=r&, the values of r, chosen
precluding any charge independence. A preliminary
calculation in which r,Pr& was made by Avery and
Adams "

k'
T= ——(Vi'+Vi Vs+Vs'))

M
(2)

where M is the nucleon mass.
The trial functions were chosen to be combinations

of the spin-antisymmetric 'S; state and the three inde-
pendent 4D~ states, designated, respectively, D, D', and
D". The other possible 'S; state, symmetric in the
neutron spins and thus antisymmetric in the neutron
space coordinates, was not used because it vanished
for r~=r2., Feshbach and Rarita" found that it added
only 0.4 percent to their computed binding energy.
Since the S—P coupling was of higher order than the
S—D coupling and the percentage D state was less than
4 percent, no I' states were included. The four spin-

II. VARIATIONAL PROCEDURE

The major portion of the investigation consisted in
constructing a nuclear Hamiltonian with potentials
given by (1), choosing suitable trial wave functions,
and determining an upper bound to the ground-state
energy by means of the Ritz variation method.

Choice of the relative coordinate system of Fig. 1

permitted the expression of the D state wave functions
in terms of operations upon the S state wave functions
by operators of the form S,;. In such a system, the
kinetic energy

TABLE I. Comparison of results. The entries in columns labeled
Step 1, Step 2, and Step 5 are the respective calculated binding
energies in Mev for the four-term wave function (Step 1), the
6ve-term wave function (Step 2), and the nine-term wave func-
tion (Step 5). The units of r~ are 10 "cm.

2.122
1.827
1.533

«/7'c

1.792
1.543
1.294

Step 1

—9.10—7.86—5.72

Step 2

—9.46—8.21—6.06

Step 5

—10.05—9.06—7.50

angular wave functions were

Xs= (2) 1[&x(1)P(2)—P(1)a.(2)]a(3),
XD [rl S13+r2 S23jXS

XD' [ri S13 r2 S23]XS,
XD" [3(331'rlX r2)(&3 ' rlX r2)

(331'333)(riXr2) (riX r2) jxs

(3)

If the trial wave function is P li)A, , then the Ritz
variation method automatically chooses optimum
values of A; through solution of the secular determinant

where li) and
l j) represent typical terms. For con-

venience in computation, the matrix elements were
broken up into a sum of terms:

The sign of the "EE"matrix element was changed for
convenience. The "XT" (nontensor) elements arise
from the central-force potential terms and are grouped
together because of similarity. The three matrix ele-
ments of the tensor-force part of the potential, in-

volving S», S», and S», respectively, were designated
as (il Tisl j), (il T»

l j), and (il T»l j), the first two of
which are equal. After summation over spins, spatial
integration was carried out by the techniques of
Hyllera, as' and of Coolidge and James. ""

The variational calculation began with a four-term
trial function and proceeded to a more complex trial
function in a series of stages:
ti Step l. A four-term trial function was used, with one
term for each spin state, of the form

(ilII ~lj) =—(iI&~1j)+(il I"lj)~r
M

+2(ilT»l j)+(ilT»l j)—~(il j). (5)

FIG. 1. Coordinate system for H'.

=++s++DC'D+ +D'QD'+ + D "O'D"
p

ps= Xs exp —-'2X(ri+r2+p)

4D XD exP st3(ri+r2+P)—
PD ——XD (ri—r2) exp —

—s,v(ri+r2+p),
PD .——XD (ri —r2) exP —

—s,ei(ri+r2+P).

(6)

"T.-M. Hu and K.-N. Hsu, Phys. Rev. 78, 633 (1950)."E.Gerjuoy and J. Schwinger, Phys. Rev. 61, 138 (1942).
'~ H. Feshbach and W. Rarita, Phys. Rev. 75, 1384 (1949).
'3 R. E. Clapp, Phys. Rev. 76, 873 (1949).
"W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).
"R.Avery and E.¹Adams, Phys. Rev. 75, 1106 (1949).

Reasonable values for X, p, and v were determined by
applying the Ritz method to the 6rst three terms. Then

"E.A. Hylleraas, Z. Physik 54, 347 (1929);A. S. Coolidge and
H. M. James, Phys. Rev. 51, 855 (1937)."See Appendix A.
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TABLE II. Physical results. '

rc rg/rc B 7 Vo a PD &coul Pt

2.122
1.827
1.70
1.56
1.533

1.792
1.543
1.44
1.32
1.294

—10.05 0.2259—9.06 0.3799—8.48b 0.5085
7 63c 0 7365—7.50 0.7894

55.054 0.0779
50.123 0.0364
46.96 0.005
42.00 —0.053
40.918 —0.0679

2.2
2.8
3.1
3.5
3.6

1.088 1.79
1.059 1.76
1.041 1.74
1.014 1.72
1.0085 1.7 1

a Unit of length 10» cm; unit of energy 1 Mev.
b Experimental value of binding energy.
& 90 percent of experimental value of binding energy,

the fourth term was added and E was minimized for
co, it was found that the inclusion of the D" term con-
tributed about 5 percent to the computed energy. Next,
the 4&(4 determinant was minimized in E simultane-
ously for X, p, and v, using the value of co previously
determined. Finally, or was varied slightly. Incidentally,
we would like to note that fs is an exceedingly good
trial function for the pure central force case. %hen em-
ployed with the exponential or Yuk.awa wells it gives
well over 90 percent of the binding energy obtained by
Rarita and Present" and Svartholm, ' respectively.

Step Z. A 6ve-term. trial function was formed by
increasing the number of S terms to two. The S part
of the wave function had the form

Asggsr+As&gs2,

fs,=xs exp[ ——',X;(rq+rs+p)].
(7)

The energy was minimized for variation of the five
parameters X1, X2, p, v, and co.

Step 3. A seven-term trial function (Sq, Ss, Dq, Ds,
Dr', Ds', D") was formed from the function of Step 2
by splitting the D and D' states, just as was done in
Step 2 to the S states. The parameters X1, X~, and ~
were retained from Step 2, and the energy was mini-
mized for variations of the four parameters p1, p2, v1,
and v, .

SteP 4. The wave function of Step 2 was enlarged by
multiplying the S terms by series in (r&—r&)', in p, and
in (r~+rs); i.e., such that the S parts of the wave func-
tion assumed such forms as

[Asr+Asl (r& rs)'] exp[—s&z(r&+—rs+p)]+ (S&~~Ss),

[As,+As~+p] exp[ —sX&(rr+rs+p)]+(Sr~&Ss),

[Asr+ Astro(rr+ rs)] exp[ —
s X~(rr+r&+ p) ]+(S&~~Ss),

where the symbol (S,~S&) denotes a similar expression

involving the S2 term. The five parameters X1, ) 2, p, , v,

and co were retained from Step 2.
Step 5. A procedure similar to that of Step 4 was

applied to the D and D' states. A series involving p, a
series involving (r&+re), and then a series involving both
were used.

Steps 3 and 4 did not produce a sufhcient decrease
in computed energy to justify the correspondingly in-
creased complexity of the wave function, and hence
were dropped. However, Step 5 was retained; the final
wave function was

P= As,/sr+A ssPss+ [An+ pAn++ (rr+rs) ADO+/)

+[An +pAn ++(rr+rs)An"]Pa) +An"PD " (g)

The behavior of the calculated binding energy as the
wave function was improved is shown in Table I. For
tensor ranges r&= 2.122&(10 " cm and 1.827&(10 "cm
(corresponding, respectively, to r&/r, = 1.792 and 1.543),
convergence seems to have been obtained. The results
for r~ 1.533&&10 "——cm (r~/r, =1.294) are somewhat
more uncertain, but we estimate the computed binding
energy to be no more than a few percent above the
correct value.

III. RESULTS

Matrix elements obtained after removal of spin de-
pendence are tabulated in Appendix B."

Table II shows the constants of the assumed inter-
nuclear potential (1), both for the three values of r~ for
which the calculations were carried through and (by
interpolation) for cases corresponding to variationally
computed energies of 7.63 and 8.48 Mev, which repre-
sent, respectively, 90 percent and 100 percent of the
experimental value. ' Calculated percent D state, Cou-
lomb energy, and effective triplet scattering ranges
for the above cases are also shown. %ave function
parameters are shown in Table III.

IV. DISCUSSION

Inspection of Table II reveals the sensitivity of the
computed triton binding energy to variations in the
range of the tensor force; the computation of triton
binding energy thus allows a sharply defined tensor
range to be set. One can see that the triplet effective
range is not nearly so sensitive to variations in tensor
range as the binding energy is.

However, the above does not necessarily indicate
that a large e6ect upon the properties of the system is

TABLE III. Wave function parameters.

rg/rc ~2'c prc w rcr A81 A Ag) Ag)' A g)" Ag)+ A D'+ A g)0

1.792' 1.543
1.44
1.32

~ 1.294

1.0 2.0 2.2 2.5 2.8 1.464 4.672
1.0 1.9 2.2 2.5 2.8 1.369 3.537
0.95 1.8 2.2 2.5 2.8 1.08 3.01
0.8 1.5g 2.2 2.5 2.8 0.44 2.36
0.8 1.5 2.2 2.5 2.8 0.272 2.241

1.0
1.0
1.0
1.0
1.0

—1.204—1.178—1.29—1.59—1.666

0.693 0.426
0.902 0.493
0.91 0.45
0.80 0.30
0.758 0.254

—0.1085—0.1945—0.136
0.058
0.1129

—0.248—0.269—0.27—0.25—0.241

0.168
0.180
0.20
0.25
0.263

"W. Rarita and R. D. Present, Phys. Rev. Sl, 788 (1937).
"Integrated matrix elements are not shown because of space limitations, but are available in hectographed form.
"Li, Whaling, Fowler, and Lanrirsen, Phys. Rev. 83, 512 (1951),
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produced by variations of r~ alone, for the requirement
that two-body data be satisfied necessitates a change
in y, Vo, and g when r& is changed, and r& occurs in the
expression for tensor well depth as well.

From Table II, we see that the appropriate value of
r~ is 1.70&10 " cm. The corresponding value of pi is
1.74)&10 " cm. This agrees very well with the experi-
mental value" of 1.71&10 " cm. The corresponding
value of the percent D state is 3.1 percent, which is to
be compared with the value 3.75 percent obtained by
the theory of Sachs and Schwinger" from the sum of
the magnetic moments of H' and He'. This agreement
seems satisfactory, in view of the uncertainties arising
from relativistic effects in the Sachs and Schwinger
calculation. We finally turn to the Coulomb energy,
the expectation value of e'/p, equal to the difference in
H' and He' binding energies. The predicted Coulomb
energy is higher than the experimental value of 0.77
Mev."This discrepancy may be in part due to the un-
suitability for this calculation of our wave function,
determined as it has been by a variational expression
for the energy. Further explanations of the discrepancy
include the following possibilities: (1) effects of the
magnetic interaction; (2) inequality of n mand p —p-
forces; (3) requirement that the potential be less
singular at zero interparticle distances than is the
Yukawa potential. The first of these has been in-
vestigated. '4 It is found that the magnetic effects in-
crease the binding energy difference between H' and
He', thus the discrepancy is increased. Suggestion (2)
can hardly be investigated at the present time. Meson
field theory does, however, indicate that higher order
eRects of this kind do exist. Suggestion (3) is buttressed
to some extent by the fact' that the exponential well
does give a better value for the total e—p cross section
at high energy than the Yukawa well. On the other
hand, the latter yields a better angular distribution.

In conclusion, potential (1) with the constants given
in Table II for E= —8.48 Mev summarizes all the
low energy two-body data and gives the correct binding
energy and percent D state for H'. A discrepancy of
twenty-five percent in the Coulomb energy remains.

Note that by only a slight reduction of the range of
the tensor forces one may place g equal to zero, for
which the singlet and triplet central potentials are
equal. This four-parameter potential is consistent with
the experimental data and is more satisfying in that
these four constants predict six experimental numbers,
the singlet and triplet scattering lengths and effective
ranges, the deuteron quadrupole moment, and the
binding energy of H'."

2' Hughes, Surgy, and Ringo, Phys. Rev. 77, 291 (1950).
~ R. G. Sachs and J. Schwinger, Phys. Rev. 70, 41 (1946).
"Tollestrup, Jenkins, Fowler, and Lauritsen, Phys. Rev. 75,

1947 (1949).
24 George Stuart (private communication).
~ Note added in Proof: Recent calculations by Irving )Phys.

Rev. 87, 519 (1952)) indicate that this potential will also predict
the binding energy of He4 with fair accuracy.

We are greatly indebted to Dr. Jane S. Pease for
verifying some of our calculations. Most of the numerical
work was ably and patiently performed by Miss Hannah
Paul of the Joint Computing Group at the Massa-
chusetts Institute of Technology.

APPENDIX

A. Methods of Integration

Since the Hamiltonian is independent of the location
or orientation of the system, the only noncyclic co-
ordinates are r&, r2, and p or a system derived from them.
The general volume element may be shown rigorously
by direct computation of the Jacobian to be

(8/3) 7r'r yr 2pdr ydr 2dp;

we can, however, drop the numerical factor for
simplicity.

The integration limits on the above set of variables
involve, for the first variable integrated, the sum and
(absolute value of) the diRerence of the other two
variables. As this is rather unwieldy where exponentials
are involved, we shall use two other schemes in actual
computations.

Integration of the matrix elements involving ex-
ponentially only (r&+r2) and p is carried out most
simply by the Hylleraas method as used by Rarita and
Present. " If one chooses as variables the quantities
s—=r j+r2, t=—r~ —r2, and p, the integration scheme
becomes

J ' '
~, J,f(s, t, p)dr= ds dp dtp(s' t2)f(s, t, p), —(A1)

for which recursion formulas were developed. "
However, this scheme proved overly difficult where

the exponentials involved r& and r2 unsymmetrically.
Instead of permuting the variables, we used the scheme
of Coolidge and James, ' which has the advantage of
compartmenting the integrations. Making the sub-
stitutions

$—=rx+r2 —p,

g—=ry —r2+ p,

ri+r2=+ p—,

and inserting a numerical factor chosen simply to give
the same result as the Hylleraas method for the same
integrand, one obtains

~f(f, q, f')dr=(1/8) d$ dq ~ d1'
&o ~o ~o

&&(5+v)(5+1)(n+f)f(t v f) (A3)

When ($+g)' appears in the denominator of f($, g, 1),
the integration cannot be carried out independently
over $ and g, but the integrals may easily be evaluated
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by the further substitutions

$=y—x,

or the substitutions

$=r cos2$, g= r sin'Q.

B. Matrix Elements, Not Integrated

(A4)

(A5)

Then

(slKEls) = — d.P(b, b)

(SIKEID) =0

(SIKE ID') =o

(slKEID") =o

Let typical S, D, D', and D" components of the trial
wave function be, respectively, b(rl, r2, p) ps, g(rl, r2, p) yD,
h(rl, r2, p)xg&, and p(rl, r2, p)Xn . Then the matrix ele-

ments, expressed as integrals over spatial coordinates,
are as follows:

1. Sormulisatiors E/ements

(SIS)= ~ b dr

(slD) =o

(SID') =0

(SID")=0

(Dl D) = t g2dr6fr, 4+r24+r 2r22(1 —3 cos'8)]

(D I
D') =

J
t ghdr6Lrl4 —r247

(DID") =)t gpdr( —3)(rl' —r2')rl'r2'(1 —cos'8)

2g Bg
(DIKEID) = )l d—r P(g, g)+——

P ~P-

4g Bg
X6I rl +r2'+ rl'r2'(1 —3 cos'8)]+——

fy Bfy

X [6rl'+3rl'r2'(1 —3 cos'8) —3(rl' —r2')rlr2 cos8]

4g Bg
+——L6r2'+3rl'r2'(1 —3 cos'8)

f2 Bf2

~ t(DIKEID') = —
) dr [P(g, h)6(rl' —r2')]+——

l

'
r, Br,

XL6rl4+3rl2r22(1 —3 cos28)+3(rl2 r22)rar2 cos8—]
4g Bh

+——[—6r24 —3rl2r22(1 —3 cos'8)
f2 Bf2

4g Bh
+3(rl' —r2')rlr2 cos87+——[3(rl —r2 )

P ~P

—6(rl' —r2') rlr2 cos8]

4g Bp 4g Bp
(DIKEID") = —

) dr P(g, p)+— +
fy Bfy f2 Bf2

r~

(D'I D') = h2dr6[rl4+r2' rl2r22(1 3cos'8)—]—
(D"

I
D")= ~p dr6[rl r2 (1—cos 8)]

4g Bp
+——(—3)(rl2—r22)rl2r2'(1 —cos 8)

P ~P-

+gPL —12(rl' —r2')+12(rl' —r2')rlr2 cos8]

Let

cos8 = (rl'+r2' p')/2r, r . 2—
Z. Eidetic Energy E/emits

r

(D IKEID') = d'I LP(h, h)]—

4h Bh
X6Lrl'+r2' —rl'r2'(1 —3 cos'8)]+——

fy Dry

I B ( Bvp 22 B ( Bvp
P(N, v)—=——

I
rl' —I+—,—

I
r2' —

I

rl Brl ( Brl) r2 Br2 ( Br2)

I B ( Bvl vl 2'2 B'v+-—
I

p'—I+
p Bp E Bp~ rlr2 BrlBr2

$2p r2 y P5
2L + S

r~p„"'"BrjBP f2P ~re

XL6rl' —3rl'r2'(1 —3 cos'8)+3(rl'+r2 )rlr2 cos8]

4h Bh
+ I6r2 3r r2(1 3cos8)

r2 Bf2
4h Bh

+3(rl'+r2')rlr2 cos87+——L3(rl'+r2 )
P ~P

3rl2r22(1 3cos'8) —6(rl'+—r2')rlr2 co—s8]
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4h Bp 4h Bp
(D'I zE,

I
D")= —d. z(h, p)+

rj Brg r2 Br2

4h Bp
+ ( 3)(y 2+y 2)r 2y22(1 cos20)

+hP[—12(r&4+rp4) —12rPrpo(1 3—cos'8)

+12(ya +rP)y&r& cosg]

4P gp 4P gp
(D"

I
zzI D")= &d. —I'(p, p)+ +

rq Brj r2 Br2

4p Bp
+——6[r rp (1—cos 0)) +P [6(r +r

p ~p-

—r,ro cosg)rPrp'(1 cos'—8)]

3. Ãorrtensor Potentia/ E/emeri, ts

(sl vl s)~r = vo—
X ((1—-', g) I[f(yq/r, )+f(rp/r, )]+(1—2g)f(p/r, )).

With the exception of the S—5 element, the non-
tensor potential elements are the same as the corre-
sponding normalization elements, premultiplied by
(—Vp), and with a factor of

[f(rq/r, )+f(rq/r, )+f(p/r, )]
inserted. into the integrand. As a typical example,

(Dl VID')„r= —Vp ghdr6(y&' ro')—
X[f(r,/r, )+f(rp/r, )+f(p/r, )]

4. T~3 Poteetia/ E/ements

(sl T„ls)=o

(Sl TiolD) = —pVo bgdrf(y&/«)

X[6r '+(3—9 cos'8)r ')

(SIT»ID') = yVp)t bhdrf(r, —/r, )

X [6rP—(3—9 cos'8) rpo)

(Sl T»ID") =+yVp ' bPdrf(r&/r~)[3r~'rpo(1 —cos'0))

(DI T»I D) = vVo)"g'drf(y—~/«)

X[—12r&'+6(rp' —2rPrpo) (1—3 cos'8)]

(D'I Tqol D') = —yVp h drf(rq/rq)[ 12—rq

+6rq4(1 —3 cos'8)+12rPrpo(1 —3 cos'0)]

(D'
I
T» ID") = —y Vo hpdr f(rx/r, )[6r~'rp'(1 —cos'8)

3rPr p4—(4 10 cos—'8+6 cos48)]

(D"
I
T&olD") = —yVp p'drf(rq/r&)6[rprpp(1 —cos'8)]'.

5. T~2 Potemtia/ E/emits

(sl T»ls) =o

(sl T»ID) =o

(Sl TiplD') =0

(sl T»ID") =0
P

(Dl Tlpl D) =—
vVo~ g'drf(p/«)

X 12[r~'+r p'+ 'r~'ro'(3 cos-'8 —1)]

12
[2yq +—2—yp +r r (r +rP)

p2

+(2rPrP 4r&' 4ro')rqrp co—sg)—

(Dl T,plD') = —yVo I ghdrf(p/r~) 12(rq —rp)

12——[2r~' —2rp'+ p r Pr p'(r P—rp')
p2

—4(r&' —rp')rqrq cosg+ , (rP rp')r Pro' co-s'8]—

(DI T»ID") = —~Vo gPdrf(ply )

X6(rP—ro') rPrP(1 —cos'8)

(D'I TqpID') = —yVp h'drf(p/rt) 12[rq4+rq4

12
+ z~rPyp (1—3 cos 8)]——[2r&o+2y&o

p2

—2(2r&'+rPrq'+2rq')r~rq cosg

+3(r +rp)yz rp cosog)

(D'I T„lD") = —yVp hpdrf(p/r, )
(Dl Tqol D') = —yVo ~ghdrf(r~/r~)

X[—12r&4—6rq'(1 —3 cos'8) 7
36

6(rP+rp')r Pro'(1 —cos'8) ——[r Prpo(1 —cos'8))
p2

(D I
Tip

I
D")= —yVo "gpdrf(y /y ) [6r 'y~'(1 cos'0)—

(D"
I
T&plD") = —yVp p'drf(p/r, )6[rpro'(1 —cos'8))'.

+3rPrp4(4 —10 cos'8+6 cos40)] J


